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TILLING (Targeting Induced Local Lesions IN Genomes) is a powerful reverse genetics

method in plant functional genomics and breeding to identify mutagenized individuals

with improved behavior for a trait of interest. Pooled high throughput sequencing

(HTS) of the targeted genes allows efficient identification and sample assignment of

variants within genes of interest in hundreds of individuals. Although TILLING has been

used successfully in different crops and even applied to natural populations, one of

the main issues for a successful TILLING experiment is that most currently available

bioinformatics tools for variant detection are not designed to identify mutations with low

frequencies in pooled samples or to perform sample identification from variants identified

in overlapping pools. Our research group maintains the Next Generation Sequencing

Experience Platform (NGSEP), an open source solution for analysis of HTS data. In this

manuscript, we present three novel components within NGSEP to facilitate the design

and analysis of TILLING experiments: a pooled variants detector, a sample identifier

from variants detected in overlapping pools and a simulator of TILLING experiments.

A new implementation of the NGSEP calling model for variant detection allows accurate

detection of low frequency mutations within pools. The samples identifier implements the

process to triangulate the mutations called within overlapping pools in order to assign

mutations to single individuals whenever possible. Finally, we developed a complete

simulator of TILLING experiments to enable benchmarking of different tools and to

facilitate the design of experimental alternatives varying the number of pools and

individuals per pool. Simulation experiments based on genes from the common bean

genome indicate that NGSEP provides similar accuracy and better efficiency than other

tools to perform pooled variants detection. To the best of our knowledge, NGSEP is

currently the only tool that generates individual assignments of the mutations discovered

from the pooled data. We expect that this development will be of great use for different

groups implementing TILLING as an alternative for plant breeding and even to research

groups performing pooled sequencing for other applications.
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INTRODUCTION

Targeting Induced Local Lesions in Genomes (TILLING) is
a powerful reverse genetics method used in plant sciences
which allows the identification of point mutations or SNPs,
introduced randomly throughout the whole genome by chemical
mutagenesis (Missirian et al., 2011). In brief, TILLING consists of
mutagenesis, DNA extraction and pooling of several individuals
of a population, PCR amplification of regions of interest, and
high-throughput mutation discovery in target genes (McCallum
et al., 2000). Despite newer technologies being available for
targeted modification of genes such as CRISPR-Cas, TILLING
remains a useful and effective functional genomics tool for
studying genes responsible for desired phenotypes because large
populations can be screened for mutations before bringing plants
to the field, thus reducing phenotyping costs, and it generates
genome-wide mutations allowing to target in multiple genes at
the same time (Irshad et al., 2020). With the advance in high-
throughput sequencing technologies and their current lower
costs, TILLING by Sequencing proves to be the best choice for
the identification of mutations and the corresponding mutant
individuals in pooled samples, and for linking the identified base
pair changes with their impact on specific traits (Tsai et al., 2011).

The application of bioinformatic tools contributes to virtually
all elements of the TILLING pipeline, including identification
of the genes in the species of interest, amplicon design, and
analysis of the effect of produced mutations in protein products
(Kurowska et al., 2011). The biggest bioinformatic challenge in
TILLING is variant calling in multidimensional experiments.
In essence, an efficient pipeline for detection must not only
call variants in each pool but triangulate the outputs per pool
to identify true variants and determine the individual carrying
each mutation based on the specific pooling design (Missirian
et al., 2011). Moreover, mutations produced through TILLING
are rare within the population. Hence, special efforts must be
taken to distinguish true variants from noise (Missirian et al.,
2011).While some of the available tools for variant calling are able
to detect variants in pooled samples (Huang et al., 2015), they are
not designed toward the posterior triangulation of the variants
detected from each individual pool. Moreover, most tools require
high coverages and high sequencing qualities to achieve good
accuracy (Missirian et al., 2011). Accuracy and efficiency vary
amply between software tools (Huang et al., 2015). As of today,
the only available tool specifically designed for variant calling
in TILLING experiments is CAMBa, which employs Bayesian
statistics for yielding the most probable mutations in a TILLING
experiment per individual (Missirian et al., 2011).

Since the advent of Next-Generation Sequencing (NGS), it
has been proposed that TILLING procedures could eventually
be carried out totally in silico (Wang et al., 2012; Chen et al.,
2014). As mentioned above, tools have been developed in the past
for in silico identification of candidate genes, such as CODDLE
(Slota et al., 2017), for analysis of the effects of putative or
detected mutations in TILLING populations such as PARSESNP
(Taylor and Greene, 2003), SAS (Milburn et al., 1998), or SOPMA
(Geourjon and Deleage, 1995), and for variant detection, such as
CAMBa and our own implementation. Nonetheless, to the best

of our knowledge there is no tool available for simulation of NGS
pool-sequencing in the context of multidimensional TILLING
experiments. This tool would be critical both for potential fully
in silico TILLING experiments, as well as for guiding the design
of in vivo procedures.

The development of new bioinformatic tools to increase the
precision of TILLING experiments is crucial, especially when
considering TILLING branching applications. Moreover, pooled
sequencing for variant discovery is used in other protocols related
to crop breeding and even in distant fields such as the study of
rare human genetic diseases. Pooled sequencing followed by the
identification of de novo variants has facilitated the typing of a
larger number of donors for stem cell transplants at the same
time, increasing the chance of finding a good match for recipient
patients (Lange et al., 2014) and can also improve diagnostics
rates of genetic disorders by increasing the number of probands
tested at a time at a reduced cost (Dashnow et al., 2019). In the
context of plant breeding, introducing natural or artificial allelic
diversity in crops is widely used to develop new varieties with
improved traits that meet the current global demands for food
production. Some examples are kernel hardness in wheat (Ma
et al., 2017), drought tolerance (Yu et al., 2012), and starch quality
(Raja et al., 2017) in rice, seed weight in chickpea (Bajaj et al.,
2016), and starch biosynthesis and herbicide tolerance in cassava
(Duitama et al., 2017).

We have developed, through the Next Generation Sequencing
Experience Platform (NGSEP), two new functionalities for
TILLING analyses: a TILLING experiment simulator and a
TILLING detector. The simulator is able to generate pool
reads derived from any set of genomic sequences, creating an
in silico population for the experiment with associated variants
assigned to specific individuals. The detector leverages NGSEP
variant detection to first call variants per pool, which are
then triangulated to perform identification of the individuals
associated with the discovered mutations.

RESULTS

Novel Functionalities for Simulation and
Read Analysis in TILLING Experiments
In a TILLING experiment, a mutagenic agent is used to
treat the seeds and induce random mutations across the
entire genome of a particular organism. One of the most
commonly used agents is ethyl methanesulfonate (EMS), which
induces 2 to 10 mutations/Mb of diploid DNA (Henry et al.,
2014). Mutagenized TILLING populations are analyzed for the
identification of the mutations generated across the individuals
of the population. If sequencing occurs after one round
of selfing (usually called generation M2), about half of the
mutations are heterozygous in the population. Although it is
technically possible to sequence independently and call variants
on each individual of the population, this procedure is not
cost effective given that most of the individuals will not carry
interesting mutations and promising individuals usually go over
further rounds of selfing to stabilize the mutation and its
potential phenotypic effect. Hence, the TILLING by sequencing
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design suggests a tridimensional pooled strategy in which each
individual is included in a unique combination of three different
pools, one per dimension (Figure 1). Pools are then sequenced
and mutations are identified in the pools. Taking into account
the mutation rate, it is very unlikely that two individuals carry
exactly the same mutation. Thus, individual assignments can
be performed looking for mutations consistently called in three
pools of different dimensions. This design allows to perform
mutation detection and individual assignment for hundreds of
individuals sequencing only the sum of the pools generated
for each dimension.

One of the main aspects to take into account for a TILLING
experiment is the design of the number of pools to include
in each dimension and the number of individuals per pool.
To provide a tool to explore in silico the behavior of a
TILLING experiment in different scenarios, we developed a
simulator of TILLING experiments based on a set of target
regions from a reference genome, a given population size, a
mutation rate, and a design of overlapping pools. Based on
this information, the simulator follows in silico the steps of
mutagenesis, sample pooling, and sequencing. Regions to be
amplified for each individual in the population were created
first as an exact copy of the reference and then mutations were
assigned randomly to each individual at a random position and
to a random base pair, distinct from the reference. According
to the pooling design, each individual was assigned to a row,
column and plate pool. Given the sensitivity limitation of the
variant calling process of mutations occurring at low frequencies,
the smaller the population and the number of samples per
pool, the higher the probability of calling true mutations.
Therefore, we proposed an experimental design of overlapping
amplicons per target gene for a population of 288 individuals.
By having pools of maximum 48 individuals (96 haplotypes)
we reduced the noise caused by the simulated and expected
sequencing errors.

Paired-end high throughput sequencing (HTS) reads were
simulated for each pool from the in silico mutated amplicon
sequences. Mimicking the actual sequencing process and the
known error rate patterns of Illumina, a read was generated
for each pool selecting a random amplicon within the pool.
A forward and a reverse read of a given length were then
simulated starting from each end of the selected amplicon. Given
a minimum and maximum error rate, the simulator generates
substitution errors at random according to a stepwise distribution
which starts from the minimum error rate at the 5’ end and ends
with the maximum error rate at the 3’ end of the read.

We tested the performance of our simulator by recording
the time and memory spent during different simulations varying
the number of individuals of the population, dimensions of the
pooling design, read lengths, and sequencing depths (Table 1).
In all cases, the simulator ran in less than 2 h, and in
less than 1 h for all cases of 50X and 10X coverage. In
general, time is affected mostly by the number of reads, with
simulations of similar coverages running faster with longer read
lengths. Memory requirements did not exceed 3 GB in any
case. This factor was mainly determined by the size of the
simulated population.

We also developed modifications of the core algorithm for
variants detection available in NGSEP and a new functionality to
perform the specific analysis of HTS data required by TILLING
experiments. From the algorithmic perspective, the discovery of
mutations within each pool is the most challenging part of the
analysis because mutations are expected to be carried by one or
at most two haplotypes within each pool. Hence, the variants
discovery module should be able to separate true variants with
allele frequencies of one divided by the number of haplotypes in
a pool from sequencing errors. As detailed in the next section, we
modified the Bayesian model implemented in NGSEP to identify
mutations in these circumstances. Once mutations are identified,
and taking into account the pooling strategy, the main outcome
of a TILLING experiment should not only be the identification
of true mutations but the identification of individuals carrying
these mutations. Hence, we developed a module that receives
the individual VCF files with variants called within each pool
and a text file with the configuration of samples included in
each pool, and performs the individual sample genotyping of the
mutations (also called triangulation). Taking into account that
each sample is included in a unique combination of pools, a
variant is assigned to a sample if and only if it is called in all pools
in which the sample was included. The triangulation module
traverses in parallel the pool VCF files and, for each mutation
identified in three pools of different dimensions, queries the
pool configuration information to determine which individual
is present in the three pools and assigns the mutation to such
individual. The output of this process is a VCF file with one
column per individual, which in simulation experiments can be
directly compared with the VCF gold standard file produced
by the simulator.

Variant Detection and Genotyping in
Polyploid Individuals and Pools
We modified the core module of NGSEP (the variants detector)
with two related goals: to improve the accuracy of variant calling
in polyploid individuals and to allow identification of variants at
different allele frequencies in pooled samples. First, sites in which
at least one allele different from the reference is observed with a
count at least 0.5/a were identified, where a is the total number of
haplotypes in the sample. For a pool of n individuals with ploidy
p, the total number of haplotypes a would correspond to n∗p.
For each selected site, the algorithm calculates the conditional
probability of the data assuming a homozygous genotype for
the allele with the highest read count and the conditional
probabilities of the data assuming each possible heterozygous
allele dosage for the allele with the second read count, from
1/a to 0.5. Both the homozygous genotype and the heterozygous
genotypes can be encoded as m copies of a major allele G1 and
a–m copies of a minor allele G2, where m ≥ 0.5∗a. A value of
m = a would correspond to a homozygous genotype. Similar to
the case of a single diploid individual, given a pileup position of
the genome and the set R of reads spanning that position, the
conditional probability of R given the genotype G = G1

m G2
a−m

can be calculated as the product of the conditional probability of
each read r ∈ R given G. Calling b the base pair of r spanning
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FIGURE 1 | Pooling strategy in a simulated TILLING experiment. Each colored rectangle represents a plate of 6 × 8 wells with 48 individuals; rows are represented

by the letters A to F and columns by the numbers 1 to 8. The tridimensional pooling strategy results in 20 pools. Row pools consist of individuals of each single row

of each plate (48 individuals). Column pools consist of individuals of each single column of each plate (36 individuals) and plate pools consist of the individuals of

each plate.

TABLE 1 | Running times (in seconds) and memory requirements (in MB) of three different TILLING experiment simulations ran by the simulator: 8 × 12 row by column

plates for 800 individuals, 8 × 8 plates for 800 individuals, and 6 × 8 plates for 288 individuals with a total of 300 mutations within the population.

Time (s) Memory (MB)

Dimension (row × column × plate) Population size Read length (bp) Depth Depth

10X 50X 100X 10X 50X 100X

8 × 12 × 9 800 200 404.04 1933.18 3961.07 2215.70 2215.70 2211.86

100 638.88 3315.90 6883.64 2215.70 2215.70 2211.84

8 × 8 × 13 800 200 281.81 1283.45 2660.51 2215.70 2215.70 2215.70

100 498.09 2389.13 4422.11 2215.69 2215.70 2211.84

6 × 8 × 6 288 200 146.75 721.99 1325.39 2139.41 2139.42 2139.46

100 245.22 1182.25 2509.16 2139.40 2139.42 2139.42

For each case, coverage of 10X, 50X, and 100X was tested, for 100 and 200 bp read length.

the analyzed position, e its error probability and f = m/a the
frequency of the major allele, the conditional probability P(b| G)
is given by this formula:

P
(

b|Gm
1 G

a−m
2

)

=



















1 − e, a = m ∧ b = G1
e
3 , b 6= G1 ∧ b 6= G2

f (1 − e) +
(1−f )e

3 , a < m ∧ G1 = b
(

1 − f
)

(1 − e) +
fe
3 , a < m ∧ G2 = b



















Similar to the case with diploid individuals, a prior probability
P(G) can be calculated from previous knowledge on
heterozygosity rate. We set a non-informed prior in our
experiments with simulated and real data.

Comparison of Variant Calling Tools
Comparison of the performance of different variant calling tools
was carried out based on the simulated sequences. As observed
in the simulations and real data, the sequencing error rate
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becomes the most critical factor to determine the number of
total haplotypes (and by extension samples) that can be included
within each pool to be able to separate true mutations from
sequencing errors. Given an average sequencing error rate of 0.5%
we could achieve good accuracy with up to 64 diploid individuals
(128 haplotypes) per pool. Hence, we present here the results
of the simulation experiment with 288 individuals arrayed in 6
plates of 6 × 8 rows by column set up (Figure 1).

The results of the variant detection step obtained with our
algorithm were compared with the results obtained from other
tools frequently used for variant detection, such as GATK
haplotype caller (McKenna et al., 2010) and Freebayes (Garrison
and Marth, 2012), as well as tools designed to identify low
frequency variants like Lofreq (Wilm et al., 2012), or to identify
variants in pools like CRISP (Bansal, 2010), and SNVer (Wei
et al., 2011). Freebayes was the only tool that did not identify
variants in any of the pools of the simulation experiments andwas
not considered for further comparisons. Given that the output
VCF file generated by SNVer is outdated and could not be
modified to run the comparisons, this tool was also discarded for
comparison purposes. We were unable to run CAMBa (Missirian
et al., 2011) by ourselves nor received a response after trying to
contact the developers, so we omitted said tool.

We compared the tools in terms of their sensitivity, expressed
as the number of true positives divided by the sum of true positive
and false negative values. For each of the 20 pools, sensitivity was
calculated and compared between the four selected variant callers
and for each experiment varying the read depth (Figure 2A).
We also tried to calculate specificity but it was 100% in all cases.
CRISP consistently showed the lowest sensitivity among the tools
and read depths. Lofreq showed improved performance with
increasing read depth, showing the best results of all tools at a
coverage of 100X, but the worst sensitivity at a coverage of 10X.
GATK and NGSEP both showed consistent high sensitivities at
all read depths. While GATK shows slightly higher sensitivities
than NGSEP at 10X and 50X of coverage, NGSEP performs
slightly better than GATK at 100X coverage. We also compared
sensitivities in randomly selected pools by varying the total
number of haplotypes or ploidy (Figures 2B,C). At low coverage
(10X) Lofreq is the worst performing tool regardless of this
number. However, it performs two times better calling variants
in pools with less haplotypes. This is evident by the sensitivity
drop from 57% in the pool with 72 haplotypes (36 individuals)
to 23% in the pool with 96 haplotypes (48 individuals). However,
this tool outperforms CRISP and GATK in these two particular
pools selected for comparison at higher coverages (50X and
100X). Smaller variations in sensitivity were observed in the other
three tools when comparing specific pools with two different
ploidies at different read depth, with NGSEP and GATK showing
the most similar sensitivity values between both samples across
the coverage range.

We used our new functionality to identify the individuals
carrying mutations in a simulated population and compared
the ability of each variant caller to successfully call variants in
overlapping pools. Sensitivity was determined as the total number
of SNPs identified over the total number of SNPs that should
have been detected corresponding to the simulated mutations

(Figure 3). The sensitivity of Lofreq was zero at the lowest
simulated sequence coverage. This means that although the tool
is able to call variants in every pool as shown in Figure 2, those
are not found in the three pools that overlap and the SNP cannot
be assigned to any individual. Nevertheless, its performance
improved with increasing coverage calling between 80 and 93%
of the mutations that correspond to one single individual. CRISP
showed the poorest performance among the four compared
tools at read depths of 50X and 100X. It reached, however, a
sensitivity equal to and above 80% at the two highest read depths,
respectively. NGSEP and GATK are the best performing tools
regardless of read depth. However, with increasing read depth
both tools showed higher sensitivities, reaching 90.6 and 90.3%
at 100X, respectively. Although sequencing depth improves the
sensitivity of the tools, both NGSEP and GATK can detect
around 75% of low frequency SNPs in a mutated population and
those can be correctly assigned to mutated individuals at a read
depth as low as 10X.

Running times spent by each tool were compared to further
assess the performance of the variant calling process (Figure 4).
NGSEP was the most efficient tool even at the highest sequencing
read depth. GATK was the slowest of all tools taking up to 12 h
(∼40,000 s) to call variants in 20 pool samples of a population
of 288 individuals, while the other tools required a maximum of
1.5 h to perform the same job. NGSEP showed the most steady
time performance over increasing read depths. Variant calling
in the simulated experimental setup only took 6.2 min at 10X
coverage, 12.3 min at 50X and 21.2 min at 100X when running
NGSEP on a laptop.

Analysis of a Rice TILLING Population
We used the publicly available data of a sequencing experiment
of 44 pools from a rice TILLING population comprising 768
individuals and 32 gene fragments that added up to 42,034 bp.
Tsai et al., 2011 reported 122 mutations in overlapping pools
detected with the tool CAMBa (Missirian et al., 2011) in
this dataset. We identified 262 biallelic SNVs in those pools
using NGSEP, 1,852 with GATK, 751 with Lofreq and 0 with
CRISP. Despite having an acceptable to good performance on
simulated data, none of the SNPs called by CRISP passed
the quality filter using the rice population and the VCF files
could not be used for the triangulation process in which
mutations are assigned to individuals. We calculated exact
genomic positions for all SNPs reported by Tsai et al., 2011
to assess if the SNPs detected by NGSEP, GATK, and Lofreq
corresponded to the previously reported mutations including
the same expected effect on the corresponding gene based on
the annotation of the VCF files (Supplementary Table 1). The
three variant calling tools used to test the new triangulation
function of NGSEP identified more than 122 mutations. NGSEP
reported 262 mutations (Supplementary Table 2), GATK 1,852
(Supplementary Table 3), and Lofreq 751 (Supplementary

Table 4). We compared the results according to the number of
variants detected by each tool (NGSEP, GATK, and Lofreq in
this study and CAMBa in the previous study) and the type of
variant (or predicted effect) on the sequenced gene (Figure 5A).
The most common type of variant was intronic variants with
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FIGURE 2 | Sensitivity of variant calling per pool. (A) Sensitivity of variant detection in a simulated TILLING population comprising 288 individuals sequenced in 20

pools. The small points represent each single pool. The box plots represent the median and first and third quartiles of the sensitivity in all pools. The bigger black

point shows the average sensitivity of all pools per tool and read depth. (B) Sensitivity of variants detected in a randomly selected pool with 48 individuals (ploidy

equal to 96 haplotypes) at three different read depths. (C) Sensitivity of variants detected in a randomly selected column pool with 36 individuals (ploidy equal to 72

haplotypes).

90 mutations being identified by NGSEP, 577 by GATK, 279 by
Lofreq, and 40 by CAMBa. Missense and synonymous variants
were the second and third most common type of variants
identified by all tools. The least frequent type of variant was
mutations leading to a stop codon. Regarding the type of SNVs
identified in the mutated rice samples, the most common were
G to A and C to T transitions according to the results obtained
with NGSEP (32.4%) and CAMBa (66.9%). Conversely, AT
to GC transitions were the most frequent mutation type for
GATK (89.15%) and Lofreq (65.9%). These transitions were
found only in 27.9% of the mutations reported by NGSEP and
19% of the mutations reported by CAMBa. In accordance with
Tsai et al., 2011 G to C or C to G transversions were the
least common (<5.2% of all mutations for all tools). Overall,
there were more transitions than transversions (Supplementary

Table 5). Although NGSEP reported the highest percentage of
transversions (35.11%), looking at the number of pools where

these transversions are called, we found that transversions were
called in more pools than transitions (Supplementary Table 2).
Applying a filter keeping only variants called in at most six pools,
the percentage of GC > AT transitions increased to 47.13% for
NGSEP and the percentage of transversions reduced to 16.09%.
GATK and Lofreq also reduced the percentage of transversions
after this filter but preserved the excess of AT > GC transitions,
compared to the results originally reported using CAMBa.

In the previous study conducted by Tsai et al., 2011, the
mutations were categorized into homozygous, heterozygous,
implausible or false based on validation experiments, and not
tested for mutations that were not validated. We used these
categories to analyze how many of the mutations were found in
exactly three, more than three or less than three pools within
each category using NGSEP, GATK, and Lofreq (Figure 5B).
We found that within the validated mutations more than 67%
of them were assigned to exactly three pools by each tool,
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FIGURE 3 | Sensitivity in the identification of mutant individuals in a simulated TILLING population comprising 288 individuals sequenced in 20 pools and three

individual experiments varying the sequencing read depth. Sensitivity corresponds here to the number of SNPs detected by each tool divided by the total number of

SNPs in a gold standard.

FIGURE 4 | Running time of four variant detector tools for a simulated TILLING population comprising 288 individuals sequenced in 20 pools in three different

experiments varying sequencing read depth. The time represents the amount of seconds used by each tool to call variants in 20 pools.

which is the expectation for tridimensional pooling strategies.
In contrast, within the category containing implausible or false
positive mutations, less than 20% of the mutations were assigned
to exactly three pools, and found principally in less than three
pools (red bars in Figure 5B). Within the not tested category,
75, 71.9, and 68.8% of the mutations were assigned to exactly
three pools for NGSEP, GATK and Lofreq, respectively, and could
potentially be true mutations in the population. Considering
the number of variants assigned to a number of pools different
than three, GATK reported 12 validated variants in more than

three pools, whereas this number was only three for NGSEP and
Lofreq. Conversely, validated variants called in less than 3 pools
were only 5 for GATK, whereas this number was 15 and 17 for
NGSEP and Lofreq, respectively. This behavior is consistent for
the non tested variants and reflects that GATK predicted a much
larger overall number of mutations.

To further validate the performance of the new functionalities
in NGSEP using real data, we selected two of the genes for which
mutations have also been reported elsewhere and their effect
has been described. The inositol kinase-like gene Os09g34300
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FIGURE 5 | Mutations in a rice TILLING population. (A) Number of variants identified in a rice TILLING population comprised by 768 individuals categorized by the

type of variant. NGSEP, GATK, and Lofreq were the variant caller used in this study and variants reported by CAMBa were obtained from Tsai et al. (2011).

(B) Mutations called in pools by three software, NGSEP, GATK, and Lofreq, classified into three categories based on results by Tsai et al. (2011): Validated, which are

verified mutations; implausible or false, which are mutations found in non overlapping pools or are false positives; and not tested, which are not verified mutations.

Within the category of validated mutations, and possibly also within the not tested category, most of the mutations are expected to be assigned to three pools (blue

bars). In the implausible or false category most of the mutations should be found in <3 pools or >3 pools (red and yellow bars, respectively). (C) Example of a

missense mutation in gene Os09g34300. The mutation at position 2,044,087 on chromosome 9 results in the amino acid substitution from proline to leucine amino

acid at position 522 in the protein, leading to reduced phytic acid (lpa) content in the grains of the mutant plants with no negative effect on grain weight or delayed

seedling growth (Kim and Tai, 2014).

and the multidrug resistance-associated gene Os03g04920 are
both involved in the reduction of phytic acid (myo-inositol
1,2,3,4,5,6-hexakisphosphate) in rice seeds. Phytic acid is
considered an antinutrient because humans and other non-
ruminants are unable to efficiently digest it and it prevents
the absorption of important micronutrients in their intestines

(Perera et al., 2019). Four novel mutations obtained by TILLING
were reported by Kim and Tai (2014) within these two genes,
obtaining four low phytic acid (lpa) mutants, two of which
were similar to wild-type plants in seed weight, germination,
and seedling growth. One missense mutation in the last exon
of the gene Os09g34300 leading to the amino acid change
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P522L was identified by NGSEP, GATK, and Lofreq as well. This
mutation was also reported and validated in (Tsai et al., 2011)
and confirmed as a lpa mutant by (Kim and Tai, 2014) in the
laboratory, being a promising line for breeding in rice programs
aiming at developing varieties with improved nutritional quality.
Within this same gene, an intronic and a splice variant not
tested in the study of (Tsai et al., 2011) were also identified
using the three variant callers. The position and effect of the
mutation in the inositol kinase-like gene are schematically shown
in Figure 5C. Both of the reported mutations by (Kim and
Tai, 2014) within gene Os03g04920 that led to a lpa phenotype
and were also included in the list of mutations by (Tsai et al.,
2011) were identified by NGSEP, GATK and Lofreq as well.
Furthermore, from the seven validated mutations within this
gene, NGSEP, GATK, and LoFreq called five of them in exactly
three pools. From the six non tested variants, NGSEP and GATK
called five and Lofreq called four in exactly three pools.

DISCUSSION

Mutagenesis is a widely used experimental technique in
functional genomics because it allows to generate genetic
variability not present in natural populations in an unbiased
manner. The TILLING experimental setup reduces the cost
needed to identify mutations in candidate genes across
populations developed through mutagenesis and to perform the
identification of mutated individuals (Kurowska et al., 2011).
Functional effects of identified mutations can then be further
investigated using protein modeling or even through more
directed approaches such as CRISPR, besides the observation
of the expected phenotype. Although recent technologies have
been developed for targeted genome editing, including CRISPR,
the resulting organism is usually considered a genetically
modified organism (GMO) presenting an important problem
and limitation in plant breeding for the release of improved
varieties into the markets of countries with strict regulations
about GMOs. Mutagenesis, however, has been considered a safe
method to rapidly induce genetic variation and develop improved
varieties, that are not regulated by the GMO legislations (Holme
et al., 2019). Moreover, since TILLING samples come from a
population whose individuals (or their seeds) are readily available
for the researcher (Wang et al., 2012), individual identification
is particularly useful because it allows to perform validation of
the potential phenotype differences generated by the identified
mutations in the associated individuals, providing valuable
information for future plant breeding.

In this work, we presented new functionalities of NGSEP to
facilitate the data analysis steps required to obtain the expected
information from a TILLING experiment. First, we developed
an improved model to perform accurate variant identification
in pooled samples, which is useful for different applications of
HTS. Either in mutagenized or in natural populations, variants
could be quickly identified by bulk sequencing of large numbers
of individuals to avoid the costs of sample by sample barcoding
and library preparation. Germplasm banks are using pooled
sequencing to validate genetic stability of accessions avoiding

the cost of individual sequencing of potential clones (see for
example Rubinstein et al., 2019). Moreover, the same underlying
model to perform pooled genotyping might be useful to perform
individual genotyping in species with high ploidy such as sugar
cane, where genotyping by sequencing is preferred over SNP
arrays for variant detection (Manimekalai et al., 2020). We show
through simulation experiments that our model has comparative
accuracy and better efficiency compared to other solutions.
NGSEP showed consistently high sensitivities (above 80%) across
varying read depths (10X, 50X, and 100X) in variants called
in individual pools in simulated data. GATK also showed good
sensitivities in pool variant calling at different read depths.
Conversely, Lofreq and CRISP only showed good performances
(sensitivity > 75%) at higher read depths (50X and 100X).
Moreover, we show how different tools for regular variant
identification should be adapted to increase sensitivity in pooled
data. This is very important for mutagenesis experiments because
identification of mutations present in only one haplotype of the
pool is the most challenging case of pooled variant identification,
with different variant callers achieving different performances
depending on sequencing depth (Huang et al., 2015). Hence,
researchers struggle trying to adapt individual genotyping tools
to experimental setups including pooled sequencing.

Particularly for TILLING, we developed a functionality to
perform individual assignment of variants from the information
of individuals included in each pool. To the best of our
knowledge, NGSEP is currently the only open source software
able to perform this step of the analysis process. Moreover, both
the variant identification and the individual assignment can be
executed from the graphical interface of NGSEP. Finally, we
also built a functionality to perform simulations of TILLING
experiments. Besides being useful to perform benchmarking
of current and future analysis pipelines developed by different
research groups, the simulator can also be used to validate
the effectiveness of different pool configurations to achieve the
goals of the experiment, saving time and money in in vivo
analyses. This is particularly important given that preparation of
populations for TILLING analysis is a long and costly process
(Wang et al., 2012), so in silico experiments can help to make
large-scale TILLING procedures more cost-effective.

We analyzed a large rice mutant population for high
throughput mutation identification using the approach of
TILLING by sequencing and a tridimensional pooling strategy.
Using the publicly available sequences from a previous study
by Tsai et al. (2011) we compared the performance of four
variant calling tools, NGSEP, GATK, Lofreq, and CRISP. CRISP
was discarded from the comparisons using real data because
the SNPs called in pools did not pass the quality filter. In
the previous study, the authors reported 122 mutations in the
population using the tool CAMBa, developed by the same group.
After filtering by number of pools, with NGSEP we identified
87 mutations, which was the second closest result compared
to the previous report. On the other hand, GATK and Lofreq
identified 569 and 127 mutations, respectively. Considering the
small fragment of the genome that was targeted during the
TILLING experiment, the number of mutations reported by
GATK would represent an unexpectedly high mutation rate for
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the mutagenesis experiment (Till et al., 2007). Moreover, both
GATK and Lofreq reported an excess of AT > GC transitions
which was not observed in the results reported by NGSEP and
CAMBa. The analyzed rice population was treated by EMS
mutagenesis, which has a G-alkylating action favoring primarily
GC to AT base pair transitions. This corresponds to the result
obtained with NGSEP and the previous report fromCAMBa. The
raw output of NGSEP showed a large percentage of transversions
(39.7%), while the other tools reported less than 22%. However,
most of the transversions were easy to filter out because they are
found in a large number of pools, which is not expected in a
TILLING experiment due to the low probability of finding a given
mutation in more than one individual. Possible explanations for
these variants are natural variation between the parent and the
reference genome or systematic errors producing consistent false
positive calls among pools.

From the set of validated mutations of the study carried
out by Tsai et al. (2011), NGSEP, GATK, and Lofreq detected
67.3, 69.1, and 63.6% of them. Assuming a 100% success rate
in the verification experiment, the performance of these tools in
terms of sensitivity is lower using real data than those obtained
using the simulated data of an artificial mutant population.
Nevertheless, considering that the tools called mutations in three
overlapping pools in less than 20% of the cases of implausible or
false positive variants (again assuming this classification is 100%
accurate) and that up to 75% of the not tested mutations in the
study by (Tsai et al., 2011) were called and identified in three
overlapping pools, the three tools show promising results for the
analysis of large TILLING populations. From these three tools,
NGSEP is the only one that offers the functionality of identifying
mutations in overlapping pools and assigning mutations to the
corresponding mutant individual in the population. Regarding
computational efficiency, NGSEP was the most efficient tool,
calling variants in all 44 pools of the rice TILLING population
comprising 768 individuals with average sequencing coverage
per pool ranging from 300X to 31,500X with the computational
resources of a laptop and in less than 2.5 h.

With an ever growing population, the demand for food
is increasing around the world. However, to increase crop
productivity in a timely manner as required by the necessity of
meeting the current global demands, it is critical to explore all
possible alternatives to develop plants that are higher yielding and
more resilient to climatic changes and their associated problems
such as the raise of different pests and diseases or variable abiotic
stresses such as drought, higher temperatures, and flooding,
among others. We expect that the new developments presented
in this manuscript will be useful for researchers implementing
TILLING and other experimental techniques for functional
genomics and breeding.

METHODS

Software Development and
Implementation Details
We implemented the TILLING simulator and the functionality
to perform individual assignments of discovered variants (also

called triangulation process) as new functionalities of NGSEP.
This allows to have these new functionalities integrated in the
same software solution implementing the variant discovery step.
Hence, the software is implemented in Java, following an object
oriented design. The algorithm to perform variant discovery
in pools was implemented within the general functionalities
of NGSEP to perform single sample and multisample variants
discovery. The new developed algorithm is activated when the
number of haplotypes in the pool is provided in the “ploidy”
option of these two functionalities. The three functionalities,
namely simulation, variant calling, and triangulation, can
be executed either from the command line or from the
graphical interface of NGSEP v4, built in JavaFX (manuscript in
preparation). NGSEP is distributed as an open source software
solution available in http://ngsep.sf.net.

In the simulation process, given the pool dimensions selected
by the user, the simulator will assign pools to each individual
distributing the samples in the plates (wells) from left to right
and from the top to the bottom, starting from the first plate
to the last one. Depending on the number of individuals and
plate size, some pools might contain less individuals than those
of a full plate. For example, if a 12 by 8 plate configuration is
selected, and the number of individuals is set to 100, then the
plate pool for the second plate will only have four individuals,
since the remaining 96 are located in the first plate. This implies
that different pools will have different numbers of samples and,
therefore, different numbers of total haplotypes. Although large
populations can be analyzed, pools containing more than 96
individuals should be avoided.

To simulate errors for each read, the range between the
minimum and the maximum rates is split into n intervals, where
n is the read length. For the nth base in each read, a random
decimal within the nth interval is selected and used as the error
probability. This number is converted to a quality score for the
fastq file. With the decimal selected, a random integer between 0
and 1 is generated, and if it is smaller than the latter, a random
base different from the correct one is placed in that position to
simulate an error.

The simulator produces a series of files with a given prefix. The
first one is a VCF file with the simulated mutations generated for
each individual. This file serves as a gold-standard for benchmark
experiments. The second is a csv file that indicates which row,
column and plate pool is associated with each individual in the
population. Two fastq files are generated for each pool according
to the current standard for paired-end sequencing. Read ids
include the associated individual from which it was obtained, the
pool number, and a unique identifier.

Data Sets
Simulated TILLING Dataset

We tested the newly added functions to NGSEP using two
datasets. The first one was derived from the simulator: we selected
eight genes in common bean (Phaseolus vulgaris L.) that are
considered to be important for agronomic traits in this crop such
as seed color, resistance to herbicides and tolerance to drought,
among others. For each gene, primers were designed using the
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online tool primer31 to generate amplicons that ranged from 279
to 621 bp and covered all exons in each gene when possible.
Overlapping amplicons were designed to improve coverage of the
target regions. The simulation was run for a population of 288
diploid individuals in 6 × 8 plates, with a read length of 100 bp
and coverage of either 10X, 50X, and 100X. The pool design and
population size leads to a total of 48 individuals per row and plate
pool and 36 individuals for the column pools (Figure 1).

Time and memory benchmarking of the simulator were
performed by running other two simulations, along with the
one mentioned above. For both of the other simulations we
considered a population of 800 individuals with 300 mutations,
one with an 8 × 8 plate design and another with an 8 × 12
design. Simulations were run on a Desktop Computer with an
Intel Core i7-6700 CPU @ 3.40 GHz, 16 GB of memory and
Windows 10 operating system. Times and memory usage were
recorded in Java.

Rice Dataset

The raw sequencing reads of a TILLING experiment described
in Tsai et al. (2011) were downloaded from the SRA NCBI
database (BioSample: SAMN00715843) and mapped to the rice
reference genome Oryza sativa v7.0. This experiment included
768 individuals sequenced in 44 pools with maximum 64
individuals per pool.

Read Mapping and Variant Calling
All reads in fastq format were mapped to the respective reference
genome of the corresponding organism, Phaseolus vulgaris for the
simulated data and Oryza sativa for public data, using NGSEP
option ReadsAligner with following parameters modified from
the default settings: -k 20 and -m 1. Obtained bam files were
then sorted by coordinate using Picard 2.23.02. Alignment rates
of 100% were obtained for all mapped reads.

For benchmarking TILLING variant calling and triangulation
through NGSEP, we tested a total of 5 additional variant callers
in the same datasets: CRISP (Bansal, 2010), Lofreq (Wilm et al.,
2012), Freebayes (Garrison and Marth, 2012), GATK (McKenna
et al., 20103), and SNVer (Wei et al., 2011). To the best of
our knowledge, the only tool capable of identifying mutant
individuals in overlapping pools is CAMBa (Missirian et al.,
2011). We were unable either to run CAMBa by ourselves nor
received a response after trying to contact the developers, so we
omitted said tool.

For a fair comparison between tools we adjusted different
parameters for variant calling as follows: CRISP, —use duplicates
was set to 1 and —qvoffset to 33. For LoFreq, we used the —
no-default-filter option and set -m to 20. For Freebayes, the —
pooled-discrete option was used and—min-mapping-quality was
set to 20. For GATK, we used the HaplotypeCaller algorithm
with option —heterozygosity equal to 0.5 and option —max-
reads-per-alignment-start set to 0. Finally, we ran SNVerPool
with default parameters. SNVer and CRISP allowed us to specify

1https://bioinfo.ut.ee/primer3/
2http://broadinstitute.github.io/picard/
3https://www.biorxiv.org/content/10.1101/201178v3

and include the ploidy of each pool (either 72 or 96 depending
on the specific pool) in the input file containing the names or
paths to the bam files of each pool. Freebayes and GATKwere run
independently for each pool setting the ploidy to 72 for all column
pools and to 96 for the row and plate pools. Lofreq is designed to
call low frequency variants and does not have a ploidy option.
Finally, for NGSEP, we ran the SingleSampleVariantsDetector
functionality with options -h equal to 0.5, -maxAlnsPerStartPos
set to 0, -maxBaseQS set to 100 (for real data this option was set
to 30), and -psp. Ploidy was adjusted based on the specific pool as
explained for the tools above. The commands and parameters are
provided in Supplementary File 1.

Comparison of Variant Callers
Performance
Performance of four of the variant callers was determined in
terms of the time spent to call variants in all 20 pools of
an artificial mutant population comprising 288 individuals. All
tools were tested on a laptop with 4 GB memory, Intel Core
i5-7200U CPU @ 2.50 GHz × 4 and Ubuntu 20.04.1 LTS as
operating system.

Accuracy of four of the variant callers was determined in
terms of the number of variants correctly called in each pool.
First, the pool gold standard vcf was generated using the class
TillingIndividualVCF2PoolVCF in NGSEP. Then, the function
VCFFilter was used to generate the gold standard vcfs per pool
using the options -saf to provide the pool ID to be filtered out
each time and -fi to filter out sites in which only one allele was
observed. Finally, the function VCFGoldStandardComparator
was used to compare the vcfs obtained from the variant calling
step with the gold standard for the same pool. The output of this
comparison is a text file that includes the number of true positives
(TP), false negatives (FN), and false positives (FP) detected after
variant calling, among others. These values were used to calculate
the sensitivity of each tool expressed as TP/(TP+FN).

Identification of Individuals Carrying the
Mutations
With the exception of SNVer and CRISP, all variant callers
generate a single VCF per pool. The VCFs from SNVer and
Crisp include all the samples in one single file. The VCF
file generated by lofreq is outdated and does not provide the
genotypes per sample. We designed custom scripts to fix the
output files of lofreq and crisp. Once fixed, the output VCFs
obtained from CRISP were filtered using the option VCFFilter
from NGSEP to generate individual VCFs per pool from the
population VCF. The parameters used were -saf to provide
the pool ID to be filtered out from the original VCF and
-fir to remove sites in which only the reference allele was
observed. The output VCF obtained from SNVer does not
provide information about the observed allele frequencies per
sample and could not be fixed to generate a file that could be
filtered with NGSEP to generate the individual files. Once we
had the VCF files per pool from each tool, we triangulated the
output of each caller using the TillingPoolsIndividualGenotyper
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functionality. Briefly, the genotyper triangulates the calls of all
possible trios of pools (overlapping pools) and then assigns
mutations to each individual using the information of the row,
column and plate pool to which every member of the population
is associated, which was obtained from the simulation process.
The output VCF was then compared to the gold standard
VCF that contains the true mutations in each individual of
the population using the option VCFComparator in NGSEP.
Sensitivity was determined as the number of SNPs identified
by each tool over the total number of SNPs in the individual
gold standard VCF.

Analysis of TILLING Data
Variant calling in the rice TILLING population was performed
using NGSEP SingleSampleVariantsDetector, the GATK
HaplotypeCaller, Lofreq and CRISP modifying the same
parameters as for the simulated data. Ploidy was adjusted
according to the pooling strategy described in Tsai et al. (2011)
for row, column and dimension (plate) pools varying from 96
to 128. Single vcfs per pool were subjected to the triangulation
process using the functionality TillingPoolsIndividualGenotyper
providing a pools descriptor file that we generated based on the
size of the population (768 individuals) and sampling strategy
used in their study. The final vcf was annotated using the function
VCFAnnotate and filtered with the function VCFFilter in NGSEP
to keep only biallelic SNVs. Summary statistics were calculated
using the function VCFSummaryStats of NGSEP.
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