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Abstract

SNP-heritability is a fundamental quantity in the study of complex traits. Recent works have 

shown that existing methods to estimate genome-wide SNP-heritability yield biases when their 

assumptions are violated. While various approaches have been proposed to account for frequency- 

and LD-dependent genetic architectures, it remains unclear which estimates reported in the 

literature are reliable. Here we show that genome-wide SNP-heritability can be accurately 
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estimated from biobank-scale data irrespective of genetic architecture, without specifying a 

heritability model or partitioning SNPs by allele frequency and/or LD. We show analytically and 

through extensive simulations starting from real genotypes (UK Biobank, N = 337K) that, unlike 

existing methods, our closed-form estimator is robust across a wide range of architectures. We 

provide estimates of SNP-heritability for 22 complex traits in the UK Biobank and show that, 

consistent with our results in simulations, existing biobank-scale methods yield estimates up to 

30% different from our theoretically-justified approach.

Editorial Summary:

The authors use theoretical justifications coupled with extensive simulations to accurately estimate 

SNP-heritability for 22 complex traits and diseases from the UK Biobank data irrespective of the 

underlying genetic architecture of the trait.

SNP-heritability, the proportion of phenotypic variance attributable to the additive effects of 

a given set of SNPs, is a fundamental quantity in genetics1; it provides an upper bound on 

risk prediction from a linear model2 and, when defined as a function of all SNPs on an array, 

yields insights into the “missing heritability” of complex traits3–5. Traditionally, SNP-

heritability is estimated by fitting variance components models with REML3,6–9. With some 

exceptions8, REML-based methods are not scalable to biobanks that assay hundreds of 

thousands of individuals (e.g., UK Biobank10). SNP-heritability can also be estimated by 

assessing the deviation in marginal association statistics as a function of LD scores11–14; 

such methods can scale to millions of individuals. More recently, a randomized extension of 

Haseman-Elston regression15 was shown to estimate a single genetic variance component 

from individual-level data as accurately as REML methods but in a fraction of the run-

time16.

To facilitate inference, all existing methods for genome-wide SNP-heritability inference 

make assumptions on genetic architecture, which is typically parametrized by polygenicity 

(the number of variants with effects larger than some small constant δ) and MAF/LD-

dependence (the coupling of effects with minor allele frequency (MAF), local linkage 

disequilibrium (LD), or other functional annotations)17. Since the true genetic architecture 

of any given trait is unknown, existing methods are susceptible to bias and often yield vastly 

different estimates even when applied to the same data9,14,18. Although multi-component 

methods that stratify SNPs by MAF/LD ameliorate some of these robustness issues7,18,19, 

fitting multiple variance components to biobank-scale data with REML is highly resource-

intensive8 and it is unclear whether multi-component methods based on summary statistics 

produce accurate estimates of total SNP-heritability. Alternate methods that explicitly model 

MAF/LD-dependency6,9,14 are also sensitive to model misspecification6,9,14,18,19. In 

addition, genetic architecture varies across traits and populations due to, for example, 

variable degrees of negative selection acting on different traits in different 

populations17,20–25. Methods that jointly infer SNP-heritability and parameters such as the 

strength of negative selection or polygenicity14,23,26 are computationally intensive and/or 

sensitive to LD-dependency. Thus, it remains unclear which estimates of SNP-heritability 

computed from biobank-scale data are reliable.
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In this work, we investigate whether genome-wide SNP-heritability can be accurately 

estimated under a generalized random effects (GRE) model that makes minimal assumptions 

on genetic architecture. Under this model, every causal effect has an arbitrary SNP-specific 

variance, and SNP-heritability is defined as the sum of the SNP-specific variances 

(Methods). To the best of our knowledge, all existing methods make additional assumptions 

on top of the GRE model (Table 1). For example, GREML3 (and several other 

methods8,16,27) imposes an inverse relationship between MAF and allelic effect size whereas 

LDAK assumes that each SNP-specific variance is inversely proportional to both MAF and 

LD tagging6,9. We derive a closed-form estimator for SNP-heritability as a function of 

marginal association statistics and in-sample LD and show that this estimator is consistent 

(approaches the true SNP-heritability as sample size increases) and unbiased (its expectation 

is equal to the true SNP-heritability) when the number of individuals exceeds the number of 

SNPs. Most importantly, the accuracy of this estimator is invariant to genetic architecture. 

While the GRE estimator is similar in form to previously proposed “fixed effect 

estimators,”28,29 our approach differs from previous work in two main ways. First, SNP-

heritability defined under a fixed effect model is different from the estimand of interest here 

(Methods). Second, previous work applied the estimator locally to identify regions 

contributing disproportionately to the genome-wide signal28,29; here we define a different 

genome-wide estimator (Equation 1) that requires large-scale genotype data. In addition, 

previous work applied an SVD-based regularization to account for errors in LD estimation 

from reference panels29 which was unnecessary in this work (Methods).

Through extensive simulations across a range of MAF/LD-dependent architectures starting 

from real genotypes from the UK Biobank10 (337K individuals, 593K SNPs), we find that 

the GRE estimator is nearly unbiased across all architectures whereas existing methods are 

sensitive to model misspecification. For example, across 126 distinct architectures, the 

maximum bias of the GRE estimator is 2% of the simulated SNP-heritability whereas 

stratified LD score regression (S-LDSC)12,13 and SumHer14 yield biases between −64% and 

28%. For completeness, we also contrast the GRE estimator with several REML-based 

methods in simulations at lower sample sizes (due to the computational burden of most 

REML methods) and find that, consistent with recent reports18, all REML-based methods 

are biased when their model assumptions are violated, and multi-component REML methods 

that stratify SNPs by MAF and LD score (GREML-LDMS-I18) are more accurate than 

single-component REML methods. The performance of the GRE estimator is similar to that 

of GREML-LDMS-I, thereby confirming that SNP-heritability can be accurately estimated 

without stratifying SNPs or specifying a heritability model6,9,14.

Finally, we use marginal association statistics and in-sample LD from 290K unrelated 

British individuals and 460K SNPs (MAF > 1%) to estimate SNP-heritability for 22 

complex traits in the UK Biobank10. Consistent with simulations, estimates from S-LDSC 

and SumHer differ from the GRE estimates by a median of −9% and 11%, respectively, 

across the 18 traits with SNP-heritability estimates exceeding 0.05. For example, for height, 

estimates from S-LDSC (0.56) and SumHer (0.63) are approximately 7% lower and 5% 

higher, respectively, than our estimate of 0.60. Similarly, for hypertension, estimates from S-

LDSC (0.14) and SumHer (0.18) are ±12.5% different from our estimate of 0.16. Taken 

together, our results demonstrate that SNP-heritability can be accurately estimated from 
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biobank-scale data without prior knowledge of the genetic architecture the trait, motivating 

the development of scalable methods with fewer modeling assumptions.

Results

Overview of the approach

We investigate the utility of an estimator derived under a model that makes minimal 

assumptions on genetic architecture. We model the standardized phenotype of an individual 

as y = x
T

β + ϵ where x is an M-vector of standardized genotypes, β is the corresponding 

vector of standardized effects, and ϵ ∼ N 0, σ
e
2  is environmental noise (Methods). The effect 

size of each SNP is assumed to have mean zero and a finite SNP-specific variance (σ
i
2 for 

SNP i) that is allowed to be 0; the covariance between all pairs of effects is assumed to be 

zero. We term this model the “generalized random effects” (GRE) model as, to the best of 

our knowledge, all existing methods impose additional assumptions on top of this model. 

For example, the single-component GREML model3 assumes σ
i
2 = h

g
2/M for i = 1, …, M

whereas the most recent LDAK model9 assumes σ
i
2 ∝ w

i
[ f

i
1 − f

i
]0.75 (where w

i
 is a SNP-

specific LD weight and f
i
 is MAF) (Table 1). Under the GRE model, the SNP-heritability 

explained by the M SNPs is the sum of the SNP-specific variances: 

h
g
2 ≡ Var x

T
β /Var y = ∑

i = 1
M

σ
i
2 (Methods).

Given genotype measurements across N individuals at M SNPs and assuming N > M, the 

estimator h
g
2

=
Nβ

T
V

†
β − q

N − q
, where β is the vector of estimated marginal effects, V

†
 is the 

pseudoinverse of the in-sample LD matrix, and q is the rank of the in-sample LD, is an 

unbiased estimator of SNP-heritability under the GRE model. That is, E h
g
2

= ∑
i = 1
M

σ
i
2 = h

g
2

(Methods). Unfortunately, even the largest biobanks currently have N < M (i.e. UK Biobank 

has genotyped M ≈ 593K SNPs in N ≈ 337K unrelated British individuals), which limits the 

utility of the above estimator. We therefore extend our approach by partitioning the genome 

by chromosome:

hGRE
2

=
k = 1

22 Nβk

T
Vk

†
βk − qk

N − qk

#(1)

where for chromosome k with p
k
 SNPs, β

k
 is the p

k
− vector of estimated effects, V

k
†
 is the 

pseudoinverse of the in-sample LD matrix, and q
k
 is the rank of the in-sample LD. Although 

this estimator introduces bias, we show through extensive simulations that the magnitude of 

the bias is extremely small when N is sufficiently larger than p
k
.
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The GRE estimator is robust in simulations

To investigate the bias and variance of hGRE
2

, we perform simulations starting from real 

genotypes (N = 337205, UK Biobank10). First, we simulate 64 MAF/LD-dependent 

quantitative trait architectures from chromosome 22 M = 9654 typed SNPs) by varying the 

SNP-heritability h
g
2 , proportion of causal variants pcausal , distribution of causal variant 

MAF (CV MAF), and strength of coupling between effect size and MAF/LD; we use 

“LDAK-LD-dependent” to describe causal effects that are coupled with “LDAK weights” 

(Methods). To compare estimates across different values of h
g
2, we assess bias as a 

percentage of the simulated value of h
g
2 (relative bias). Errors of individual estimates are also 

expressed as percentages of h
g
2. Consistent with analytical derivations, the GRE estimator 

restricted to chromosome 22 is unbiased across the 64 architectures (bias p-value < 0.05/16 

is considered significant in order to correct for 16 tests (architectures) at each value of h
g
2; 

Methods) (Figure 1ac, Supplementary Table 1). The average relative bias across the 64 

architectures is 0.00015% × h
g
2 and the largest bias under any single architecture is ±0.2% × h

g
2

(Supplementary Figure 1a, Supplementary Table 1). In simulations of unascertained case-

control studies (Methods), the GRE estimator is approximately unbiased across a range of 

disease prevalences (for h
g
2 = 0.10, relative bias range is [−0.20%, 0.30%]) and has larger 

variance for lower prevalences (Supplementary Figure 2a, Supplementary Table 2). For 

ascertained case-control studies, estimates are downward-biased but invariant to architecture 

(when h
g
2 = 0.10, prevalence = 0.10, and Ncase = Ncontrol, relative bias is approximately −4%) 

(Supplementary Table 3). Masking 0%, 50%, or 100% of causal SNPs from the observed 

summary statistics induces downward-bias when CV MAF = [0.01, 0.05] due to lower 

average LD between the observed SNPs and masked causal SNPs (Supplementary Figure 3). 

The analytical estimator of the standard error (Methods) is well-calibrated (Supplementary 

Figure 4a, Supplementary Table 4). As expected, partitioning chromosome 22 into disjoint, 

non-independent blocks induces upward bias that increases as block size decreases 

(Supplementary Figure 5, Supplementary Table 5).

Next, we perform genome-wide simulations N = 337K individuals, M = 593K SNPs) to 

assess hGRE
2

 with the 22-block approximation (Equation 1). Despite the approximation, 

hGRE
2

 is highly accurate and robust across all 64 MAF- and LDAK-LD-dependent 

quantitative trait architectures (Figure 1b, 1c). Across the 64 architectures, the bias ranges 

from 0.07% to 2.1% × h
g
2 average = 0.97% × h

g
2  (Supplementary Figure 1b, Supplementary 

Table 6). Across all 6400 simulations (64 genetic architectures × 100 simulation replicates), 

the largest error of any single estimate is approximately 17% × h
g
2 (Figure 1c). As N /M

increases, the variance of hGRE
2

 decreases while the relative bias appears to be approximately 

fixed, ranging between 0.91% N = 100K  and 0.99% N = 200K  (Figure 1d). These trends 

hold for a range of pcausal (Supplementary Figure 6, Supplementary Table 6), for 
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unascertained case-control studies (Supplementary Figure 2b, Supplementary Table 7), and 

in a smaller set of simulations with N = 7685 individuals of South Asian ancestry and 

M = 1642 SNPs (Supplementary Table 8; Methods). Most importantly, the accuracy of the 

GRE estimator is invariant to the underlying architecture (Figure 1b). The analytical 

estimator for the standard error is downward-biased (and invariant to genetic architecture) 

with respect to the empirical standard deviation of hGRE
2

 estimates (Supplementary Figure 

4b, Supplementary Table 9). For example, across 16 architectures where h
g
2 = 0.25, the 

empirical standard deviation of 100 independent estimates ranges from 0.0049 to 0.0064, 

whereas our estimated standard errors are approximately 0.0036 across all architectures 

(Supplementary Figure 4b, Supplementary Table 9).

We investigate the effects of unmodeled substructure and/or cryptic relatedness by filtering 

individuals at different kinship coefficient thresholds (Methods) and find that using stricter 

relatedness thresholds increases the variance of the estimates (due to smaller sample size) 

while reducing bias, albeit not significantly (Supplementary Figure 7, Supplementary Table 

10). To assess the impact of population stratification, we simulated an effect of the first 

genetic principal component (PC) on phenotype and computed OLS association statistics 

both with and without adjusting for the first PC (Methods). As expected, OLS without PC 

adjustment yields inflated estimates while OLS with PC adjustment yields approximately 

unbiased estimates (Supplementary Figure 8, Supplementary Table 11). However, even when 

a relatively large proportion of phenotypic variance is explained by the first PC (e.g., 

h
g
2 = 0.25, σ

s
2 = 0.05), the maximum bias we observe using unadjusted association statistics is 

5% × h
g
2 (bias p‐value = 2.7 × 10−9). Together, these results indicate that the GRE estimator is 

robust to modest amounts of unmodeled substructure and/or stratification. In all subsequent 

analyses, we compute hGRE
2

 with the 22-block approximation as this provides sufficiently 

accurate estimates and a fair comparison to other methods.

Comparison of methods to estimate SNP-heritability

We compare hGRE
2

 with existing state-of-the-art methods that are easily scalable to the full 

UK Biobank data N = 337K : LD score regression (LDSC), which assumes α = − 1 and no 

coupling of effects with LD11; stratified LD score regression (S-LDSC), which partitions h
g
2

by a set of annotations of interest12,13; and SumHer, a scalable extension of LDAK which 

explicitly models MAF/LD-dependency through a specific form of the SNP-specific 

variances14 (Table 1). To ensure a fair comparison, LD scores for all methods are computed 

using in-sample LD among the M SNPs, and in all simulations we aim to estimate the SNP-

heritability explained by the same M SNPs (Methods).

As expected, hGRE
2

 is robust across all architectures while LDSC, S-LDSC, and SumHer are 

sensitive to model misspecification. For example, when h
g
2 = 0.25 (Figure 2), LDSC is 

approximately unbiased under the “single-component GREML model” (relative bias = 0.04%, 

p = 0.86) but is sensitive to CV MAF and the degree of coupling between effect size and 
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MAF/LD (e.g., when pcausal = 1%, relative bias ranges from −44% to 50%) (Supplementary 

Table 12). Similarly, SumHer is accurate under the “LDAK model” (relative bias = 5.3%)but 

highly sensitive to other architectures (when pcausal = 1%, relative bias ranges from −19% to 

22%) (Figure 2, Supplementary Table 13). S-LDSC (MAF), which partitions h
g
2 by 10 MAF 

bins (Supplementary Table 14; Methods), is less biased than LDSC when effects are coupled 

with only MAF, but is significantly downward-biased when effects are also coupled with 

LDAK weights (for h
g
2 = 0.25, relative bias range is [1.9%, 7.0%] when γ = 0 and [−58%, 

−37%] when γ = 1) (Figure 2, Supplementary Table 15). S-LDSC with 10 MAF bins and an 

additional “level of LD” annotation, denoted S-LDSC (MAF+LLD) (Methods), produces 

similar results (for h
g
2 = 0.25, relative bias range is [1.8%, 6.5%] when γ = 0 and [−80%, 

−33%] when γ = 1) (Supplementary Table 16). In contrast, the relative bias of hGRE
2

 ranges 

from 0.45% to 1.3% across the same 16 architectures where h
g
2 = 0.25 and pcausal = 1%

(Figure 2, Supplementary Table 6). These trends hold for a range of h
g
2 and pcausal: across 

112 LDAK-LD- and/or MAF-dependent architectures, the average and range of the relative 

bias of each method are 0.96% [−0.06%, 2.1%] (GRE), −2.2% [−71%, 70%] (LDSC), −22% 

[−62%, 8.7%] (S-LDSC (MAF)), −29% [−89%, 9.0%] (S-LDSC (MAF+LLD)), and 2.8% 

[−27%, 28%] (SumHer) (Figure 1b, Figure 2, Supplementary Figures 9–12, Supplementary 

Tables 6,12,13,15,16). Across 14 alternative LD-dependent architectures where SNP-

specific variances are coupled with inverse LD scores instead of LDAK weights (“LD-score-

dependent” architectures; Methods, Supplementary Figure 13), hGRE
2

 remains nearly 

unbiased (relative bias range [0.52%, 1.3%]) whereas S-LDSC (MAF), S-LDSC (MAF

+LLD), and SumHer are generally downward-biased (Supplementary Figure 14, 

Supplementary Table 17).

For completeness, we compare to four widely used REML-based methods: GREML, which 

assumes α = − 1 and no coupling of effects with LD3; GREML-LDMS-I, a multi-

component extension of GREML that partitions SNPs by MAF and LD score18; BOLT-

REML, a computationally efficient variance components estimation method with 

assumptions similar to those of GREML8; and LDAK, which assumes a specific form of the 

SNP-specific LD weights and recommends setting α = − 0.25 6,9 (Table 1). Because it is 

computationally intractable to apply the REML-based methods to thousands of genome-

wide simulations with 337K individuals, we perform simulations using a reduced number of 

individuals N = 8430  and SNPs M = 14821  (Methods). As expected, the single-component 

methods (GREML, BOLT-REML, and LDAK) are sensitive to MAF/LD-dependency 

whereas the GRE estimator is robust across all architectures. For example, when h
g
2 = 0.25

(Figure 3), GREML and BOLT-REML are accurate under the GREML model (GREML: 

relative bias = − 1.4%, p = 6.0 × 10−3, Supplementary Table 18; BOLT-REML: 

relative bias = − 0.16%, p = 0.75, Supplementary Table 19) and LDAK is approximately 

unbiased under the LDAK model (relative bias = 0.16%, p = 0.77, Supplementary Table 20), 

but all three are sensitive to CV MAF, α and γ. Across 12 architectures where pcausal = 1%
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(Figure 3), the relative biases are within [−15%, 7.9%] (GREML), [−14%, 9.1%] (BOLT-

REML), and [−34%, 8.2%] (LDAK) (Supplementary Tables 18–20). In contrast, for the 

same 12 architectures, hGRE
2

 yields relative biases in the range [−2.1%, 1.7%], which is 

comparable to the relative bias of GREML-LDMS-I (range [−2.9%, 1.5%]) using 8 GRMs 

(4 LD quartiles × 2 MAF bins) that align with CV MAF (Figure 3, Supplementary Tables 

21, 22). These trends hold over a range of h
g
2 and pcausal: across 112 LDAK-LD- and/or 

MAF-dependent architectures (Supplementary Figures 15–19), the average and range of the 

relative bias are 0.09% [−4.9%, 6.4%] (GRE), −0.6% [−5.9%, 2.3%] (GREML-LDMS-I), 

−2.9% [−27%, 15%] (GREML), −1.8% [−25%, 18%] (BOLT-REML), and −8.2% [−44%, 

13%] (LDAK) (Supplementary Tables 18–22). Similar trends are observed for LD-score-

dependent architectures (Supplementary Figure 20, Supplementary Table 23). In an extreme 

example where CV MAF is tightly concentrated near 1%, GREML-LDMS-I with the same 8 

GRMs as before is downward-biased whereas the GRE estimator remains robust 

(Supplementary Figure 21, Supplementary Tables 18–22). While the variance of our 

estimator is larger than the variances of the REML-based methods (Figure 3), our approach 

is designed for sample sizes several orders of magnitude larger than what we used in these 

simulations. In summary, our results confirm that it is possible to accurately estimate h
g
2

under the GRE model.

SNP-heritability of 22 complex traits in the UK Biobank

Finally, we compute hGRE
2

 for 22 complex traits in the UK Biobank (290K unrelated British 

individuals, 460K SNPs; Methods)10. For comparison, we also provide estimates from 

LDSC, S-LDSC (controlling for the baseline-LD model13,30), and SumHer. Of the 22 traits 

analyzed (6 quantitative, 16 binary), we focus on 18 traits for which hGRE
2

> 0.05 (Table 2). 

For the 6 quantitative traits, hGRE
2

 ranges from 0.12 (smoking status) to 0.60 (height). Across 

the 12 binary traits, hGRE
2

 ranges from 0.064 (autoimmune disorders) to 0.16 (hypertension) 

(Table 2). These estimates are robust to filtering of individuals based on relatedness 

(Supplementary Table 24). We also computed hGRE
2

 from two additional sets of SNPs (MAF 

> 0.1% and MAF > 0.01%) and found that the estimates increase slightly for lower MAF 

thresholds (Supplementary Table 25), which is expected due to the increased number of 

SNPs. To enable a direct comparison between hGRE
2

 and the quantities estimated by LDSC, 

S-LDSC, and SumHer, we run the summary-statistics-based methods with LD scores and 

regression weights computed from in-sample LD and estimate h
g
2 defined as a function of the 

same set of SNPs (Methods). Across the 18 traits, S-LDSC (baseline-LD/in-sample) and 

SumHer (in-sample) differ from hGRE
2

 by a median of −9% and 11%, respectively (expressed 

as a percentage of hGRE
2

) (Figure 4, Table 2). As expected11, LDSC (in-sample) yields 

inflated estimates.
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To compare hGRE
2

 to estimates reported in the literature, we also run the summary-statistics 

methods with their recommended parameter settings11,12,14,30 and with LD scores and 

regression weights computed from the 1000 Genomes Phase 3 reference panel (489 

Europeans)31 – we note that when running these methods as recommended, their estimands 

are not equivalent to our definition of h
g
2 (see Methods and refs.11,12,14,19 for details). Across 

the 18 traits for which hGRE
2

> 0.05, the median differences with respect to hGRE
2

 are −11% 

for LDSC (1KG), −14% for S-LDSC (baseline-LD/1KG), and 38% for SumHer (1KG) 

(Supplementary Figure 22, Supplementary Table 26). For 9 of these traits, a previous study 

reported single-component BOLT-REML estimates (computed from a similar UK Biobank 

cohort27) that differ from our estimates by a median of 8% (Supplementary Table 26).

Runtime and memory requirement

We report the runtime and memory requirements for computing hGRE
2

 with the 22-block 

approximation from 337K individuals and 593K SNPs. First, computing chromosome-wide 

LD has complexity O N p
k
2  for chromosome k with p

k
 SNPs. In practice, this step does not 

impose a computational bottleneck because the computations can be parallelized over SNPs. 

Second, the pseudoinverse of each LD matrix is computed via truncated SVD, which has 

complexity O p
k
3  for chromosome k. For 50K typed SNPs this takes about 3 hours and 

60GB of memory. Lastly, given the pseudoinverse LD matrices and OLS association 

statistics, computing hGRE
2

 has complexity O p1
2 + ⋯ + p22

2  For any of the traits analyzed in 

this work, this takes less than 1 hour and requires 24GB of memory; most of this time is 

spent loading the data into memory. For comparison, running LDSC, S-LDSC, or SumHer 

consists of precomputing LD scores and SNP-specific weights and performing linear 

regression to estimate the variance parameters. Precomputing LD scores and SNP-specific 

weights can be parallelized over blocks of SNPs. The second step (least squares regression) 

is O C
2
M  for M SNPs in the regression and C variance parameters.

Discussion

In this work, we show that SNP-heritability can be accurately estimated under minimal 

assumptions on genetic architecture. Our proposed estimator allows the SNP-specific 

variances to capture arbitrary relationships between effect size and MAF/LD, and we 

demonstrate through simulations that its accuracy is invariant to genetic architecture. We 

show that all existing methods impose additional assumptions on the GRE model, and we 

confirm through simulations that these methods can be sensitive to model misspecification. 

One practical advantage of our approach over summary-statistics methods is that the 

estimand of our approach is always the same for a given genotype matrix, whereas the 

definitions and interpretations of the estimands of LDSC, S-LDSC, and SumHer depend on 

which SNPs are used in each step of inference (e.g., the SNPs used to compute LD scores 

need not be the same SNPs defining the estimand)11,12,19. Overall, our results show that 

while existing methods can yield biases, for the purpose of estimating total SNP-heritability, 

most methods are relatively robust.
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We conclude with several caveats and future directions. First, the utility of hGRE
2

 critically 

depends on the ratio between the number of SNPs (M) and the number of individuals (N) – 

as M /N increases, the eigenstructure of the in-sample LD matrix becomes increasingly 

distorted (larger eigenvalues are overestimated; smaller eigenvalues are underestimated)32. 

We mitigate this by assuming that chromosomes are approximately independent; as long as 

N exceeds the number of array SNPs per chromosome, hGRE
2

 provides meaningful estimates 

of SNP-heritability. While the utility of our approach is limited by the availability of 

individual-level biobank-scale data, this concern will abate as more biobanks are 

established33–35. A major limitation remains with respect to imputed/sequencing data as M 

will continue to be orders of magnitude larger than N for the foreseeable future. We defer an 

investigation of regularized estimation of LD in high-dimensional settings M > N  to future 

work.

Second, the theoretical guarantees of hGRE
2

 rely on the assumption that OLS association 

statistics and LD are estimated from the same genotypes. While summary statistics have 

been made publicly available for hundreds of large-scale GWAS, in-sample LD is usually 

unavailable for these studies since most are meta-analyses36. In addition, summary statistics 

are often computed using linear mixed models to control for confounding, and previous 

works have noted that the LD computation must be adjusted to accommodate mixed model 

association statistics36,37. Thus, the sensitivity of hGRE
2

 to reference panel LD (with or 

without regularized LD estimation) and/or mixed model association statistics remains 

unclear29,38. Furthermore, we simulate phenotypes from typed SNPs because imputed 

genotypes have highly irregular LD patterns9,18. Although it would be more realistic to 

simulate from sequencing data18, our simulation design required individual-level genotype 

measurements in biobank-scale sample sizes.

Third, hGRE
2

 does not correct for population structure/stratification. In real data, we mitigate 

this by considering only unrelated individuals (> 3rd degree relatives) and including age, 

sex, and the top 20 PCs as covariates when computing association statistics. While recent 

work has found evidence of assortative mating for some traits in the UK Biobank (e.g., 

height)39, our estimates are robust to different relatedness thresholds, suggesting that 

adjusting for the top 20 PCs sufficiently controls for population stratification. Still, it 

remains unclear how to quantify the bias of our genome-wide estimator due to structure or 

assortative mating in real data. Future work is needed to extend the GRE approach to control 

for ascertainment bias15,16,40,41.

Finally, while previous works applied similar estimators (defined under fixed effects models) 

to estimate local SNP-heritability within small regions28,29, additional work is needed to 

extend our approach to perform partitioning of SNP-heritability by functional annotations. 

Existing methods for partitioning SNP-heritability make various assumptions on genetic 

architecture8,12–14,30, motivating the development of new methods in this area.
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Methods

The generalized random effects model

We model the phenotype for an individual n randomly sampled from the population as 

y
n

= x
n
T

β + ϵ
n
, where x

n
= x

n1…x
nM

T is a vector of standardized genotypes measured at M 

SNPs for individual n, β = β1, …, β
M

T is an M-vector of the corresponding standardized 

SNP effects, and ϵ
n

∼ N 0, σ
e
2  is environmental noise. We assume Var y

n
= 1 and that the 

genotype at each SNP i is centered and scaled in the population such that E x
ni

= 0 and 

Var x
ni

= 1; i.e. x
ni

= g
ni

− 2 f
i

/ 2 f
i

1 − f
i

, where g
ni

∈ 0, 1, 2  is the number of copies of 

the effect allele at SNP i for individual n, and f
i
 is the population frequency of the effect 

allele at SNP i. We define the population LD between two SNPs i and j to be v
i j

≡ E x
ni

x
n j

for all i ≠ j. The population LD matrix among the M SNPs is therefore V ≡ Cov x
n
T . For 

simplicity, we use “SNP effects” in lieu of “standardized SNP effects” to refer to β. We 

assume that x
n
 and β are independent given allele frequencies f 1, …, f

M
 and V.

Under the generalized random effects (GRE) model, the first two moments of β
i
 are E β

i
= 0

and Var β
i

= σ
i
2, where σ

i
2 can be any arbitrary nonnegative finite number. We assume the 

covariance between the effects of different SNPs is 0 (i.e. Cov β
i
, β

j
= E β

i
β

j
= 0 for all 

i≠j). Because the SNP-specific variances can capture any degree of polygenicity and any 

relationship between genomic features (e.g., MAF and LD) and effect size, the GRE model 

encompasses most realistic genetic architectures (Table 1).

We define total SNP-heritability h
g
2  to be the proportion of phenotypic variance attributable 

to the additive effects of a set of M SNPs whose genotypes are directly measured:
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hg
2 ≡

Var xn
T

β

Var yn

= E Var xn
T

β β] + Var E xn
T

β β ]

= E β
TVar xn

T
β + Var E xn

T
β

= E β
T

Vβ + 0

= E tr Vββ
T

= tr VE ββ
T

hg
2 =

i = 1

M

σi
2

#(2)

Thus, h
g
2 is defined with respect to a given population and a given set of SNPs. By definition, 

0 ≤ h
g
2 ≤ 1 Similarly, we define regional SNP-heritability h

k
2  to be the proportion of 

phenotypic variance due to the additive effects of the genotyped SNPs in region k We 

assume that the set of SNPs that defines h
k
2 is a subset of the M SNPs that define h

g
2 (thus, 

0 ≤ h
k
2 ≤ h

g
2). If region k is the whole genome, h

k
2 = h

g
2.

Estimating SNP-heritability under the GRE model

We are interested in estimating h
g
2 under the GRE model (Equation 2). In a GWAS with N

individuals genotyped at M SNPs, let X = x1
T, …, x

N
T T

 be the N × M matrix of standardized 

genotypes (each column of X has been standardized to have mean 0 and variance 1), 

y = y1, …, y
N

T be the N-vector of standardized phenotypes, and V = 1/N X
T

X be the M × M

in-sample LD matrix (an estimate of population LD, V) with rank q, where 1 ≤ q ≤ M. Let 

X = X1, …, X
K

 be the genotype matrices for K independent regions spanning all M SNPs 

(e.g., chromosomes). For region k containing p
k
 SNPs, X

k
 is the N × p

k
 standardized 

genotype matrix and V
k
 is the corresponding p

k
× p

k
 in-sample LD matrix with rank q

k

1 ≤ q
k

≤ p
k

. We propose the following estimator for genome-wide SNP-heritability:

hGRE
2 =

k = 1

K Nβ
k
T

V
k
†
β

k
− q

k

N − q
k
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where β
k

= 1/N X
k
T

y is the p
k
-vector of marginal SNP effects estimated by ordinary least 

squares (OLS) for region k and V
k
†
 is the pseudoinverse of V

k
. Detailed derivations for hGRE

2

can be found in the Supplementary Note.

Analytical variance of hGRE
2

—Following quadratic form theory29,44, the variance of 

hGRE
2

 in the single-block case is

Var hGRE
2

=
N

N − q

2
2q

1 − hg
2

N
+ 4hg

2
1 − hg

2

N
#(3)

When using the K-block approximation, which assumes that the blocks are independent, we 

approximate Equation 3 as the sum of the variances of the local SNP-heritabilities:

Var hGRE
2

=
k = 1

K
N

N − qk

2

2qk

1 − hk
2

N
+ 4hk

2
1 − hk

2

N
#(4)

Equation 3 is estimated by plugging in hGRE
2

 and Equation 4 is estimated by plugging in 

h1
2
, …, h

K
2

, the estimates of the regional SNP-heritabilities.

Simulation Framework

We simulated quantitative phenotypes from real genotype array data (UK Biobank10) under 

a range of genetic architectures. We obtained a set of N = 337205 unrelated British 

individuals by extracting individuals with self-reported British ancestry who are > 3rd 

degree relatives (pairs of individuals with kinship coefficient < 1/2 9/2 10 and excluding 

individuals with putative sex chromosome aneuploidy. In all simulations, we standardize the 

genotypes before drawing phenotypes. That is, for each SNP i and individual n, we compute 

x
ni

= g
ni

− 2 f
i

/ 2 f
i

1 − f
i

 where g
ni

∈ 0, 1, 2  is the number of minor alleles and f
i
 is the 

in-sample minor allele frequency (MAF).

Simulations of quantitative traits with no population stratification—Given X and 

a fixed value of h
g
2, phenotypes are drawn according to the following model. The proportion 

of causal variants, pcausal, is set to 1, 0.01, or 0.001. Let c
i

∈ 0, 1  be the causal status of 

SNP i. If pcausal = 1, c
i

= 1 for i = 1, …, M. If 0 ≤ pcausal < 1, we draw pcausal × M SNPs from 

the set of SNPs with MAF in one of three ranges: (0, 0.5], (0.01, 0.05], or (0.05, 0.5]. We 

use “CV MAF” to refer to the MAF range from which the causal variants are drawn. 

Standardized effects and phenotypes are then drawn according to the model
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σi
2 ∝ ci ⋅ wi

γ 2 f i 1 − f i
1 + α

#(5)

β1, …, βk
T ∼ N 0, diag σ1

2, …, σM
2 #(6)

y1, …, yN
T

β ∼ N Xβ, 1 − hg
2

IN #(7)

where α controls the coupling of MAF and effect size, w
i
 is a SNP-specific LD weight, and 

γ ∈ 0, 1  specifies whether effects are coupled with the LD weights. We simulate two types 

of LD-dependent architectures by defining w1, …, w
M

 to be either (1) the default “LDAK 

weights” computed by the LDAK software6, or (2) the inverse unpartitioned “LD score” of 

each SNP computed within a 2-Mb window (w
i
−1 = ∑

j
v
i j
2  where j indexes the set of SNPs 

within a 2-Mb window centered on SNP i)11. When γ = 1 both the LDAK weights and 

inverse LD score weights cause SNPs in regions of higher LD to have smaller effects than do 

SNPs in regions of lower LD. We set α to one of two values: α = − 1 (a relatively strong 

inverse relationship between MAF and effect size) or α = − 0.25 (a weaker inverse 

relationship between MAF and effect size). Each per-SNP variance is multiplied by a scaling 

factor so that ∑
i = 1
M

σ
i
2 = h

g
2. Note that σ

i
2 = 0 if c

i
= 0.

Finally, given phenotypes y = y1, …, y
N

T and genotypes X = x1
T, …, x

N
T T

, we compute 

marginal association statistics through ordinary least squares (OLS): β = 1/N X
T

y.

Simulations of case-control phenotypes with no population stratification—To 

simulate case-control studies, we first draw each individual’s continuous liability (l
n
 for 

individual n) according to Equation 7. For a given population prevalence 0 ≤ d
pop

≤ 1  we 

compute the corresponding liability threshold L = Φ−1 1 − d
pop

, where Φ is the CDF of the 

standard normal distribution. Each l
n
 is then converted into a case-control status: y

n
= 1 if 

l
n

≥ L or y
n

= 0 if l
n

< L. For unascertained case-control studies, we assume that the 

proportion of cases in the study is equal to the population prevalence d
GW AS

= d
pop

. For 

ascertained case-control studies d
GW AS

> d
pop

, we set d
GW AS

= 0.5 and select a random set 

of controls to satisfy N
case

= N
control

.

We compute association statistics by regressing the binary case-control statuses on 

genotypes. The GRE estimator produces an estimate of SNP-heritability on the observed 

scale h
obs
2

. Assuming we know the population prevalence, we convert h
obs
2

 to the liability 
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scale with the transformation h
liab
2

= h
obs
2

d
pop
2 1 − d

pop

2
/ f L

2
d

GW AS
1 − d

GW AS
, where 

f  is the standard normal probability density function45.

Simulations with population stratification—To simulate GWAS with population 

stratification, we draw phenotypes from a model where a covariate that is correlated to 

genotypes has a nonzero effect on phenotype. To this end, we simulate an effect of the first 

genetic principal component PC1 . Letting σ
s
2 be the proportion of total phenotypic variance 

explained by PC1, phenotypes are drawn from the model

y1, …, y
N

T
β ∼ N Xβ + PC1β

s
, 1 − h

g
2 − σ

s
2

I
N

where Var PC1β
s

/Var y = β
s
2Var PC1 = σ

s
2. We compute association statistics from one of 

two models: y = X
T

β + ϵ, which ignores population stratification and other sources of 

confounding, or y = X
T

β + PC1β
s

+ ϵ, which controls for the effect of PC1.

Comparison of methods in simulations

Unless otherwise specified, in all genome-wide simulations, we use real genotypes of N = 

337205 unrelated British individuals measured at M = 593300 array SNPs to draw causal 

effects for all M SNPs and phenotypes for all N individuals. OLS summary statistics are 

computed for all M SNPs using the simulated phenotypes and real genotypes of all N 

individuals. We compare to three methods that operate on summary statistics and are 

computationally tractable for these simulations: LD score regression (LDSC)11, stratified 

LD score regression (S-LDSC)12,13, and SumHer14.

For LDSC and S-LDSC, we compute the unpartitioned LD score of each SNP as a function 

of its LD to all other SNPs in a 2-Mb window centered on the SNP. For each annotation 

included in S-LDSC, the partitioned LD score of each SNP is a function of its LD to all 

SNPs within a 2-Mb window that are in the annotation. For both LDSC and S-LDSC, LD 

scores are computed with the LDSC software (https://github.com/bulik/ldsc/) from a random 

sample of 40K individuals to reduce the amount of memory required by the LDSC software. 

We run the regression with an unconstrained intercept, using all M SNPs as observations in 

the response variable. Each SNP is weighted to account for heteroscedasticity and 

correlations between association statistics11. For both methods, h
g
2 is estimated as a function 

of all M SNP-specific variances by using the flags --not-M-5–50 and --chisq-max 99999 (the 

latter option prevents the LDSC software from dropping high-effect SNPs).

We run S-LDSC in two ways to account for MAF/LD-dependent architectures. S-LDSC 

(MAF) refers to S-LDSC with 10 binary MAF bin annotations (each bin contains exactly 

10% of the typed SNPs), which is intended to mirror the 10 MAF annotations in the 

“baseline-LD model”13 (see Supplementary Table 14 for precise MAF bin ranges for the UK 

Biobank Axiom Array). S-LDSC (MAF+LLD) refers to S-LDSC with the same 10 MAF 

bins and an additional continuous “level of LD” (LLD) annotation computed by quantile-
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normalizing the unpartitioned LD scores within each MAF bin to a standard normal 

distribution13. While our definition of LLD is intended to mirror the LLD annotation in the 

baseline-LD model, we do not set the LLD of variants with MAF < 0.05 to 0 because our 

estimand of interest includes the effects of SNPs with MAF < 0.0513.

To run SumHer, we use the LDAK software (https://dougspeed.com/ldak/) to compute the 

default “LDAK weights” using in-sample LD6,9,14. We then compute “LD tagging” (i.e. LD 

scores) using 1-Mb windows centered on each SNP and setting α = − 0.25 as 

recommended14. The LDAK software is memory-efficient, allowing us to use all 337K 

individuals to compute LDAK weights and LD tagging. Unless otherwise specified, all 

default parameter settings are used to run SumHer in simulations.

We also perform simulations with N = 8430 unrelated individuals at M = 14821 array SNPs. 

These individuals and SNPs are a subset of the data used in the genome-wide simulations, 

chosen by selecting approximately 2.5% of individuals and the first 2.5% of SNPs from the 

beginning of each chromosome in order to preserve the LD structure among the SNPs. We 

run single-component GREML3,46 (GCTA software: https://cnsgenomics.com/software/

gcta/) and single-component BOLT-REML8 (https://data.broadinstitute.org/alkesgroup/

BOLT-LMM/) with default parameters. We run GREML-LDMS-I18,46 using 8 GRMs 

created from 2 MAF bins (MAF ≤ 0.05 and MAF > 0.05) and 4 LD score quartiles; LD 

scores were computed using the GCTA software with the default window size of 200-kb. We 

run LDAK using the default LDAK weights, setting α = − 0.25 as recommended6,9.

A third set of simulations was performed using 7,685 individuals of South Asian ancestry in 

the UK Biobank. This group was composed of individuals of Indian (n = 5,716), Pakistani (n 

= 1,748), and Bangladeshi (n = 221) ancestry. Due to the small sample size, we used a 

reduced set of 803 SNPs from chromosome 21 and 839 SNPs from chromosome 22 (1,642 

SNPs in total) which were chosen so that N / p
k
 for each chromosome k was similar to N / p

k

in the “white British” cohort.

For a given genetic architecture, we generate 100 simulation replicates and obtain 100 

estimates of h
g
2 from each method. We estimate the bias of an estimator h

g
2
 under a given 

architecture as bias [h
g
2
] = E[h

g
2
] − h

g
2 ≈ 1/100 ∑

i = 1
100

h
g
2

i − h
g
2 where h

g
2

i  is the estimate 

from the i-th simulation. To test whether the bias is statistically significant (null hypothesis: 

bias [h
g
2
] = 0), we assess the z-score of the bias (zbias = bias[h

g
2
]/SEM[h

g
2
], where SEM[h

g
2
] is 

the standard error of the mean of the 100 estimates) which follows a N(0, 1  distribution 

under the null hypothesis. The p-value of the bias is computed with a two-tailed test. To 

enable a comparison of estimators across different values of h
g
2, we assess the relative bias of 

an estimator under a single architecture bias[h
g
2
]/h

g
2) as a percentage of h

g
2. In Figure 1a and 

1c, we compute the error of a single estimate as (h
g
2

i − h
g
2)/h

g
2; errors are also reported as 

percentages of h
g
2.
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Analysis of UK Biobank phenotypes

We estimate SNP-heritability for 22 complex traits (6 quantitative, 16 binary) in the UK 

Biobank10. We use PLINK47 (https://www.cog-genomics.org/plink2) to exclude SNPs with 

MAF < 0.01 and genotype missingness > 0.01 as well as SNPs that fail the Hardy-Weinberg 

test at significance threshold 10−7. We keep only the individuals with self-reported British 

white ancestry and no kinship (i.e. > 3rd degree relatives, defined as pairs of individuals with 

kinship coefficient < 1/2 9/2 )10. After removing individuals who are outliers for genotype 

heterozygosity and/or missingness, we obtain a set of N = 290,641 individuals to use in the 

real data analyses. For all traits, marginal association statistics are computed through OLS in 

PLINK, using age, sex, and the top 20 genetic principal components (PCs) as covariates in 

the regression; these 20 PCs were precomputed by UK Biobank from a superset of 488,295 

individuals. Additional covariates were used for waist-to-hip ratio (adjusted for BMI) and 

diastolic/systolic blood pressure (adjusted for cholesterol-lowering medication, blood 

pressure medication, insulin, hormone replacement therapy, and oral contraceptives). We 

compute hGRE
2

 for each trait using in-sample LD estimated from all N individuals.

When using LDSC, S-LDSC, or SumHer to estimate SNP-heritability, it is necessary to 

define and distinguish between the following sets of SNPs: the set of SNPs containing all 

possible causal SNPs of interest (used to compute LD scores and LDAK weights), the set of 

SNPs used as observations in the regression, and the set of SNPs that defines the SNP-

heritability estimand of interest. We run two versions of LDSC, S-LDSC (controlling for the 

most recent baseline-LD model12,13,30), and SumHer14. First, to enable a direct comparison 

between hGRE
2

 and the estimands of LDSC, S-LDSC, and SumHer, we run an “in-sample 

LD” version of each method where the M typed SNPs are used to compute LD scores and 

LDAK weights, perform the regression, and define the SNP-heritability estimand of interest. 

We refer to these as LDSC (in-sample), S-LDSC (baseline-LD/in-sample), and SumHer (in-

sample). To run LDSC (in-sample) and S-LDSC (baseline-LD/in-sample), we use the LDSC 

software to compute LD scores and regression weights within 2-Mb windows centered on 

each SNP, using a random sample of 40K individuals to reduce the memory requirement. To 

run SumHer (in-sample), we use the LDAK software to compute LD tagging from the 

genotypes of all N individuals, using 1-Mb windows centered on each SNP and setting 

α = − 0.25 as recommended9,14. Unless otherwise specified, all other parameters were set to 

the default settings.

To enable comparisons between hGRE
2

 and estimates reported in the literature, we also run 

each method with its recommended parameter settings and LD estimated from reference 

panel sequencing data. We refer to these methods as LDSC (1KG), S-LDSC (baseline-LD/

1KG), and SumHer (1KG) to indicate that LD is estimated from 489 Europeans in the 1000 

Genomes Phase 3 reference panel31. We run LDSC (1KG) and S-LDSC (baseline-LD/1KG) 

with LD scores and regression weights (1-cM windows) from 9,997,231 SNPs with minor 

allele count greater than 5 in the reference panel, and we define the SNP-heritability 

estimand to be a function of the array SNPs with MAF > 0.0511,12. We run SumHer (1KG) 

using 8,569,062 SNPs with MAF > 0.01 in the reference panel to compute LDAK weights 
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and LD tagging (1-cM windows) and to define the SNP-heritability estimand; we control for 

a multiplicative inflation of test statistics as recommended14. See refs.11,12,14,19 for details 

about the definitions and interpretations of the estimands of LDSC, S-LDSC, and SumHer.

Life Sciences Reporting Summary

Additional information on experimental design can be found in the Life Sciences Reporting 

Summary.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Simulations under 64 distinct MAF/LD-dependent architectures (N = 337205). For each 

value of h
g
2, phenotypes were drawn according to one of 16 genetic architectures defined by 

pcausal, CV MAF, α, and γ (Methods). (a) Distribution of errors hGRE
2

i − h
g
2 (as a percentage 

of h
g
2), where hGRE

2
i  is the estimate from the i-th simulation under a given genetic 

architecture, in simulations on chromosome 22 (M = 9654 SNPs). hGRE
2

 was computed with 

1 chromosome-wide LD block. Black points and error bars represent the mean and ±2

standard errors of the mean (s.e.m.) which were used to test whether the bias under a single 

architecture is significant (Methods). (b) Distribution of hGRE
2

 in genome-wide simulations 

(M = 593300 SNPs) where hGRE
2

 was computed with 22 chromosome-wide LD blocks. In 

(a) and (b), each boxplot represents estimates from 100 simulations. Boxplot whiskers 

extend to the minimum and maximum estimates located within 1.5 × IQR from the first and 

third quartiles, respectively. (c) Distribution of errors for chromosome 22 and genome-wide 

simulations. Each violin plot represents the errors of 6400 estimates (64 genetic 

architectures × 100 simulation replicates). (d) Distribution of relative bias (as a percentage 

of h
g
2) as a function of sample size (N = 100K, 200K, or 337K) in genome-wide simulations. 

Each violin plot represents 64 estimates of relative bias. In (c) and (d), the white diamonds 

mark the mean of each distribution.
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Figure 2. 

Comparison of hGRE
2

 with LDSC, S-LDSC (MAF), and SumHer in genome-wide 

simulations (N = 337205, M = 593300, h
g
2 = 0.25). Left: Phenotypes were drawn under one 

of 16 MAF- and/or LDAK-LD-dependent architectures by varying pcausal, α, γ, and CV 

MAF (Methods). Each boxplot contains estimates of h
g
2 from 100 simulations. Right: 

Relative bias of each method (as a percentage of h
g
2) across 112 distinct MAF- and LDAK-

LD-dependent architectures (Methods). Each boxplot contains 112 points; each point is the 

relative bias estimated from 100 simulations under a single genetic architecture. The white 

diamonds mark the average of each distribution. Boxplot whiskers extend to the minimum 

and maximum estimates located within 1.5 × IQR from the first and third quartiles, 

respectively.
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Figure 3. 

Comparison of hGRE
2

 with GREML, BOLT-REML, GREML-LDMS-I, and LDAK in small-

scale simulations (N = 8430, M = 14821 SNPs). Left: Phenotypes were drawn under one of 

16 MAF- and/or LDAK-LD-dependent architectures by varying pcausal, α, γ, and CV MAF 

(Methods). Each boxplot contains estimates of h
g
2 from 100 simulations. Right: Relative bias 

of each method (as a percentage of the true h
g
2) across 112 distinct MAF- and LDAK-LD-

dependent architectures (Methods). Each boxplot represents the distribution of 112 points; 

each point is the relative bias estimated from 100 simulations under a single genetic 

architecture. The white diamonds mark the average of each distribution. Boxplot whiskers 

extend to the minimum and maximum estimates located within 1.5 × IQR from the first and 

third quartiles, respectively.
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Figure 4. 

Percent difference of h
g
2 estimates from LDSC (in-sample), S-LDSC (baseline-LD/in-

sample), and SumHer (in-sample) with respect to hGRE
2

 for 18 complex traits and diseases in 

the UK Biobank for which hGRE
2

> 0.05 (N = 290K unrelated British individuals, M = 460K 

typed SNPs; Methods). Each bar represents the difference between the estimated h
g
2 from 

one of the methods (LDSC, S-LDSC, or SumHer) and hGRE
2

 as a percentage of hGRE
2

. Black 

bars mark ±2 standard errors.
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Table 1.

Existing methods to estimate SNP-heritability impose additional assumptions on top of the generalized 

random effects (GRE) model. Under the GRE model, the causal effects at any two SNPs are assumed to be 

independent (E[β
i
β

j
] = 0 for all i ≠ j) and genome-wide SNP-heritability is defined as h

g
2 ≡ ∑

i = 1
M

σ
i
2, where 

each σ
i
2 can be an arbitrary nonnegative real number as long as 0 ≤ h

g
2 ≤ 1 (Methods). All existing methods 

make assumptions on the distribution of β
i
 and/or the form of σ

i
2 that can be subsumed under the GRE model. 

To simplify notation, we assume for each model that phenotypes are standardized in the population (i.e. 

Var y
n

= 1 for every individual n).

Model Assumptions on β
i Description

Generalized 
random effects

E β
i

= 0, Var β
i

= σ
i
2

, σ
i
2 ≥ 0

Each SNP i has a nonnegative SNP-specific variance σ
i
2

. Total SNP-

heritability is h
g
2 ≡ ∑

i = 1
M

σ
i
2

.

GREML-SC 
3,8,16 β

i
∼ N 0, h

g
2/M

Each SNP explains an equal portion of h
g
2

. In other words, σ
i
2 = h

g
2/M

for all i = 1, …, M.

GREML-MC 
7,8,18,42,43 β

i
∼ N 0, ∑

c ∈ C
SNP

i
∈ c h

c
2/m

c

h
g
2

 is partitioned by a set of disjoint SNP partitions C that span all M

SNPs. Partition c ∈ C contains m
c
 SNPs that have per-SNP variances 

h
c
2/m

c
. Total SNP-heritability is h

g
2 = ∑

c ∈ C
h

c
2

.

LDAK6,9 β
i

∼ N 0, σ
i
2

, σ
i
2 ∝ w

i
[ f

i
1 − f

i
]1 + α

Each SNP-specific variance is proportional to a function of f
i
 (the MAF 

of SNP i) and to w
i
 (a SNP-specific weight that is a function of the 

inverse of the LD score of SNP i).α controls the relationship between σ
i
2

and f
i
. The most recent recommendation by ref.9 is to assume 

α = − 0.25.

LDSC11 E[β
i
] = 0, Var β

i
= h

g
2/M

Each SNP explains an equal portion of h
g
2

 (similar to the GREML-SC 

model when h
g
2

 is defined with respect to the same set of M SNPs).

S-LDSC12,13,30 E[β
i
] = 0, Var[β

i
] = ∑

a ∈ A
τ
a
a i

Each SNP-specific variance is a linear function of a set of annotations A
where each a ∈ A represents a binary or continuous-valued annotation. 

a i  is the value of annotation a at SNP i. τ
a

 is the expected contribution 

of a one-unit increase in annotation a to each SNP-specific variance.

SumHer14 E[β
i
] = 0, Var β

i
∝ w

i
f
i

1 − f
i

1 + α
An extension of the LDAK model to operate on summary-level data; can 

also efficiently partition h
g
2

 by multiple annotations. The most recent 

recommendations by refs.9,14 is to set α = − 0.25.
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Table 2.

Estimates of h
g
2 from the GRE approach, LDSC (in-sample), S-LDSC (baseline-LD/in-sample), and SumHer 

(in-sample) for 22 complex traits and diseases in the UK Biobank (N = 290K unrelated British individuals, M 

= 460K typed SNPs).

Trait GRE S.E. LDSC S.E. S-LDSC S.E. SumHer S.E.

Smoking Status 0.122 3.90E-03 0.178 7.70E-03 0.110 8.50E-03 0.132 4.30E-03

Height 0.602 4.70E-03 0.730 2.70E-02 0.555 3.10E-02 0.634 2.70E-02

BMI 0.285 4.20E-03 0.436 1.20E-02 0.289 1.70E-02 0.315 9.00E-03

WHR 0.173 4.00E-03 0.256 1.20E-02 0.184 1.60E-02 0.198 9.40E-03

Systolic Blood Pressure 0.159 4.20E-03 0.243 9.00E-03 0.134 9.70E-03 0.177 5.70E-03

Diastolic Blood Pressure 0.154 4.20E-03 0.233 8.60E-03 0.130 9.70E-03 0.170 6.40E-03

Eczema 0.116 4.20E-03 0.165 1.10E-02 0.107 1.20E-02 0.130 8.80E-03

Asthma 0.116 4.90E-03 0.163 1.20E-02 0.116 1.70E-02 0.131 1.20E-02

Hypertension 0.162 4.00E-03 0.244 9.40E-03 0.142 1.10E-02 0.180 6.10E-03

High Cholesterol 0.082 5.10E-03 0.127 1.30E-02 0.138 5.80E-02 0.088 8.30E-03

Diabetes (Any) 0.070 3.70E-03 0.093 5.90E-03 0.062 8.70E-03 0.074 5.00E-03

Type 2 Diabetes 0.071 3.80E-03 0.090 6.10E-03 0.057 8.80E-03 0.071 4.00E-03

Hypothyroidism 0.088 5.20E-03 0.142 1.30E-02 0.078 1.20E-02 0.110 1.70E-02

Thyroid Disorders 0.084 5.20E-03 0.141 1.30E-02 0.080 1.20E-02 0.110 2.00E-02

Endocrinopathies 0.069 5.10E-03 0.084 7.00E-03 0.058 9.90E-03 0.068 5.00E-03

Cardiovascular Diseases 0.143 5.30E-03 0.228 1.10E-02 0.140 1.40E-02 0.164 6.00E-03

Respiratory and ENT Diseases 0.086 5.20E-03 0.120 1.20E-02 0.079 1.40E-02 0.090 9.50E-03

Psoriasis 0.019 5.00E-03 0.071 3.10E-02 0.035 1.20E-02 0.059 4.20E-02

Dermatologic Disorders 0.023 5.00E-03 0.049 1.40E-02 0.034 9.90E-03 0.031 1.10E-02

Rheumatoid Arthritis 0.008 5.00E-03 0.041 2.10E-02 0.010 7.90E-03 0.021 1.20E-02

Autoimmune Disorders (Broad) 0.063 5.10E-03 0.105 1.20E-02 0.050 9.50E-03 0.079 1.70E-02

Autoimmune Disorders (Certain) 0.015 5.00E-03 0.052 2.60E-02 0.005 7.60E-03 0.047 3.40E-02
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