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Abstract

Solutions to a sequence of modified least squares problems, where either a new
observation is added (updating) or an old observation is deleted (downdating),
are required in many applications. Stable algorithms for downdating can be
constructed if the complete QR factorization of the data matrix is available.
Algorithms which only downdate R and do not store ) require less operations.
However, they do not give good accuracy and may not recover accuracy after an
ill-conditioned problem has occurred. We describe a new algorithm for accurate
downdating of least squares solutions, and compare it to existing algorithms. We
also present numerical test results using the sliding window method, where a
number of updatings and downdatings occur repeatedly.

Key words. downdating, iterative refinement, least squares, seminormal equa-
tions

1 Introduction

Many problems in signal processing can be formulated as a least squares problem

min || Xw —sll2, X € RP*" p>n. (1)
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If rank(X) = n and the QR decomposition of the data matrix (X s) is

R u
QT(X s) = (0 ") € R, (2)
0 O

where ) € RP*P, then the least squares solution w is obtained from
Rw = u, (3)
and the residual vector r and its norm satisfy

r=s—Xuw, |rlz= ol

Frequently one knows the factorization in (2), and wishes to find the solution to a
modified problem 3
min || Xw — 3|2,

where a new observation (y7 ) is added (updating):

x=(3) ()

or an old observation (2% ¢) is removed (downdating):

(5 = ()

Often the modified problem involves both an updating and a downdating. From (3),
we see that the solution to the modified problem can be obtained by modifying the
R factor of the corresponding augmented matrix (X §). If R and R are the R factors
of X and X respectively, then we have for updating

RTR=RTR+ ny,

and for downdating

RTR=RTR - 2.7,

Throughout this paper, we will assume that the data matrices X and X have full
column rank. Hence the problem is mathematically (but not numerically) equiva-
lent to that of updating or downdating a Cholesky factorization under a rank one
perturbation. From the relation 02(A) = M(ATA) and classical perturbation the-

ory for eigenvalues [9], it follows that the singular values &; = o;(R) interleave with
o; = o;(R), where for downdating

01201209220, 20,20
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In downdating, the smallest singular value may decrease and we can have &, ~ 0,
even when R has full column rank. Moreover, any singular value may decrease by
a considerable amount, which indicates that downdating can be a sensitive problem
(16]. On the other hand, updating R will increase all its singular values.

Important applications where the recursive least squares problems arise include
speech echo cancellation, speech coding, and adaptive radar signal processing. The
following issues are critical for these applications [1]:

1. The modification should be performed with as few operations (real time applica-
tions) and as little storage requirement as possible. Recomputing the QR factor-
ization is too costly since it requires O(pn?) operations, and thus, a modification
technique must be used.

2. The solution should be accurate up to the limitations of data and conditioning of
the problem, i.e. a stable numerical method must be used. It should be possible
to use a computer with short word-length. This rules out the use of the method
of normal equations, which requires twice the word-length as methods based on
the QR decomposition.

The purpose of this paper is to discuss accurate and efficient algorithms for downdat-
ing least squares solutions. We consider the LINPACK algorithm and indicate that
it does not give an accurate solution when the downdating problem is ill-conditioned.
Then we discuss more accurate algorithms: the downdating algorithm based on Gram-
Schmidt orthogonalization, and an algorithm based on corrected seminormal equa-
tions.

The paper is organized as follows. In Section 2, we review the algorithms for updat-
ing and downdating the QR decomposition when both Q and R factors are available.
In Section 3, the downdating algorithm based on the Gram-Schmidt orthogonalization
method is summarized. In Sections 4 and 5, the LINPACK algorithm for downdating
the Cholesky factor and its stability properties are presented. A downdating algo-
rithm based on the corrected seminormal equation method is described in Section 6.
In Section 7 we briefly describe the application of the methods of this paper to the
problem of downdating R~!. Finally, we compare the algorithms discussed in this
paper and present the results of numerical tests in Section 8.
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2 Updating and Downdating the QR Decompo-
sition

Assume that we have computed the QR decomposition of (X s) as in (2). Then we

have
R u
QT 0><X s)_ 0 p
<0 1)\ 9)" 10 of" (4)
yT 7

The row (y* n) can now be annihilated and the updated factor is computed by a
sequence of plane rotations U = Gy---Gpr41, where Gy is a rotation in the plane

(k.p+1). We obtain

Rou R
0 .

A0 g (o p). (5)
yT 00

It then follows that Q 0

0= ( 0 1) v (©)
1s the updated factor Q. Note that Q is not needed for the construction of U and of
the updated factor R. This algorithm for updating is backward stable [10]. Indeed,
if we construct the upper triangular factor by a sequence of such modifications, the

resulting algorithm is equivalent to the sequential row orthogonalization method for
computing the QR decomposition.

Assume that we have the QR decomposition
ZT . R U
(x s)=(% 7)=alo » ™
0 0

and want to remove the first row (27 o). We now show that this is equivalent to
updating the QR factorization when a special column e; = (1,0,...,0)T is added to
the left of (X s),

Using (7) it follows that
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where ¢7 = (¢F ¢ ¢7) is the first row of Q. We can now determine a sequence of
plane rotations Jx, k =p —1,p—2,...,1, in the plane (k, k + 1) such that

1 o7 7
@ Kou 0 R 4
Y0 )=y g 5|0 UT=ddeade ®)
@ 0 0 0 0 0
Here Ji is chosen to annihilate the (k + 1)st component in q. Then we have
1 v~T T
QT(l 27 a)z 0 R
0 X 3 0 0 5|
0 0 O

where Q = QU. Note that by an extra reflection we could ensure that p > 0, but we
do not assume this in the following. Equating the first columns on both sides we see
that QTe; = ey, so the first row in Q equals e;. Hence, Q must have the form

o)

0 Q/°

and it follows that (v? 7) = (27 o). Dropping the first row and column gives the
downdated QR decomposition of

) (R
wa-afo 7]
0 0

Note the important fact that in the downdating case, we need the first row of the
square orthogonal factor () to construct the matriz U. Paige [10] has proved that this
downdating algorithm is mized stable, i.e., the computed R, %, and p are close to the
corresponding quantities in the exact factor of

(X+E35+f),  |El=ap, |ifl:=cn

where ¢; and ¢, are constants depending on the dimension of X, and 4 is the roundoff
unit.

3 Modiftying the Gram-Schmidt Factorization

In many applications, especially if p > n, it is too costly to save and modify the full
QR decomposition. When we use the Gram-Schmidt QR factorization, the storage



6 A. BJORCK , H. PARK, and L. ELDEN

requirement for the Q factor is reduced to pn from p?, which is for the full QR
decomposition. In [5] stable algorithms are derived for modifying the Gram-Schmidt
QR factorization of a matrix A when A is changed by a matrix of rank one, or
when a row or column is added or deleted. A principal tool of the algorithms is
the Gram-Schmidt process with reorthogonalization. A slightly simplified algorithm
given in Reichel and Gragg [14] relies on the fact that in the full rank case one
reorthogonalization is always enough, see Parlett [13].

The algorithm given in Section 2 for adding a row applies with trivial modifica-
tions also to the Gram-Schmidt factorization. Assume now that we have the QR

factorization J - @ Y\ (R wu
(X S)=<X §>:<Q1 y)(O p)’ o

and want to delete the first row (27 o). Note that (9) can be written as

CIRERII L
Following [5] we first apply the GS process (with reorthogonalization) so that e; =

) T
(1,0---,0)7 is orthogonalized to Q; = <gj f) € RP*("1) Because of the special
1

form of the appended column, the result has the form

Gr-@aalry) w
:

o 2

0 0

for some h € RP~DX1 5 and 5 € R. Here ¢7 q; + ¢+ 4% = ||e4]|2 = 1, and equating
the first element in the last column in (11) ¢fq; + %% +44 = 1. Hence we have 4 = 7.
If e; is linearly dependent on the columns of Ql then we get ¥ = 0, h = 0, and the
orthogonalization will fail. In this case we can take a random vector in R®~D*1 and
reorthogonalize to find a unit vector h that is orthogonal to (@ y), see [5].

We now write using (10) and (11)

and determine a sequence of plane rotations Jg, ¥ = n + 1,n,...,1, in the plane
(k.7 4+ 2) such that

T —
a %Y N\py_(0 ) _
A L A I Y

2 O
>
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where Ji is chosen to annihilate the kth component in (¢F % 7). Since orthogonal
transformations preserve length we can make 7 = 1. The transformed matrix has
orthonormal columns and so h = 0. It follows that

S RCEBI]

R u R
urlo pl=|0 5
0 0 T o
with R upper triangular, and the downdated QR decomposition becomes

X H=@a(F D). (12)

Summarizing the above, we get the following algorithm.

2

where

GS Downdating Algorithm:

T R
i A 4 d)) pX(n+1) < u
Given @, = <Q1 y € R and 0,

algorithm computes the downdated quantities @y, R, %,  and :

) € R+Dx(n+1) - the following

1. Orthogonalize e, to Ql by the GS process with one reorthogonalization step:
(a) s :=(af ¢>)T

. AT _ N of
1§ :=Qfv; v i=v— Qs

i, i /]2 < flolla/v/2, 5 = 0
determine h with unit length orthogonal to (@, v)
1. else v :=v'/||v']|,

(e) ¥ :=v(l); h:=v(2:p)

2. Determine an orthogonal matrix U as a product of Givens rotations such that

(85 D= 3 D)o
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R u
) =0T (0 p) (14)
0 0

4. Compute the new solution @ from R = @ and take p as the new residual norm.

3. Update the R factor by U7:

TN
Nﬂom
Q ™ &2

With one reorthogonalization process, the GS downdating algorithm requires about
7pn +2.5n? flops. This can be reduced to 5pn + 1.5n? flops when fast scaled rotations
[2, 9] are used in (13) and (14). Note that the data matrix X is never needed: to
delete the first row of X, the R factor and the corresponding row in Ql are needed.
Thus, the storage requirement is about pn + 0.5n2 for Q; and R.

4 Downdating the Cholesky Factor

There are several algorithms for downdating the Cholesky factor of AT A, which is
mathematically the same as downdating the R factor of the QR decomposition of
A. These algorithms have the property that the Q factor is never used. One impor-
tant algorithm of this type, which uses hyperbolic rotations, has been analyzed by
Alexander, Pan, and Plemmons [1]. Another standard algorithm is the LINPACK
algorithm, due to Saunders [15].

To derive the LINPACK algorithm for downdating R, note that downdating the
ith row of the data matrix (X s) by the method in Section 2 requires the ith row
of the orthogonal factor Q). Also note that the transformations J,4o...,J,1 in (8)

do not affect <§ Z), but the vector ¢;, which is replaced by Jei, ¥ = ||q2|[2. Thus,

mathematically it suffices to know the first n + 1 components (¢ ) of the ith row

of @ and ¥ = ||g2|2 = \/1 — (|lq1]|? + %?) to delete the ith row of (X s). From the
first row of the QR decomposition (7), we have

R u
(T o)=( ¥ &)0 p|=(aF o) (T ¥).
o o) o)

It follows that ¢; and % can be computed by solving the triangular system

(o ()=
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Using the relation ufq; = uT R~ Tz = w7

z, we obtain

an=R7"z, dp=(c-7w/p (p#0) (15)

Next we should determine a product of plane rotations U such that

@1 R u 1 z~T
Uy 0 pl=[0 R . (16)
¥ 0 0 0 0

The first rotation in the (n + 1,n + 2) plane only affects the 2 x 2 matrix

(506 0-G %)

and a short calculation gives

™ 20 Q

PR rdt=1-lalh  h=@-wl, s A (D)
(Note that % in (15) need not be computed so the assumption that p # 0 is not

needed.)
Collecting these results we get:

LINPACK Downdating Algorithm:

Given R, u,p,w and (2T o), the following algorithm computes the downdated
quantities R, 4, p and w:

1. Compute ¢;,%, and p from

Rlqi =z, y=01—|a})"?  p:=(0-2"w)/y. (18)

2. Determine an orthogonal matrix U as a product of Givens rotations such that
1 2T o o (/@i R u
G & 2)=07(5 0 7) 19)

3. Compute the new solution @ and the residual norm from

R = 1, pi=(p* — pHV2,
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This algorithm requires about 3n? flops for two triangular solves and updating in
(19), which can be reduced to 2n? flops when fast rotations are used in (19). Unlike the
GS downdating algorithm, the LINPACK algorithm does not require the Q factor.
However, the row (27 ¢) to be deleted should be known to recover the necessary
elements in the ( factor. Thus, for solving recursive least squares problems with the
sliding window method, all the rows in the data matrix X need to be stored for future
downdating. Accordingly, the storage requirement is pn + 0.5n2. This means that
the storage requirement for the LINPACK downdating algorithm can be about as large
as that for the GS based downdating algorithm for recursive leasl squares problems
contrary to a widespread misconception. In special cases such as when X is sparse
or its elements can be generated by a formula, the cost of storing X can be much
- smaller than that of storing Q.

5 Stability Properties of the LINPACK algorithm

It is well known that downdating the Cholesky factor can be very ill-conditioned and
can fail. We first note that

RTR — 22" = RT(I — q1¢")R = RTR. (20)

If we put I — qi¢f = LLT, then R = LTR, where

fI) =5 y=y1— [l (21)

~
Stewart [16] considered the effect of a perturbation 8z in z on the downdated factor

R. He showed that if
16z]lz < poy, o1 =||R|l2,

where g is the roundoff unit, then, neglecting higher order terms
66| < 2u01(01/53), (22)

where &; = ai(f%). This shows that the method can break down if &;/0y ~ u!/?, i.e. if
we downdate to an ill-conditioned matrix R. The analysis in [16] also shows that the
downdating problem is ill-conditioned if any singular value is reduced significantly
(not necessarily becoming small). This happens e.g. if the row to be downdated
contains an outlier, i.e. an erroneous and large element.

Pan [11] has given a detailed perturbation analysis of the downdating problem for
the Cholesky factor, and proved the following result.
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Theorem 5.1 Let a > 0 be small enough so that the factorization
R(e)'R(e) = (R+ eE) (R + €E) — (z + ef)T (2 + f) (23)

exists for all € € (—a,a), where E is an upper triangular matriz. Then we have the

bound

_—-”R(ﬁ)éﬂf”z < JelR(RCen(nt e + 1) 12 (24)

1]l
ILE]l2

+ (2n3/2C +2n +1) IRl ] + 0(62)’
2

where k(R) is the condition number of R, and C = ||q,||*/~.

The above perturbation analysis shows that using R to form the downdating trans-
formations may be a much more ill-conditioned problem than downdating the original
matriz X. This is because the original row in X is not perturbed in the same way
as the vector (¢ ) which is computed by solving a triangular system to determine
the downdating transformation in the LINPACK algorithm. Hence, any method that
uses R alone to recover the necessary elements of () cannot be backward stable in the
same sense as the downdating algorithm that uses Q) directly.

We now illustrate the perturbation result, and the possible failure of the LINPACK
algorithm using a simple 2 by 1 example:

Example 1. Let X = (i) where € = ,/u. Then the QR decomposition of X

correctly rounded to single precision is

(1Y (1 —e\ (1
¥=()=( )0)
The LINPACK algorithm will compute
p=1/1=1, 4*=1-1=0, J =1,

and we obtain the downdated R factor R = 0 instead of the correct value B = e. It
is easily verified that if we downdate using @@ we get the correct result.

The information from the second row in X is not present in R, only in ). Therefore
no method working only from R can hope to do better.
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6 Downdating using Seminormal Equation

We now consider a downdating algorithm in which the method of the iterative refine-
ment is incorporated. The method is based on the seminormal equations (SNE)

RTRw = X7s,

for solving a least squares problem min,, || Xw — s||;. This method is in general no
more accurate than the method of normal equations. We instead consider the method
of corrected seminormal equations (CSNE)

RTRw = XTs, r=s— Xw, (25)
RTR6w = XTr, w, = w + dw.
Here a corrected solution w, is computed by performing one step of iterative re-

finement on the solution computed from the SNE. Note that we assume that all
computations are performed in single precision.

Assume that the computed R = R is such that there exists an exactly orthogonal
matrix ¢ such that

X+E=QR,  |Elr < cipl X
Then in Bjorck [4] the following error bound is given for the solution w. computed

by CSNE:

Theorem 6.1 Let w. be the least squares solution computed by the CSNE method,
and assume that p = ¢;n*?ur < 1, where & is the spectral condition number of X.
Then the following error estimate holds up to terms of higher order in uk:

: sl
lw ~wells < our(eallwllz +n'prt (26)
( X,
r
T (T e R

where
o = capk’, cy = in/z(cl + n), cs < 2711/2(c1 +2n + p/2) (27)

Hence, provided that csux?

backward stable method.

< 1, the forward error will not be worse than for a

In [4] it was shown how the CSNE method can be used to update the R factor
when a new column is added. This can be adopted to reconstruct the vector (g7 )
as {ollows.
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Theorem 6.2 Let x be the solution to
min [[e; — X[z,
and R the R factor of X. Then the R factor of (X ;1) is

R
(o0 %) @=Rs hl=le—Xe] (28)

The downdated R factor is then obtained by applying orthogonal transformations
to transform the last column into the vector e;. We now apply this result to downdate
the augmented R factor by solving the least squares problem

rﬂid’nllel — (X' s) (;) ll2
using the CSNE.
The first step is similar to the LINPACK algorithm. From

(e ) (3)=(5).
¢ =R Tz, = (0c—-2Tw)/p.
(o 5)(5)=(%).

p=v/p, v=R g —up)=R'q — ¢w.

We only need ¢ and v to compute |y| = ||t||2, where

assuming p # 0, we get
Next we solve

which gives

v

t=e; — (X s) (¢) =e — X(R'q1) + (Xw — s)/p.

Note that _
P = 1 Xw — sl = [ Xw - 3]} + (0 — 2"w)?,

and therefore we have || < 1. It turns out to be important to refine ¢; before % is
computed- i.e., to perform the algorithm in Gauss-Seidel rather than Jacobi fashion!

CSNE Downdating Algorithm:

Given R, u, p, w, the data (X s) the following algorithm deletes the first row (2T o)
and computes the downdated quantities R, %, p and w:
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1. Compute ¢;,v and ¢ from

RTq, =z, Rv = q, t:=¢e — Xv.

2. Update ¢;,v and compute ~:

R'sq = X', q1:=q1 + 6qu,
Rév = éq, t:=t— Xév, v = ||t

(a) compute the normalized residual: 7 := (s — Xw)/p
(b) modify ¢: ¢ := eT#, t:=t— ¢

(c) update 1 and t: 8¢ := 71t, =+ 8P, t:=t— pF
(d) compute p=1p/y, 5= plltlz/v

4. Determine an orthogonal matrix U7 as a product of Givens rotations such that
(1 z~T U):UT(ql R u)
0 R u/)’ v 0 p

5. Compute the new solution w from
R = 4.

Example 2. Let X be as in Example 1. In the method of seminormal equations we

compute
1 1
v=a=1, v=)(y)-(,)t=c

There is no need for the refinement steps 2 and 3 here, and we get

T11>_<11) -
U(eO_Oe’R_E’

which is the correct result.
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Algorithm CSNE requires three more triangular solves than the LINPACK method,
if the iterative refinement is carried out. Also, four extra matrix times vector multipli-
cations with X and X7 are required. Hence, the added computational complexity is
quite high, ~ 4pn + 1.5n? flops. However, sometimes X may have a special structure
and the matrix-vector multiplications can be performed by fast algorithms. This is

the case, for example, when X is a sparse or Toeplitz matrix. The storage requirement
is the same as that for the LINPACK algorithm.

When the CSNE algorithm is too expensive to use in every step, we suggest a
hybrid algorithm [6], where the CSNE algorithm is used if the downdating is ill-
conditioned and the LINPACK algorithm is used otherwise. As a measure of condi-
tioning of the downdating problem for R augmented by the right hand side v and
residual p, we have used the quantity (cf. (16) and [16])

7 =1 llallz - ¥* (29)

If 7% is less than a user-specified constant tol then the downdating is performed with
CSNE. Our numerical experiments indicate the hybrid method with tol in the range
[0.25,0.5] produces much more accurate results than the LINPACK algorithm.

7 Downdating the Inverse of R

The problem of updating and downdating the inverse of the matrix R in the QR
decomposition has been studied in [12] for methods based on orthogonal as well as
hyperbolic rotations. One motivation for working with R™! instead of R itself is that
such an algorithm can be parallelized more easily. Furthermore, there are applications
(see [12]) where the elements of the inverse are needed.

The downdating methods described in this paper can be modified to downdate
the inverse of R. We first describe how the inverse and the solution vector w can be
downdated recursively.

Consider the transformation (19)

(o 0G5 )0

(% 9)=( 2) 07(3)=(3) (30)
where p is computed from (17). By simply inverting the matrices in the first equation
in (30) we get the following formula for downdating the inverse:

0 1 . 1 _ZTR——I
(R—l _ é—lql)U:<0 R-! ) (31)
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Combining (31) and the second equation in (30), we see that

(a—;sz-la) B (1 —szz-l)<a)_(1 —zf’R—l)UT(u>
R4 — \0o R @) \0 R p

0 1 é
- o (“) = v
R1 —%R_lql p Ry — %R‘lql ’

and we get the following downdating formula for the solution w = R~ 1u:

=Rl =w-LR1q. (32)
¥

Since we assume that rank():’) = n, we have v # 0. The LINPACK, the CSNE,
and the hybrid algorithms only differ in the way the vector (¢ 7) is computed. For
determining this vector, triangular systems with the matrices R and RT need to be
solved. This can be replaced by the corresponding multiplication by the inverse.
Therefore these methods can also be used in connection with inverse downdating.

8 Numerical Experiments

In a sliding window method, a least squares solution is computed based on the p
latest rows of an observation matrix A, where p is the number of rows in the window
matrix [1]. In step k, the new row of observation, A(k,:), is updated into the QR
decomposition, and the existing row A(k — p,:) of the data matrix is downdated
from the decomposition. If an outlier occurs at step 7, then in exact arithmetic its
influence will not be seen after step 7 + p. However, the downdating problem is very
ill-conditioned in the step when the outlier is to be removed, and any algorithm that
does not explicitly use @) or the original data X, e.g., the LINPACK algorithm or a
hyperbolic rotation-based algorithm [1}, is likely to introduce a large error into the
decomposition.

In the sliding window context, the storage requirements of the four algorithms
presented in the previous sections are the same in the general case, pn + 0.5n%. The
GS algorithm requires the orthogonal factor but not the data matrix in storage, while
the other algorithms require the data matrix but not the orthogonal factor. However,

when X has a special structure, the storage requirement for X can be much smaller
than that for Q.

The computational complexities of the four algorithms for each downdating are
compared in Table 1. We give the operation counts (1 flop = 1 addition and 1 multi-
plication) for standard and fast {2, 9] Givens rotations. For the hybrid algorithm, the
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computational complexity is either the same as that for the LINPACK algorithm or
the CSNE algorithm. The LINPACK algorithm has a clear advantage in computa-
tional complexity. In a sliding window context, the GS algorithm is more expensive
also in the updating stage, since the Q factor needs to be modified. For the CSNE
algorithm the updating stage is the same as for the LINPACK method. Hence for
a complete up/downdating step using standard Givens rotations the GS algorithm
requires 11pn + 4.5n2 but the CSNE algorithm only 4pn + 6.5n% flops. Finally, note
that if, e.g., X is Toeplitz the term 4pn in the operation count for the CSNE algo-
rithm can be reduced by using a fast algorithmm for the matrix-vector products with

X and X7,

Table 1: Computational Complexity of Downdating algorithms (flops)

Algorithm || Standard Givens Rotations | Fast Givens Rotations
GS Tpn + 2.5n2 5pn + 1.5n2
LINPACK 3n? 2n?
CSNE 4pn + 4.5n? 4pn + 3.5n2
Hybrid 3n? or 4pn + 4.5n? 2n? or 4pn + 3.5n?

One application area where downdating is used in connection with the sliding
window method is adaptive filtering. In [3] it is noted that in certain situations this
method does not perform well as rounding errors accumulate and eventually destroy
the solution. Our numerical tests indicate that these difficulties are not to be ascribed
to the sliding window method itself but rather to the downdating algorithm used.

Numerical tests using the sliding window method have been performed in Pro-
Matlab with IEEE double precision floating point arithmetic to compare the accuracy
of the four downdating algorithms. The solution obtained from the QR decomposition
of the window matrix was used as a reference and a window of size 8 was used
throughout. In each figure, we present the relative error in Euclidean norm in the
downdated solution vector by the LINPACK, CSNE, hybrid, and GS algorithms. The
spectral condition number kx of the window matrix to be downdated and 1/4%, which
is a measure of the conditioning of the downdating problem (29), are also shown. A
“4" sign in the plot shows where iterative 1eﬁnement is made in the hybrid method.

We have used the following criterion: if 4% < 0. 25 then downdating is performed
with the CSNE method.

The following two test problems are similar to those in [6]. They were also used
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in the context of adaptive condition number estimation in [7].

Test I. A random matrix A € R%°*% was constructed with elements taken from a
uniform distribution in (0,1). An outlier equal to r-103, where r is random num-
ber from the same distribution, was added in position (18,3). The right hand side
vector b was taken to be b = Az + b,, where b, has random elements uniformly
distributed in (0,107%), and xo is 5 x 1 vector with ones as its components.

The results are shown in Figure 1. It is seen that the relative error in the solution
using the LINPACK algorithm is considerably magnified in the ill-conditioned
downdating step and that it remains on that high level even if the subsequent
downdating steps are well-conditioned. The other algorithms are much less af-
fected by the ill-conditioned downdating and the errors remain on a low level
throughout.

Test II. A 50 x 5 matrix was constructed by taking a 25 x 5 Hilbert matrix as
the first 25 rows, and the same rows in reversed order as the 25 last rows.
Then a perturbation from a uniform distribution in (0,6) was added to each
matrix element. Two different cases were studied, with § = 107° and 107,
respectively. The right hand side was constructed as in Test I, but here with a
random perturbation in (0, 1).

In Figure 2 we show the results obtained with § = 107°. Throughout this
test the downdating problem is rather ill-conditioned, so iterative refinement
is performed in most steps in the hybrid algorithm. It is remarkable that the
LINPACK algorithm performs so much worse than the others. This is probably
due to the fact that the window matrix is very ill-conditioned, which leads to
large errors in the computed approximations of g;. In the CSNE method this
vector is refined and much better accuracy is attained.

In Figure 3 we show the results obtained with § = 107°. Here the window matrix
is even more ill-conditioned, and after some steps the LINPACK algorithm breaks
down because a computed ¢; has norm larger than 1.

9 Concluding Remarks

We have studied two standard methods for downdating least squares solutions, the
LINPACK and the Gram Schmidt (GS) algorithms, and two new methods, the CSNE
algorithm and a hybrid algorithm CSNE/LINPACK. In terms of storage requirements
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Figure 1: Test I. The upper graph shows the relative error in Euclidean norm in
the downdated solution vector by the LINPACK (solid line), CSNE (dashed), hybrid
(dotted), and GS (dot-dashed) algorithms. A “4” sign in the plot shows where iter-
ative refinement is made in the hybrid method. The lower graph shows the condition
number xx of the window matrix to be downdated (dotted) and 1/3% (solid line).
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the four algorithms are all the same in the general case. However, when X has a
special structure, the storage requirement for the LINPACK and CSNE algorithms
can be much smaller than that for the GS algorithm.

The algorithms differ considerably in efficiency and accuracy. The LINPACK
algorithm is the fastest but the analysis and the tests show that it can be much
less accurate or even fail. It is clear that the CSNE algorithm is more accurate but
considerably slower than the LINPACK algorithm. However, if X has some special
structure the difference in efficiency may be less pronounced. The hybrid algorithm
has almost as good accuracy as the CSNE algorithm and it can be much more efficient.
The GS algorithm is comparable in accuracy to the CSNE algorithm, but it is also
the slowest of the four algorithms.

The reason why the LINPACK algorithm is inferior in terms of accuracy to the
three others is that it uses less information, i.e. only the R factor. The others
use both R and either the @ factor (GS) or the original data matrix X (CSNE
and Hybrid). Note that other methods which only use R (e.g., methods based on
hvperbolic transformations) will show a similar loss of accuracy as the LINPACK
algorithm.

Our results indicate that in cases where, e.g., outliers occur, the CSNE and the
GS algorithms are the safest choices. If accuracy and efficiency are both important
then the hybrid method may be a better alternative than the LINPACK algorithm.

Further study is needed in deciding how to choose the tolerance used in the hybrid
algorithm to switch between the CSNE and LINPACK algorithms.
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