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Abstract

The eigenvalues of the kernel matrix play an important role in a number of kernel methods, in
particular, in kernel principal component analysis. It is well known that the eigenvalues of the kernel
matrix converge as the number of samples tends to infinity. We derive probabilistic finite sample
size bounds on the approximation error of individual eigenvalues which have the important property
that the bounds scale with the eigenvalue under consideration, reflecting the actual behavior of the
approximation errors as predicted by asymptotic results and observed in numerical simulations.
Such scaling bounds have so far only been known for tail sums of eigenvalues. Asymptotically,
the bounds presented here have a slower than stochastic rate, but the number of sample points
necessary to make this disadvantage noticeable is often unrealistically large. Therefore, under
practical conditions, and for all but the largest few eigenvalues, the bounds presented here form a
significant improvement over existing non-scaling bounds.

Keywords: kernel matrix, eigenvalues, relative perturbation bounds

1. Introduction

In the theoretical analysis of kernel principal component analysis (Schölkopf et al., 1998), the ap-
proximation error between the eigenvalues of the kernel matrix and their asymptotic counterparts
plays a crucial role, as the eigenvalues compute the principal component variances in kernel fea-
ture space, and these are related to the reconstruction error of projecting to leading kernel principal
component directions.

In order to obtain accurate bounds on the approximation error of eigenvalues, it has proven to
be of prime importance to derive bounds which scale with the eigenvalue under consideration. The
reason is that the approximation error scales with the eigenvalue such that the error is typically
much smaller for small eigenvalues. Therefore, non-scaling bounds tend to overestimate the error
for small eigenvalues as they are dominated by the largest occurring errors. Now, since smooth
kernels usually display rapidly decaying eigenvalues, and such kernels are typically used in machine
learning, obtaining accurate bounds in particular for small eigenvalues is highly relevant.

In an asymptotic setting, the effect that the approximation errors scale with the corresponding
eigenvalues is well understood. In a paper by Koltchinskii and Giné (2000), a central limit theorem
for the distribution of the approximation errors is derived. Considering only a single eigenvalue with
multiplicity one, the asymptotic distribution of the properly scaled difference between approximate
and true eigenvalue asymptotically approaches a normal distribution with mean zero and variance
λ2

i Varµ(ψ2
i ). Thus, we would expect that the approximation error is of order O(λi Stdµ(ψ2

i )n
−1/2),

c©2006 Mikio L. Braun.
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(a) Approximate eigenvalues (box plots) and the
true eigenvalues (dotted line). Note that although
the box plots appear to become larger visually,
due to the logarithmic scale the approximation
error actually becomes small quickly.
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(b) Approximation errors (box plots). For ori-
entation, the true eigenvalues (dotted line) have
also be included in the plot. The dashed line
plots the smallest possible non-scaling bound on
the approximation error. The solid lines plot two
bounds derived in this paper, the smaller one re-
quiring the knowledge of the true eigenfunctions.

Figure 1: Approximated eigenvalues for kernel matrices with rapidly decaying eigenvalues have an
approximation error which scales with the true eigenvalue.

leading to a much smaller approximation error for small eigenvalues than for large eigenvalues
(neglecting the variance of ψ2

i for the moment).
We are interested in deriving a probabilistic finite sample size bound to show that this effect not

only occurs asymptotically, but can already be observed for small sample sizes. The following nu-
merical example illustrates this effect: In Figure 1 we have plotted the approximate eigenvalues and
the approximation errors for a kernel function with exponentially decaying eigenvalues constructed
from Legendre polynomials (see Section 7.1 for details). The approximation errors scale with the
true eigenvalue, and the smallest possible non-scaling bound (dashed line) overestimates the error
severely for all but the first four eigenvalues. On the other hand, our bounds (solid lines) scale with
the eigenvalues resulting in a bound which matches the true approximation error significantly better.

Such scaling bounds have recently been derived for tail sums of eigenvalues by Blanchard et al.
(2006). There, the square root of the considered tail sum occurs in the bound, leading to bounds
which correctly predict that the error for tail sums of small eigenvalues is smaller than that for tail
sums starting with larger eigenvalues.

However, scaling bounds for the approximation error between individual eigenvalues, as are
derived in this work, were not known so far. Note that these two settings are not interchangeable:
although bounds on tail sums can be combined (more concretely, subtracted) to obtain bounds for
single eigenvalues, the scaling still depends on tail sums, not single eigenvalues.

Note that the error bounds presented in this paper depend on the true eigenvalue. At first,
this seems to be an undesirable feature, as this limits the practical applicability of these bounds.
However, we have adopted a more theoretical approach in this work with the goal to understand
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the underlying principles which permit the derivation of scaling bounds for individual eigenvalues
first. In a second step, one could then use these results to construct statistical tests to estimate, for
example, the overall decay rate of the eigenvalues based on these bounds. We will briefly discuss
the question of constructing confidence bounds again in Section 9.

Overview

This paper is structured as follows: Section 2 contains the statements of the main results and explains
the involved quantities. The actual proofs of the results can be found in Sections 3–6. Several
numerical examples are discussed in Section 7. The results are compared to existing results in
Section 8. Finally, Section 9 summarizes the results and suggests some directions for future work.
Supplementary material can be found in the Appendix. References to the Appendix are prefixed by
an “A.”.

2. The Main Results

The main result consists of three parts: a basic bound, and specialized estimates for two classes
of kernel functions. The basic perturbation bound deals with the approximation error based on the
norms of certain error matrices. The norms of these error matrices are estimated for kernels with
uniformly bounded eigenfunctions, and for kernels with bounded diagonal. Note that the scaling
property is already present in the basic perturbation bound, and not a consequence of the estimates
of the norms of the error matrices.

2.1 Preliminaries

We consider the following setting: Let k be a Mercer kernel on a probability space X with probabil-
ity measure µ. This means that k can be written as

k(x,y) =
∞

∑
i=1

λiψi(x)ψi(y),

where (λi)i∈N is a sequence of summable non-negative, non-increasing numbers, and (ψi)i∈N is
a family of mutually orthogonal unit norm functions with respect to the scalar product ( f ,g) 7→
R

X f gdµ. The λi are the eigenvalues and the ψi the eigenfunctions of the integral operator Tk which
maps f to the function x 7→ R

X k(x,y) f (y)µ(dy). Slightly abbreviating the true relationships, we will
call λi the eigenvalues and ψi the eigenfunctions of k.

Let X1, . . . ,Xn be an i.i.d. sample from µ. The (normalized) kernel matrix is the n×n matrix Kn

with entries

[Kn]i j :=
1
n

k(Xi,X j).

Denote the (random) eigenvalues of Kn by l1 ≥ . . . ≥ ln ≥ 0. These eigenvalues of Kn converge to
their asymptotic counterparts (λi)i∈N (see, for example, the papers by Koltchinskii and Giné, 2000,
and Dauxois et al., 1982, or more recently, the Ph.D. thesis of von Luxburg, 2004).
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For kernels with an infinite number of non-zero eigenvalues, k can be decomposed into a degen-
erate kernel k[r] and an error function er given a truncation point r:

k[r](x,y) :=
r

∑
i=1

λiψi(x)ψi(y),

er(x,y) := k(x,y)− k[r](x,y).

(1)

Note that k[r] and er are both Mercer kernels as well. The kernel matrices induced by k[r] and er will
be denoted by K[r]

n and Er
n, respectively, such that Er

n = Kn −K[r].
Furthermore, let Ψr

n be the n× r matrix with entries

[Ψr
n]i` =

1√
n

ψ`(Xi).

The `th column of Ψr
n is thus the sample vector of the eigenfunction ψ`. Therefore, Ψr

n is called

the eigenfunction sample matrix. Using Ψr
n, we can write K[r]

n = Ψr
n diag(λ1, . . . ,λr)Ψr

n
> (compare

Equation (3)).
The norm of a matrix ‖A‖ will always be the operator norm max‖x‖=1 ‖Ax‖. The ith eigenvalue

of a matrix A in decreasing order will be denoted by λi(A).

2.2 The Basic Perturbation Bound

The following theorem forms the basis for the finite sample size bounds which we will present. It
is a deterministic bound which also holds for non-random choices of points x1, . . . ,xn.

Theorem 1 (Basic Perturbation Bound) For 1 ≤ r ≤ n, 1 ≤ i ≤ n,

|li −λi| ≤ λi‖Cr
n‖+λr +‖Er

n‖,

with Cr
n = Ψr

n
>Ψr

n − Ir.

The bound consists of two competing terms. Let us introduce the following symbols and names
for the error terms:

C(r,n) = ‖Cr
n‖, (relative error term)

E(r,n) = λr +‖Er
n‖. (absolute error term)

These two terms will be bounded under different assumptions on the kernel matrix.
The relative error term C(r,n) measures the amount of non-orthogonality of the sample vectors

of the first r eigenfunctions of k. As n → ∞, C(r,n) → 0 almost surely because the scalar products
between the sample vectors converge to the scalar product with respect to µ and the ψi form an
orthogonal family of unit norm functions with respect to that scalar product. The absolute error
term E(r,n) measures the effect of the truncation of the kernel function. Consequently, as r → ∞,
E(r,n)→ 0. On the other hand, both terms compete against each other, because for r →∞, C(r,n)→
∞, and E(r,n) does in general not converge to zero as n → ∞. Depending on the choice of r (see
below), the bound will have a characteristic shape which first scales with λi while the first term
dominates, until, for large i (and small eigenvalues), the bound stagnates at a certain level. Also
note that if the kernel is degenerate (has only a finite number of non-zero eigenvalues), the bound
will be fully relative.

We see that r has to be chosen to balance these two terms. Trivially, the best bound is obtained
by minimizing with respect to r, which gives the following corollary.
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Corollary 2 For all 1 ≤ i ≤ n,

|li −λi| ≤ min
1≤r≤n

(λiC(r,n)+E(r,n)).

Note that the optimal choice of r can not be easily computed in general since the choice depends on
the true eigenvalues and, as we will see below, the form of the bounds on C and E might not allow
to write down the minimizer in closed form.

However, even suboptimal choices of r can lead to meaningful bounds and insights. For the
two classes of kernel functions considered below, we will discuss three alternatives with increasing
dependency on i, the index of the eigenvalue considered, and the sample size n: (i) Keep r fixed.
This choice will typically lead to good bounds when i < r. However, the bound does not converge to
zero as n → ∞. (ii) Choose r according to i, for example r = i. This choice can be used to show that
the bounds decay quickly as i increases. Again, the bound does not converge to zero. (iii) Choose
r according to n. The goal is to let r grow slowly with n to ensure that the overall bound converges
to zero, showing the asymptotic rate of the bound. This case will be discussed in more depth in
Section 6.

2.3 Estimates I: Bounded Eigenfunctions

The first class of kernel functions which we consider are Mercer kernels whose eigenfunctions ψi

are uniformly bounded. An example for this case is given by ψi being a sine basis on X = [0,2π].
In the following, let Λ>r = ∑∞

i=r+1 λi. Convergence of this series follows from the requirement that
(λi) ∈ `1, and λi ≥ 0.

Theorem 3 (Bounded Eigenfunctions) Let k be a Mercer kernel with bounded eigenfunctions,
|ψi(x)| ≤ M < ∞ for all i ∈ N, x ∈ X . Then, for 1 ≤ r ≤ n, with probability larger than 1−δ,

C(r,n) < M2r

√

2
n

log
r(r +1)

δ
, E(r,n) < λr +M2Λ>r

Consequently, Theorem 1 implies that

|li −λi| = O(λir
√

logrn−
1
2 +Λ>r).

Since the eigenfunctions are uniformly bounded, the estimation errors involved in C(r,n) can be
bounded conveniently using the Hoeffding inequality uniformly over all r(r + 1)/2 entries of Cr

n.
In particular, in contrast to the bound derived in the next section, C(r,n) does not depend on the
eigenvalues. Moreover, E(r,n) can be bounded in a deterministic fashion in this case.

Next we discuss different choices of r as explained at the end of the previous section. For any
fixed r, the bound converges to λr + M2Λ>r with the usual stochastic convergence rate of O(n− 1

2 ).
Unless Λ>r = 0, the bound will not converge to zero.

Setting r = i, we see that the bound converges to λi + M2Λ>i = O(Λ>i). This term decays
quickly as i → ∞. For example, if λi = O(i−α) for some α > 1, then Λ>i = O(i1−α), and if λi =
O(e−βi) for some β > 0, then Λ>i = O(e−βi) (see Theorem A.4 in the Appendix). From these
considerations we see that although the bound does not vanish as n → ∞ for this choice of r, the
bound scales with the true eigenvalue at a rate which is only slightly slower. This error is still much
smaller than that given by non-scaling error bounds, unless the sample size is very large.
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Eigenvalues rate for r(n) error rate

λi = O(i−α), α > 1 r(n) = n
1

2α n
1−α
2α
√

logn

λi = O(e−βi), β > 0 r(n) = logn
1

2β n−
1
2 (logn)

3
2

Table 1: Optimal rates for r(n) and the resulting rates for the upper bound on the approximation
error for the case of kernels with bounded eigenfunctions.

Finally, choosing r to grow with n will ensure that the bound vanishes as n → ∞, but this choice
will also lower the rate of C(r,n) → 0 such that the resulting overall rate will be sub-stochastic. In
Table 2, the optimal rates for r(n) and the resulting rates for the bound are shown for the cases of
polynomial and exponential decay of the true eigenvalues (see Section 6 for the proofs). We also
see that in the best case (for α → ∞ in the polynomial case, and also for the exponential case), we
obtain a rate which is slower than O(n−1/2) only by a log-factor, which is almost negligible.

2.4 Estimates II: Bounded Kernel Function

Since the restriction of uniformly bounded eigenfunctions is rather severe, we next consider the
case where the kernel function is bounded. More specifically, we will require that the diagonal
x 7→ k(x,x) is bounded. A prominent example for such kernel functions are radial-basis kernel
functions. Typically, these are kernel functions on normed spaces which are written as

k(x,y) = g(‖x− y‖),

where g is a bounded function. The choice g(a) = exp(−a2/2σ) is often simply called the rbf-kernel
with kernel width σ.

In the following theorem, two independent estimates of the error terms are presented, one based
on the Bernstein inequality, and the other based on the Chebychev inequality. The reason for pre-
senting two bounds is that while the bound based on the Bernstein inequality is asymptotically
faster, the bound based on the Chebychev inequality usually gives much smaller estimates for small
sample sizes since the Bernstein bound contains an O(n−1) term which can have a prohibitively
large constant if one considers small eigenvalues.

Theorem 4 (Bounded Kernel Function) Let k be a Mercer kernel with k(x,x) ≤ K < ∞ for all
x ∈ X . Then, for 1 ≤ r ≤ n, with probability larger than 1−δ,

C(r,n) < r

√

2K
nλr

log
2r(r +1)

δ
+

4Kr
3nλr

log
2r(r +1)

δ
,

E(r,n) < λr +Λ>r +

√

2KΛ>r

n
log

2
δ

+
2K
3n

log
2
δ
.

Consequently, by Theorem 1,

|li −λi| = O(λiλ
− 1

2
r r
√

logrn−
1
2 +Λ>r +

√

Λ>rn
− 1

2 +λiλ−1
r n−1r logr +n−1).

2308



ERROR BOUNDS FOR THE EIGENVALUES OF THE KERNEL MATRIX

Eigenvalues rate for r(n) error rate

λi = O(i−α), α > 1 r(n) = n
1

2+3α n
1−α
2+3α

λi = O(e−βi), β > 0 r(n) = logn
1

3β n−
1
3 (logn)2

Table 2: Optimal rates for r(n) and the resulting rates for the upper bound on the approximation
error for bounded kernels.

The λiλ−1
r n−1r logr term in this bound can become prohibitively large for small n and small λr. In

this case, an alternative bound gives more realistic estimates for moderately small δ:

C(r,n) < r

√

2r(r +1)K
2λrnδ

, E(r,n) < λr +Λ>r +

√

2KΛ>r

nδ
. (2)

For these bounds,

|li −λi| = O(λiλ
− 1

2
r r2n−

1
2 +Λ>r +

√

Λ>rn
− 1

2 ).

These bounds give a similar picture as those for bounded eigenfunctions. The most significant
difference is the occurrence of λ−1/2

r and λ−1
r in C(r,n). These terms appear because the eigenfunc-

tions of bounded kernels may have values as large as
√

K/λr, leading to large second moments of
the eigenfunctions and large error terms in ‖Cr

n‖.
These observations are also mirrored by the asymptotic rates for the more realistic bound (2)

which are summarized in Table 2 (and proved in Section 6). At most, we obtain a rate of n−1/3.
However, as we will see in Section 7.3, for small sample sizes, the resulting bounds are still much
tighter than those for non-scaling bounds.

Overview of Sections 3–6

In the next four sections we will prove the main results. We have tried to make the proofs as
self-contained as possible. The derivation of the basic perturbation result relies on several results
from the perturbation theory of symmetric matrices which are collected in the Appendix, while
the estimates of the norm of the error matrices in Section 4 and 5 rely on standard large deviation
bounds. Those two sections could be informative for improving the error estimates in the presence
of additional a priori information. Readers not interested in the technical details can safely skip
to page 2318 where examples are presented and the discussion of the results is continued. That
discussion does not refer to details of the proofs.

3. The Basic Perturbation Bound

In this section, we prove the basic perturbation bound (Theorem 1) which derives a bound on the
perturbation in terms of the norms of certain error matrices. The proof uses two classic results on
the perturbation of symmetric matrices attributed to Weyl and Ostrowski.

Recall that the kernel function k is decomposed into a degenerate kernel k[r] obtained by trunca-
tion, and the error term er (see Equation (1)). From these functions, we form the n×n matrices K[r]

n
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and Er
n with entries

[K[r]
n ]i j =

1
n

k[r](Xi,X j), [Er
n]i j =

1
n

er(Xi,X j).

Therefore, Kn = K[r]
n + Er

n, such that Kn is an additive perturbation of K[r]
n by Er

n. The effect on
individual eigenvalues of such perturbations is addressed by Weyl’s theorem (Theorem A.1).

Lemma 5 For 1 ≤ i ≤ n, r ∈ N,
|λi(K

[r]
n )− li| ≤ ‖Er

n‖.

Proof By Weyl’s theorem,
|λi(K

[r]
n )−λi(K

[r]
n +Er

n)| ≤ ‖Er
n‖,

and K[r]
n +Er

n = Kn.

For the degenerate kernel matrix K[r]
n , we will derive a multiplicative bound on the approxima-

tion error of the eigenvalues. The main step is to realize that the kernel matrix of the truncated
kernel can be written as the multiplicative perturbation of the diagonal matrix containing the true
eigenvalues: Recall that [Ψr

n]i` = ψ`(Xi)/
√

n (see Section 2.1) and let Λr = diag(λ1, . . . ,λr). Then,

we can easily verify that for all r,n ∈ N, K[r]
n = Ψr

nΛrΨr
n
>, since

[Ψr
nΛrΨr

n
>]i j =

r

∑̀
=1

[Ψr
n]i`[Λ

r]``[Ψr
n] j` =

1
n

r

∑̀
=1

ψ`(Xi)λ`ψ`(X j) =
1
n

k[r](Xi,X j). (3)

Applying Ostrowski’s Theorem (Theorem A.2 and its Corollary) leads to a multiplicative bound
for the eigenvalues of K[r]

n :

Lemma 6 For 1 ≤ i ≤ r ≤ n,
|λi(K

[r]
n )−λi| ≤ λi‖Cr

n‖.

Proof By Ostrowski’s theorem,

|λi(Ψr
nΛrΨr

n
>)−λi(Λr)| ≤ |λi(Λr)|‖Ψr

n
>Ψr

n − I‖ = λi‖Cr
n‖,

and λi(Ψr
nΛrΨr

n
>) = λi(K

[r]
n ), |λi(Λr)| = λi, since λi ≥ 0.

Combining this bound for K[r]
n with the error induced by the truncation as in Lemma 5 results in

the proof of Theorem 1.
Proof (of Theorem 1) For i ≤ r, by Lemma 6,

|λi(K
[r]
n )−λi| ≤ λi‖Cr

n‖.

For i > r, since λi(K
[r]
n ) = 0,

|λi(K
[r]
n )−λi| = |λi| = λi.

Thus,

|li −λi| ≤ |li −λi(K
[r]
n )|+ |λi(K

[r]
n )−λi| ≤ ‖Er

n‖+

{

λi‖Ψr
n
>Ψr

n − I‖, (1 ≤ i ≤ r)

λi (r < i ≤ n).
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where |li −λi(K
[r]
n )| has been bounded using Lemma 5. Now, since λi ≤ λr for r < i ≤ n,

|li −λi| ≤ λi‖Cr
n‖+λr +‖Er

n‖,

and the theorem is proven.

4. Estimates I: Bounded Eigenfunctions

In this section, we will prove Theorem 3. We consider the case where the eigenfunctions are uni-
formly bounded and there exists an M < ∞ such that for all i ∈ N and x ∈ X ,

|ψi(x)| ≤ M.

Lemma 7 For 1 ≤ r ≤ n, with probability larger than 1−δ,

‖Cr
n‖ < M2r

√

2
n

log
r(r +1)

δ
.

Proof Let

c`m = [Cr
n]`m =

1
n

n

∑
i=1

ψ`(Xi)ψm(Xi)−δ`m.

Note that
−M2 −δ`m ≤ ψ`(Xi)ψm(Xi)−δ`m ≤ M2 −δ`m,

such that the range of ψ`(Xi)ψm(Xi)−δ`m is given by 2M2. Using Hoeffding’s inequality, it follows
that

P{|c`m| ≥ ε} ≤ 2exp

(

−2nε2

4M4

)

. (4)

In order to bound ‖Cr
n‖, recall that ‖Cr

n‖ ≤ r max1≤`,m≤r |c`m| and therefore,

P{‖Cr
n‖ ≥ ε} ≤ P

{

max
1≤`,m≤r

|c`m| ≥
ε
r

}

.

Since c`m = cm`, there are r(r+1)/2 different elements in the maximum. Thus, by the union bound,

P

{

max
1≤`,m≤r

|c`m| ≥
ε
r

}

≤ ∑
`≥m

P
{

|c`m| ≥
ε
r

}

≤ r(r +1)exp

(

− nε2

2M4r2

)

by (4). Equating the right hand side with δ and solving for ε results in the claimed inequality.

In order to bound the size of ‖Er
n‖ we use a non-probabilistic upper bound.

Lemma 8 For r,n ∈ N,

‖Er
n‖ ≤ M2

∞

∑
i=r+1

λi.
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Proof Recall that the entries of Er
n are constructed by evaluating the error function er(x,y) defined

in (1) on all pairs (Xi,X j) and dividing by n. For x,y ∈ X ,

∣

∣

∣

∣

1
n

er(x,y)

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1
n

∞

∑
i=r+1

λiψi(x)ψi(y)

∣

∣

∣

∣

∣

≤ M2

n

∞

∑
i=r+1

λi.

Therefore,

‖Er
n‖ ≤ n max

1≤i, j≤n

∣

∣

∣

∣

1
n

er(Xi,X j)

∣

∣

∣

∣

≤ M2
∞

∑
i=r+1

λi.

Based on the estimates from these two lemmas, we obtain the final result:
Proof (of Theorem 3) The result is a direct consequence of Theorem 1 and plugging in the esti-
mates from Lemma 7 and 8 for the error terms.

5. Estimates II: Bounded Kernel Function

In this section, we treat the case of bounded kernel functions. We have split this section into three
subsections, treating the relative error term ‖Cr

n‖, the absolute error term λr +‖Er
n‖, and the proof

of Theorem 4 separately.
Throughout this section, we assume that there exists a K < ∞ such that for all x ∈ X , k(x,x)≤ K.

From this condition, one can derive upper bounds on individual eigenfunctions ψi and the error
function er. The following easy lemma will prove to be very useful.

Lemma 9 For I ⊆ N,

0 ≤ ∑
i∈I

λiψ2
i (x) ≤ k(x,x) ≤ K

for all x ∈ X , and in particular |ψi(x)| ≤
√

K/λi. Consequently, the diagonal of the error function
er is bounded by 0 ≤ er(x,x) ≤ K for all r ∈ N.

Proof Since all the summands λiψ2
i (x) are positive,

K ≥ k(x,x) =
∞

∑
i=1

λiψ2
i (x) ≥ ∑

i∈I

λiψ2
i (x) ≥ 0.

The bound on ψi follows for I = {i}, and the bound on er for I = {r +1, . . .}.

5.1 The Relative Error Term

We begin by discussing the relative error term. The first step consists in computing an upper bound
on the variance of the random variables from which Cr

n is constructed.
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Lemma 10 For `,m ∈ N,

Eµ(ψ2
`ψ2

m) ≤ min(K/λ`,K/λm),

Varµ(ψ`ψm −δ`m) ≤ min(K/λ`,K/λm)−δ`m.

Proof By the Hölder inequality,

Eµ(ψ2
`ψ2

m) ≤ Eµ(|ψ2
` |)sup

x∈X
|ψ2

`(x)| ≤
K
λ`

,

because Eµ(|ψ2
` |) = ‖ψ`‖2 = 1, and by Lemma 9. The same bound holds with ` and m interchanged

which proves the first inequality.
The second inequality follows from the definition of the variance and the fact that Eµ(ψiψ j) =

δi j:

Varµ(ψ`ψm −δ`m) = Varµ(ψ`ψm) = Eµ(ψ2
`ψ2

m)− (Eµψ`ψm)2 ≤ min(K/λ`,K/λm)−δ`m.

Lemma 11 For 1 ≤ r ≤ n, with probability larger than 1−δ,

‖Cr
n‖ < r

√

2K
nλr

log
r(r +1)

δ
+

4rK
3nλr

log
r(r +1)

δ

Proof Let

c`m = [Cr
n]`m =

1
n

n

∑
i=1

ψ`(Xi)ψm(Xi)−δ`m.

Then, for 1 ≤ ` ≤ r, by Lemma 9, supx∈X |ψ`(x)ψ`(x)| ≤ K/λr,

− K
λr

−δ`m ≤ c`m ≤ K
λr

−δ`m,

and the range of c`m has size M := 2K/λr.
We can bound the variance of ψ`(Xi)ψm(Xi)−δ`m using Lemma 10 as follows:

Varµ(ψ`ψm −δ`m) ≤ K
λr

=: σ2.

By the Bernstein inequality (see for example van der Vaart and Wellner, 1996),

P{|c`m| ≥ ε} ≤ 2exp

(

− nε2

2σ2 +2Mε/3

)

.

In the proof of Lemma 7, we showed that

P{‖Cr
n‖ ≥ ε} ≤ ∑

`≥m

P
{

|c`m| ≥
ε
r

}

.

2313



BRAUN

Thus,

P{‖Cr
n‖ ≥ ε} ≤ r(r +1)exp

(

− n(ε/r)2

2σ2 +2Mε/3r

)

.

Setting the right hand side equal to δ and solving for ε yields that with probability larger than 1−δ,

‖Cr
n‖ <

2Mr
3n

log
r(r +1)

δ
+ r

√

2σ2

n
log

r(r +1)

δ
.

Substituting the values for σ2 and M yields the claimed upper bound.

Corollary 12 Alternatively, using the Chebychev inequality instead of the Bernstein inequality, one
obtains that for 1 ≤ r ≤ n, with probability larger than 1−δ,

‖Cr
n‖ ≤ r

√

r(r +1)K
2λrnδ

.

Proof By the Chebychev inequality,

P{|c`m| ≥ ε} <
Varµ(ψ`ψm −δ`m)

nε2 ≤ K
λrnε2 .

Thus,

P{‖Cr
n‖ ≥ ε} ≤ r(r +1)

2
Kr2

λrnε2 .

Equating the right hand side to δ and solving for ε proves the corollary.

5.2 The Absolute Error Term

Next, we study the properties of the random variable ‖Er
n‖. Recall that Er

n is obtained by evaluating
the error function er on all pairs of samples (Xi,X j). First of all, note that by the definition of
er, the error function is itself a Mercer kernel such that Er

n is positive-semidefinite for all sample
realizations. Thus, we can bound ‖Er

n‖ = λ1(Er
n) by the trace of Er

n:

‖Er
n‖ ≤ trEr

n =
1
n

n

∑
i=1

er(Xi,Xi).

By the strong law of large numbers,

1
n

n

∑
i=1

er(Xi,Xi) →a.s. E(er(X ,X)) =: tr

with X ∼ µ, the common distribution of the Xi.
In this section, we will first compute E(er(X ,X)) in terms of the eigenvalues of k, and then

derive a probabilistic bound on ‖Er
n‖.
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Lemma 13 For r ∈ N,

tr = Λ>r :=
∞

∑
i=r+1

λi.

Proof We compute tr:

tr =
Z

X
er(x,x)µ(dx) =

Z

X

(

∞

∑
`=r+1

λ`ψ2
`(x)

)

µ(dx)
(1)
=

∞

∑
`=r+1

λ`

Z

X
ψ2

`(x)µ(dx)
(2)
=

∞

∑
`=r+1

λ`,

where at (1), the integration and summation commute because the function x 7→ K is an integrable
majorant to the sum in parenthesis and Lebesgue’s theorem, and (2) holds because

R

ψ2
`(x)µ(dx) =

‖ψ`‖2 = 1.

Since we are interested in the situation when tr is much smaller than K, we will use the following
bound on the variance.

Lemma 14 For r ∈ N,

0 ≤ er(X ,X) ≤ K, Var(er(X ,X)) ≤ KE(er(X ,X)) = Ktr.

Proof The first inequality has been proven in Lemma 9. The variance can be bounded using the
Hölder inequality as follows:

Var(er(X ,X)) = E(er(X ,X)2)− (Eer(X ,X))2

≤ E(|er(X ,X)|)K − (Eer(X ,X))2 ≤ E(er(X ,X))K = trK.

Lemma 15 For r,n ∈ N, with probability larger than 1−δ,

‖Er
n‖ < tr +

√

2Ktr
n

log
1
δ

+
2K
3n

log
1
δ
.

Proof In order to apply Bernstein’s inequality, we first have to compute the size of the range of
er(Xi,Xi) and its variance. In Lemma 14, we have proven that the range of er(Xi,Xi) has size K, and
that Var(er(Xi,Xi)) ≤ Ktr.

Thus, by the Bernstein inequality, with probability larger than 1−δ,

P{‖Er
n‖− tr ≥ ε} ≤ exp

(

− nε2

2Ktr + 2Kε
3

)

.

Setting the right hand side equal to δ and solving for ε results in the claimed upper bound.

Again replacing the Bernstein inequality by the Chebychev inequality, one can show an alterna-
tive confidence bound which can be considerably smaller for moderately small δ and small n.

Corollary 16 For r,n ∈ N, with probability larger than 1−δ,

‖Er
n‖ < tr +

√

Ktr
nδ

.

2315



BRAUN

5.3 The Final Result

We finally combine the estimates from the previous two sections to obtain the bound for bounded
kernel functions.
Proof (of Theorem 4) The basic perturbation bound holds by Theorem 1. The upper bounds on
‖Cr

n‖ and ‖Er
n‖ were derived in Lemmas 11 and 15. Finally, both estimates can be combined

according from the individual bounds at confidence δ/2.1

Using the alternative bounds from Corollary 12 and 16, one obtains the bounds from Equa-
tion (2).

6. Asymptotic Rates

In this section, we derive the optimal growth rates (up to logarithmic factors) for r(n) such that the
overall bound converges to zero. The computations have to be carried out for four different settings:
kernels with bounded eigenfunctions/bounded kernels, and polynomial decay/exponential decay of
eigenvalues.

6.1 Case I: Bounded Eigenfunctions

Polynomial Decay Assume that λi = O(i−α) with α > 1. For fixed i, we wish to let r grow with
n such that the approximation from Theorem 3 tends to 0. The rate is given as

|li −λi| = O(r
√

logrn−
1
2 +Λ>r).

We omit the
√

logr term first. From λi = O(i−α), we obtain the following condition (see Ap-
pendix A.2 for rates concerning the tail sums Λ>r):

rn−
1
2 + r1−α = o(1).

We use the following Ansatz: r = nε with ε > 0. Thus, we wish to find ε such that

nε− 1
2 +nε(1−α) = o(1).

This condition is obviously met if ε < 1/2. We wish to balance the two terms in order to minimize
the overall rate. This rate is attained if

ε− 1
2

= ε(1−α)  ε =
1

2α
.

Plugging in this rate shows that

|li −λi| = O(n
1−α
2α
√

logn).

1. Let X ,X ′ be positive random variables such that P{X > ε} ≤ δ, P{X ′ > ε′} ≤ δ. Then, P{X +X ′ > ε+ ε′} ≤ 2δ,
because P{X +X ′ > ε+ ε′} ≤ P{X > ε or X ′ > ε′} ≤ P{X > ε}+P{X ′ > ε′} ≤ 2δ.
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Exponential Decay We assume that λi = O(e−βi), β > 0, such that Λ>r = O(e−βr). We are
looking for the slowest rate such that Λ>r = O(n−

1
2 ). Using the Ansatz r = lognε, we obtain the

condition

e−β lognε
= n−βε = O(n−

1
2 ) if −βε ≤−1

2
 ε =

1
2β

.

Plugging this choice of ε gives the overall rate of

|li −λi| = O(n−
1
2 (logn)

3
2 ).

6.2 Case II: Bounded Kernel function

In this case, the rate is (using the bound based on the Chebychev inequality)

|li −λi| = O(λ− 1
2

r r2n−
1
2 +Λ>r +

√

Λ>rn
− 1

2 ).

Polynomial Decay Plugging in λr = r−α, Λ>r = r1−α (omitting the constants) gives

r2+ α
2 n−

1
2 + r1−α + r

1−α
2 n−

1
2 .

We again set r = nε and obtain the three terms

nε(2+ α
2 )− 1

2 +nε(1−α) +nε( 1−α
2 )− 1

2 .

First of all, the first term tells us that ε ≤ 1
4+α , otherwise the bound diverges. Also note that of the

three terms, only the first two are relevant, because the third term is always smaller than the first
term. They are balanced if

ε
(

4+α
2

)

− 1
2

= ε(1−α)  ε =
1

2+3α
,

which is also smaller than 1
4+α for α > 1. Plugging this into either term shows that the resulting rate

is
|li −λi| = O(n

1−α
2+3α ).

Exponential Decay In this case, λr = e−βr, Λ>r = O(e−βr). Therefore, the rate becomes (omitting
all constants)

e
β
2 rr2n−

1
2 + e−βr + e−

β
2 rn−

1
2 .

With the Ansatz r = lognε, we get

n
βε
2 − 1

2 (lognε)2 +n−βε +n−
βε
2 − 1

2 .

From the first term we get that ε ≤ 1/β, otherwise it diverges. But for ε ≤ 1/β, the third term is
always smaller than the second term, such that we have to balance the first and the second term.
Thus, the optimal rate is given if

βε
2
− 1

2
= −βε  ε =

1
3β

.

This choice results in the overall rate of

|li −λi| = O(n−
1
3 (logn)2).
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Figure 2: The example from the introduction revisited. The box plots show the distributions of
the observed approximation errors for kernel matrices built from n = 1000 sample points
over 100 re-samples. The two solid lines plot the approximation error bound derived in
this work. The upper line uses the bound on ‖Cr

n‖ from Theorem 3, while the lower line
uses the largest observed value of ‖Cr

n‖ on the samples in conjunction with Theorem 1,
which requires knowledge of the true eigenfunctions.

7. Examples

We claim that the bounds which we have derived give realistic error estimates already for small
sample sizes. In this section, we discuss several examples for both classes of kernels on numerical
simulations to support our claim.

7.1 Examples for Kernels with Bounded Eigenfunctions

For the class of Mercer kernels whose eigenfunctions are uniformly bounded, we have been able
to derive rather accurate finite sample size bounds. In particular, the truncation error E(r,n) can
be bounded in a deterministic fashion. The relative error term C(r,n) scales rather moderately as
r
√

logr with r, and E(r,n) decays quickly, depending on the rate of decay of the eigenvalues, for
both the case of polynomial and exponential decay.

Consider the following example already briefly discussed in the introduction. We construct a
Mercer kernel function by specifying an orthogonal set of functions and a sequence of eigenval-
ues. As orthogonal functions, we use Legendre polynomials Pn(x) (Abramowitz and Stegun, 1972),
which are orthogonal polynomials on [−1,1]. We take the first 20 polynomials, and set λi = exp(−i).
Then,

k(x,y) =
19

∑
i=0

νie
−iPi(x)Pi(y)

defines a Mercer kernel, where νi = 1/(2i + 1) comes from normalization:
√

νiPi has unit norm
with respect to the probability measure induced by µ([a,b]) = |b−a|/2.

For convenience, the plot from Figure 1(b) is reproduced in Figure 2. Since this kernel has
only 20 non-zero eigenvalues, we obtain a purely relative bound (neglecting the round-off errors)
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by setting r = 20. We see that the bound accurately reflects the true behavior of the approximation
error.

We have also marked the smallest possible non-scaling error bound on the maximal observed
approximation error. Any non-scaling error bound will necessarily be larger than this observed error
with high probability. This plot illustrates the fact that it is essential for obtaining accurate estimates
that the error bounds scale with the considered eigenvalue. A non-scaling bound will overestimate
the error of smaller eigenvalues significantly.

The plot might suggest that our bound is actually worse for the first few large eigenvalues, but
note that the dashed line is only a lower bound to any non-scaling error bound, and actual error
bounds will typically be much larger.

Next, we turn to a non-degenerate kernel. In Figure 3, some examples are plotted for the sine-
basis kernel, defined as follows. The eigenfunctions are given by

ψi(x) =
√

2sin(ix/2), i ∈ N,

which form an orthogonal family of functions on the Hilbert space of functions defined on [0,2π]
with the scalar product ( f ,g) 7→ R 2π

0 f (x)g(x)dx/2π. These functions are uniformly bounded by
√

2.
Since we cannot write down the resulting kernel given some choice of eigenvalues in closed

form, we truncate the expansion to the first 1000 terms, resulting in a negligible difference to the
true kernel function. The resulting kernel function for different choices of eigenvalues are plotted
in Figure 3(a). In Figures 3(b)–(d), three such examples are plotted, two for polynomially decay-
ing eigenvalues, and one for exponentially decaying eigenvalues. We plot the bound for different
choices of r and see that, with increasing r, the absolute error term becomes smaller such that the
bound for small eigenvalues also becomes smaller while, at the same time, the bound for larger
eigenvalues becomes larger.

In Figure 3(d), it appears that the bound is actually smaller than the observed eigenvalues. This
effect is due to the finite precision arithmetic used in the computations. These rounding errors
effectively lead to an additive perturbation of the kernel matrix, which in turn results in an additive
perturbation of the eigenvalues of the same magnitude. An interesting observation is that although
our bounds fail to be purely relative in the general case, numerically computed eigenvalues will
always display a stagnation of small eigenvalues at a certain level due to round-off errors as well.
Thus, for numerically computed eigenvalues, fully relative approximation errors are not possible.

7.2 Examples for Kernels with Bounded Kernel Functions

The second class of kernel functions are kernels with bounded diagonal. This class includes the
important radial basis function kernels (rbf-kernels). In this case, the eigenfunctions can in principle
grow unboundedly as the eigenvalues become smaller, leading to considerably larger error estimates.
The most important difference to the previous case is that the relative error term depends on the
eigenvalues themselves and scales with the factor 1/

√
λr. Therefore, having smaller eigenvalues

can lead to a much larger relative error term (which will nevertheless ultimately decay to zero).
The example we will consider is designed to display this slow rate of convergence. It is well-

known that Bernoulli random variables maximize the variance among all bounded random variables
taking values in [0,1]. We thus consider the following kernel: Let (Ai)

∞
i=1 be a partition of X with

µ(A1) ≥ µ(A2) ≥ . . . ≥ 0. Then, set

λi = µ(Ai), ψi(x) =
1√
λi

1Ai(x). (5)
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(a) The sine-kernel for different decay rates and
at the three points marked by a plus-sign. The
decay rates are λi = i−2 (dotted lines), λi = i−10

(dashed lines), λi = e−i (solid lines). Note that
the smoothness depends on rate of decay.

0 20 40 60 80 100
10

−10

10
−5

10
0

10
5

Eigenvalues

A
pp

ro
xi

m
at

io
n 

er
ro

r

Bound on the approximation error for λ
i
 = i−2

(b) For quadratic decay, the bounds are only
slightly better than the best possible non-scaling
bound. (Shaded areas correspond to quartile
ranges, similar to box plots. See explanation in
figure caption.)
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Bound on the approximation error for λ
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(c) For faster polynomial decay, the bounds are
much more accurate than the best possible non-
scaling bound for small eigenvalues.
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Bound on the approximation error for λ
i
 = e−i

(d) For exponential decay, the bounds are much
more accurate than the best possible non-scaling
bound as observed on the data. In fact, the
actual approximation error becomes even larger
than the bound due to finite precision arithmetics
starting with eigenvalue λ40.

Figure 3: The sine-kernel example. We consider the decay rates λi = i−2, λi = i−10, and λi = e−i. In
(a), some example kernel functions are plotted. In (b)–(d), we plot approximation errors
as observed over 100 re-samples of n = 200 points uniformly sampled from [0,2π], and
the bound for r ∈ {10,35,50,100} for confidence δ = 0.05. The dashed line plots the
best achievable non-scaling error bound. The distribution of the observed approximation
errors is illustrated by differently shaded areas similar to box plots: dark gray area shows
lower to upper quartile range, while light gray area shows data points which lie in 1.5
times the interquartile range. Points beyond that are plotted as small dots.
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This defines a Mercer kernel

k(x,y) =
∞

∑
i=1

1Ai(x)1Ai(y) =

{

1 if there exists an i such that x,y ∈ Ai,

0 else.

Note that the matrix Cr
n is always diagonal for this choice of basis functions because

ψi(x)ψ j(x) =
1

√

λiλ j
δi j.

Thus, we obtain a slightly improved bound over the one from Corollary 12 because ‖Cr
n‖ =

max1≤i≤r |[Cr
n]ii| since Cr

n is diagonal. Then,

P{‖Cr
n‖ ≥ ε} ≤ r max

1≤i≤r
P{|[Cr

n]ii| ≥ ε} ≤ r
λrnε2 ,

and consequently, with probability larger than 1−δ,

‖Cr
n‖ <

√

r
λrnδ

. (6)

Figure 4 plots the bound for this example. Again, the kernel function cannot be computed in
closed form, and we truncate to the first 1000 terms. We plot two different bounds, the bound
from (6), and the general result from Theorem 4. Note that the error does not fluctuate after eigen-
value λ20. The reason is that λi is so small that not a single point has hit Ai in the sample of n = 1000
points; the kernel is effectively degenerate and the approximate eigenvalues beyond l20 are equal to
zero. In this case, the approximation error is equal to the true eigenvalue which explains the expo-
nential decay. Note though, that for the first 20 eigenvalues, the (slower) rate is actually matched by
the bound.

Over all, compared with the examples for bounded kernel functions, the bounds are considerably
less tight, but they still correctly predict the scaling of the approximation error with regard to the
true eigenvalue.

7.3 Comparisons with a Non-Scaling Hoeffding-Type Bound

Finally, we would like compare our bound numerically against a non-scaling Hoeffding-type bound.
As discussed in Section 6, while the bounds presented in this paper are more accurate for small
eigenvalues, the overall rate as n → ∞ is slower than the usual stochastic rate O(n−1/2). To illustrate
that the bounds can nevertheless be much more accurate even for moderately small sample sizes, we
will compare our bounds against a Hoeffding-type bound which does not scale with the eigenvalue
under consideration.

We face the problem of choosing an appropriate non-scaling bound. Such bounds exist, but
only for tail sums of eigenvalues (see the papers by Shawe-Taylor et al., 2005, and Blanchard et al.,
2006, and the discussion in Section 8). However, the full complexity of these bounds is not really
necessary for the illustrative purposes we have in mind. In Theorem 6 of the paper by Shawe-Taylor
et al. (2005), there is a bound on the concentration of single eigenvalues around their mean: with
probability larger than 1−δ,

|li −E(li)| ≤ K2

√

1
2n

log
2
δ
.
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Bound on the approximation error (special bound)

(a) The bound based on the estimate from Equa-
tion (6) for C(r,n) which was specifically derived
for this example.
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Bound on the approximation error (general bound)

(b) The bound using the general result from The-
orem 4. Note that although the bound becomes
very large for large r, the minimum over all
bounds is the final bound on the approximation
error.

Figure 4: The indicator function example (see Equation (5)). This kernel has maximal variance
given the constraint that the resulting kernel function is bounded. We consider eigenval-
ues λi = ei/3/Z, where Z is the normalization constant. The sample size is n = 1000,
and the bounds are computed for confidence δ = 0.05. The solid lines are the bounds
for r ∈ {10,50,200,500}, while the dashed line shows the best possible non-scaling error
bound.
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This bound has the required asymptotic decay rate of O(n−1/2). Terms similar to this bound also
occur in the more complex bounds on tail sums of eigenvalues, albeit with larger constants. We will
therefore pretend that this is an overly optimistic guess of the approximation error and compare our
bounds to it.

We are particularly interested in the question if the Hoeffding-type bound, due to its better
asymptotic rate, quickly compensates for its non-scaling constant and becomes as small as our
bound. We therefore compare the bounds for sample sizes up to n = 10000. Figure 5 plots the
Hoeffding-type bound with the bound derived in this work. For these plots, since the eigenvalues
are known, the optimal r has been computed by numerically minimizing the bound. The optimal r
with respect to i have been plotted in Figure 5(d). For polynomial decay of rate λi = i−2, the bounds
are clearly inferior to the Hoeffding-type bounds and one can also clearly see that the overall rate
is sub-stochastic. However, for faster decay rates, the bounds for smaller eigenvalues are clearly
superior, also demonstrating that the number of samples necessary to yield a comparably small
bound using the Hoeffding-type bound is fairly large.

So far, we have compared the bounds only for the errors of individual eigenvalues. Let us now
compare the bounds for sums of eigenvalues. As we will discuss in Section 8, there exist bounds
which directly deal with tail sums of eigenvalues and are more accurate in this case. However, it is
instructive to derive a rough estimate for tail sums based on our bounds. We start with bounding the
difference between tail sums by summing the individual bounds:

∣

∣

∣

∣

∣

n

∑
i=r+1

li −
∞

∑
i=r+1

λi

∣

∣

∣

∣

∣

≤
n

∑
i=r+1

|li −λi|+Λ>n+1 ≤
n

∑
i=r+1

(λiC(r,n)+E(r,n))+Λ>n+1.

Let us roughly estimate the size of the resulting bound. The key to obtain a good estimate lies in
choosing a different r for each i. Let us set r = i. Then, omitting constants and using the bound for
bounded kernel functions which is based on the Chebychev inequality, we get that

∑
i=r+1

(

√

λii
2n−

1
2 +Λ>i +

√

Λ>in
− 1

2

)

+Λ>n+1

= n−
1
2

(

n

∑
i=r+1

i2
√

λi +
n

∑
i=r+1

√

Λ>i

)

+
n

∑
i=r+1

Λ>i +Λ>n+1.

Let us consider these tail sums for i → ∞. All of these sums converge if α > 6, because

i2
√

λi = O(i2−
α
2 ) = O(i−1),

√

Λ>i = O(i
1−α

2 ) = O(i−2 1
2 ), Λ>i = O(i1−α) = O(i−5).

Thus, for large i, the bound on the tail sums actually becomes small, giving more accurate bounds
than those obtainable by a non-scaling bound.

In Figure 6, we again compare the bound derived in this work against a Hoeffding-type bound
for tail sums of eigenvalues. We do not use the rough estimate derived above, but sum the individual
approximation error bounds selecting the optimal r in each case. Again we see that these bounds
give much smaller estimates than the non-scaling Hoeffding-type bound.

8. Related Work

The bounds presented in this work are the first finite sample size bounds for single eigenvalues which
scale with the eigenvalue under consideration. These results contribute to the already existing body
of work which we briefly review in this chapter.
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(a) λi = i−2
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(b) λi = i−10
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(c) λi = e−i/Z (normalization)
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Figure 5: Upper bounds with the best choice of r (solid lines) compared with a Hoeffding-type
non-scaling O(n−

1
2 ) bound (dashed line) for single eigenvalues. The bounds are plotted

for eigenvalues λ1,λ5,λ10,λ50,λ100, and for the cases of polynomial decay, also for λ500.
The truncation point r has been chosen optimally by explicitly minimizing the bound.
The confidence was δ = 0.05.
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Bounds on the approximation error for tail sums

(a) λ = i−2
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Bounds on the approximation error for tail sums

(b) λ = i−10
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Bounds on the approximation error for tail sums

(c) λ = e−i/Z (normalization)

Figure 6: Upper bounds for tail sums (solid lines) compared with a Hoeffding-type non-scaling
O(n−

1
2 ) bound (dashed line). The tail sums are plotted for r ∈ {10,20,30,40,50}. The

confidence was set to δ = 0.5.

The asymptotic setting is addressed for example in Dauxois et al. (1982) and Koltchinskii and
Giné (2000) where central limit type results for the limit distributions of the eigenvalues are derive.
The finite sample setting has been addressed more recently, in particular in Shawe-Taylor et al.
(2005) and Blanchard et al. (2006).

The paper by Shawe-Taylor et al. (2005) discusses several aspects of the relation between the
approximate eigenvalues and their asymptotic counterparts. These also include concentration in-
equalities relating the approximate eigenvalues to their expectations (similar inequalities can also
be found in the Ph.D. thesis of Mika, 2002). Finally, Theorem 1 and 2 of that paper provide fi-
nite sample size bounds on the approximation error for tail sums of the eigenvalues. However, these
bounds do not scale with the size of the eigenvalues, leading to the already discussed overestimation
of the true approximation error in particular for small eigenvalues.

These results are further refined and extended in the paper by Blanchard et al. (2006). In par-
ticular, non-scaling bounds are derived exhibiting fast convergence rates, as well as scaling bounds
for tail sums of eigenvalues. As already explained, the latter bounds are particularly important for
obtaining accurate estimates for small eigenvalues.

Compared to the results presented in this work, all of these results are either dealing with the
asymptotic setting or, in the case of finite sample size bounds, are non-scaling or only deal with
tail sums of eigenvalues. Obtaining accurate bounds, in particular bounds which scale with the
eigenvalue under consideration, was an open problem so far (see the comments below Theorem 4.2
in the paper by Blanchard et al., 2006). Note that these two problems are not interchangeable: While
it is possible to construct bounds for single eigenvalues from bounds of tail sums by subtracting
bounds for neighboring indices, and also vice versa by summing up bounds, the resulting scaling
factors will not match the quantity under consideration.

From a technical point of view, the approach taken in this work and the one by Blanchard et al.
(2006) also differ considerably. While the analysis in the latter is carried out in abstract Hilbert
spaces, in this work, the analysis is based in the finite dimensional domain, having the potential
advantage that the arguments are somewhat more elementary. However, one could suspect that the
absolute terms occurring in our bounds are an artifact of the more elementary approach (in particular
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since these terms are a side-effect of the truncation of the kernel matrix). Then, a more abstract
approach might be able to obtain fully relative bounds. Note however, that Ostrowski’s inequality
does not easily extend to the high-dimensional case, as the convergence of the error matrix Cr

n
scales with the dimension of the finite-dimensional case. At any rate, these questions are interesting
possible direction for future research.

9. Conclusion and Outlook

We have derived finite sample size bounds on the error between single eigenvalues of the kernel
matrix and their asymptotic limits. These bounds scale with the eigenvalue under consideration
leading to significantly more accurate bounds for single eigenvalues than previously known bounds
in particular for small eigenvalues and small sample sizes. Also for fairly large sample sizes, the
bounds can still be superior to existing bounds since the number of samples necessary to make
existing non-scaling bounds competitive can be unrealistically large.

For future work, we would like to suggest three possibilities. (i) If additional information on
the kernel, or the probability distribution is available, the bounds on the norms of the error matrices
could be improved leading to more accurate bounds.

(ii) Note that the resulting bounds require the knowledge of the true eigenvalues. From a the-
oretical point of view, this approach is acceptable, because we were specifically interested in ap-
proximation errors of small eigenvalues, and this assumption is codified into the knowledge of the
true eigenvalues. In practical situations, however, one might be interested in obtaining a confidence
bound without knowledge of the eigenvalues. This means that one has to derive some property of
the true eigenvalues, for example, their rate of decay. Statistical tests could be constructed to this
means based on the bounds presented here. Then, the bounds presented in this work predict that the
estimated eigenvalues decay at the same rate giving confidence bounds which scale at the correct
rate.

(iii) Finally, since the basic perturbation bound also holds for non-random choices of points, the
result could be applied in the analysis of the numerical approximation of integral equations. The
norms of the error matrices would then be bounded using approximation theory.
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Appendix A. Supplementary Results

In this section, we collect some supplementary results for reference, which are used in the main text.

A.1 Perturbation of Hermitian Matrices

We use two classical results on the perturbation of eigenvalues for Hermitian matrices.

Theorem A.1 (Weyl) (Horn and Johnson, 1985, Theorem 4.3.1) Let A,E be Hermitian n× n ma-
trices. Then, for each 1 ≤ i ≤ n,

λi(A)+λn(E) ≤ λi(A+E) ≤ λi(A)+λ1(E).

This implies that
|λi(A)−λi(A+E)| ≤ ‖E‖.

Theorem A.2 (Ostrowski) (Horn and Johnson, 1985, Theorem 4.5.9., Corollary 4.5.11) Let A be
a Hermitian n× n matrix, and S a non-singular n× n matrix. Then, for 1 ≤ i ≤ n, there exist non-
negative real θi with λn(SS∗) ≤ θi ≤ λ1(SS∗) such that

λi(SAS∗) = θiλi(A).

Consequently,
|λi(SAS∗)−λi(A)| ≤ |λi(A)|‖S∗S− I‖.

For the case of non-square S, the same result holds as can be shown by extending either S or A
with zeros until both matrices are square and have the same size and by a continuity argument to
extend Ostrowski’s theorem to singular S (Horn and Johnson, 1985, p. 224).

Corollary A.3 Ostrowski’s theorem also holds if S is a (non-square) n×m matrix.

A.2 Asymptotics of Infinite Sums

For convenience, we collect two elementary computations to estimate the asymptotic rates of tail
sums of sequences with polynomial and exponential decay.

Theorem A.4 For α > 1 and β > 0,

∞

∑
i=r+1

i−α ≤ r1−α

α−1
= O(r1−α),

∞

∑
i=r+1

e−βi =
e−β(r+1)

1− e−β = O(e−βr).

To prove these two rates, note that

∞

∑
i=r+1

i−α ≤
Z ∞

r+1
(x−1)−αdx =

Z ∞

r
x−αdx =

x1−α

1−α

∣

∣

∣

∣

∞

r
= 0− r1−α

1−α
=

r1−α

α−1
.

Furthermore, since ∑∞
i=r+1(e

−β)i is the tail of a geometric series,

∞

∑
i=r+1

e−βi ≤ 1

1− e−β − 1−
(

e−β)r+1

1− e−β =

(

e−β)r+1

1− e−β .
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