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Abstract
Optimizing queries that involve operations on spatial data

requires estimating the selectivity and cost of these oper-

ations. In this paper, we focus on estimating the cost of

spatial selections, or window queries, where the query win-

dows and data objects are general polygons. Cost estima-

tion techniques previously proposed in the literature only

handle rectangular query windows over rectangular data

objects, thus ignoring the very significant cost of exact ge-

ometry comparison (the refinement step in a “filter and re-

fine” query processing strategy). The cost of the exact ge-

ometry comparison depends on the selectivity of the filtering

step and the average number of vertices in the candidate

objects identified by this step. In this paper, we introduce

a new type of histogram for spatial data that captures the

complexity and size of the spatial objects as well as their

location. Capturing these attributes makes this type of his-

togram useful for accurate estimation, as we experimentally

demonstrate. We also investigate sampling-based estima-

tion approaches. Sampling can yield better selectivity es-

timates than histograms for polygon data, but at the high

cost of performing exact geometry comparisons for all the

sampled objects.

1. Introduction

For a database system to fully support spatial data, it must

be able to optimize queries involving this data. This re-

quires the query optimizer to estimate the selectivity and

cost of spatial operations, so that it can choose the query

execution plan with the least estimated cost. In this paper,

we focus on estimating the selectivity and cost of spatial se-

lections, also known as window queries. In a window query,

a region called the query window is specified, and the query

retrieves all objects in the data set that overlap this region.

The focus of this paper is estimating the selectivity and cost

of window queries where the query windows and the under-

lying data objects are general polygons.

Database systems process window queries and other

spatial operations using a two step filter and refine strat-

egy [11]. The filtering step identifies a set of candidate ob-

jects whose minimum bounding rectangles (MBRs) overlap

the MBR of the query window. This set of candidates is a

conservative approximation (i.e., a superset) of the result.

The filtering step may use an R-tree index if one exists. The

refinement step tests the exact geometry of the candidate ob-

jects identified by the filtering step to determine the set of

objects that actually overlap the polygonal query window.

Several cost models for window queries have been pro-

posed in the literature [1, 3, 6, 21]. All these cost models

assume that the query windows and the data objects are rect-

angles. In effect, they estimate the selectivity and cost of the

filtering step and ignore the refinement step.

Ignoring the refinement step makes these cost models in-

accurate for two reasons. First, the estimated selectivity of

the filtering step, no matter how accurate, is only an up-

per bound that may significantly over-estimate the actual

selectivity of the query. Second, the refinement step in-

curs significant costs that cannot be ignored. The refine-

ment step involves fetching the exact geometry representa-

tion of all the candidate objects, thus incurring an I/O cost.

It also involves testing these candidate objects to determine

the ones that actually overlap the query window using com-

putational geometry algorithms that have a high CPU cost1.

An important property of the costs incurred by the refine-

ment step is that they depend not only on the selectivity of

the query, but also on the number of vertices, or complex-

ity, of the query window and data objects. The cost of the

refinement step cannot be ignored when estimating the cost

of window queries, especially since typical applications of

spatial databases (e.g., GIS) involve objects with high com-

plexities (i.e., a large number of vertices). Our experiments

show that the refinement step can take over an order of mag-

nitude longer than the filtering step (Section 5.3). Ignoring

the cost of refinement is clearly a mistake.

In this paper, we introduce a new type of histogram for

polygon data that captures all properties of a data distribu-

tion required for estimating the cost of both the filtering and

the refinement steps of spatial operations. We present a sim-

ple cost model that uses our histograms to estimate the cost

of window queries where the query windows and data ob-

jects are general polygons. We also investigate the use of

sampling for estimating the selectivity and cost of window

1It has been shown that, for spatial joins, the CPU cost of the refinement

step dominates the query execution cost [4, 15].



queries.

The rest of this paper is organized as follows. In Sec-

tion 2, we present an overview of related work. In Section 3,

we present a cost model for window queries. Section 4 in-

troduces our novel approach to building histograms for spa-

tial data. These histograms are used to estimate the param-

eters required by the cost model. Section 5 presents an ex-

perimental evaluation of the proposed techniques. Section 6

contains concluding remarks.

2. Related work

Several techniques have been proposed for estimating the

selectivity and cost of operations on traditional data types

such as integers or strings. Techniques based on using his-

tograms to approximate data distributions are widely used

by current database systems [17]. Histograms for multi-

dimensional data have also been proposed in the litera-

ture [10, 16].

Another approach to selectivity estimation is sampling,

which provides guaranteed error bounds at the cost of taking

a sample of the data at query optimization time [9].

Traditional multi-dimensional histograms can be used

for point data, but not for polygons or other spatial data

types. Polygons have an extent in space, whereas these

histograms only capture the location of the data. On the

other hand, the same sampling approaches used for tradi-

tional data can be used for spatial data. However, dealing

with spatial data increases the cost of sampling.

A cost model for window queries in R-trees is developed

in [8], and independently in [13]. This cost model assumes

that the data consists of uniformly distributed rectangles and

estimates the number of disk I/Os needed to answer a given

rectangular window query.

In [3] and [6], the authors suggest using the concept that

all data sets are self-similar to a certain degree to represent

the distribution of spatial data. The degree of self-similarity

of a data set is represented by its fractal dimension. These

papers present models developed based on this concept for

estimating the selectivity of window queries over point data

and the cost of these queries in R-trees.

Another cost model for window queries in R-trees is pro-

posed in [21]. This cost model is based on the density of

the dataset, which is the average number of data objects per

point of the space. The authors propose using the density

at several representative points of the space to capture non-

uniformity in the data distribution.

Acharya, Poosala, and Ramaswamy [1] study different

partitionings that could be used to build spatial histograms,

and introduce a new partitioning scheme based on the novel

notion of spatial skew. This work is closely related to ours,

and a detailed comparison is given in Section 4.5.

As mentioned earlier, all these works assume that the

query windows are rectangles and that the data objects are

points or rectangles, thus ignoring the refinement step. Fur-

thermore, with the exception of [1], these works do not

present general solutions for accurately approximating spa-

tial data distributions.

A different approach to estimating the selectivity of spa-

tial selections is given in [2]. This work assumes that an

R-tree index for the spatial attribute exists, and uses a tree

traversal augmented by sampling to estimate selectivity.

3. A cost model for window queries

In this section, we present a cost model for estimating the

I/O and CPU costs of both the filtering and the refinement

steps of a window query. The model assumes that the query

window and the data objects are general polygons. The cost

of the filtering step depends on whether a sequential scan

or an R-tree index [7] is used as the access method, and the

cost of the refinement step is assumed to be independent of

the access method used for filtering.

3.1. Filtering

3.1.1. Sequential scan. If the input relation is accessed by
a sequential scan, the I/O cost of the filtering step is given
by N ∗ cseqio

where N is the number of pages in the relation, and cseqio

is the per page cost of a sequential read.
During the sequential scan, the MBRs of all tuples of

the relation are tested to determine whether they overlap the
query MBR. The CPU cost of this test is given by

T ∗ cMBRtest

where T is the number of tuples in the relation, and

cMBRtest is the CPU cost of testing whether two rectangles

overlap.

3.1.2. R-tree index. To estimate the cost of the filtering step

if an R-tree index is used as the access method, we assume

that the R-tree is “good”, in the sense that retrieving the data

objects that overlap the query window MBR requires the

minimum number of disk I/Os and rectangle overlap tests.

We also assume that the buffer pool is managed in such a

way that each required R-tree node is read from disk exactly

once.
The filtering step retrieves sMBR ∗ T tuples, where

sMBR is the MBR selectivity of the query, defined as the
fraction of tuples in the relation identified as candidates by
the filtering step. This is the fraction of tuples in the re-
lation whose MBRs overlap the query window MBR. The
assumption that the R-tree is “good” implies that the tuples
retrieved by the filtering step will be in the minimum num-
ber of R-tree leaf nodes. This number can be estimated as
sMBR ∗ T/m, where m is the average number of entries
per R-tree node. Extending this argument, we can estimate
the number of nodes that have to be read from the level
above the leaves by sMBR ∗ T/m2, from the next level up
by sMBR ∗ T/m3, and so on until we reach the root level,



at which only 1 node has to be read. Thus, the I/O cost of
this step is given by

(

sMBR ∗ T

m
+

sMBR ∗ T

m2
+ · · · + 1

)

∗ crandio =
[(

1

m−1

) (

1 − 1

mh−1

)

∗ sMBR ∗ T + 1
]

∗ crandio

where h is the height of the R-tree (number of levels in-

cluding the root node), and crandio is the cost per page of

a random read. We assume that we will not encounter any

“false hits” while searching the R-tree. This means that we

do not have to read any nodes beyond those accounted for

in the above formula. Notice that, for typical values of m,

the number of internal R-tree nodes read will be very small.

The filtering step has to test all the entries in each R-tree
node read from the disk for overlap with the query window
MBR. Since each node contains, on average, m entries, the
CPU cost of this step can be estimated by
[(

1

m − 1

)(

1 −
1

mh−1

)

∗ sMBR ∗ T + 1
]

∗ m ∗ cMBRtest

3.2. Refinement

The refinement step has to retrieve the exact representation
of all the candidate polygons identified by the filtering step.
We estimate the I/O cost of reading a polygon by two com-
ponents. The first component is a fixed cost independent of
the size of the polygon, which we call cpolyio. The second
component is a variable cost that depends on the number of
vertices of the polygon. The number of vertices of a poly-
gon is referred to as its complexity. We estimate this com-
ponent of the cost by vcand∗cvertio, where cvertio is the per
vertex I/O cost of reading a polygon and vcand is the aver-
age number of vertices in the candidate polygons. Thus, the
I/O cost of the refinement step can be estimated by

sMBR ∗ T ∗ (cpolyio + vcand ∗ cvertio)

The CPU cost of the refinement step depends on the al-
gorithm used for testing overlap. Detecting if two general
polygons overlap can be done in O(n log n) using a plane
sweep algorithm, where n is the total number of vertices in
both polygons [5]. We assume that every candidate polygon
has vcand vertices and use the following formula to estimate
the CPU cost of the refinement step:

sMBR ∗ T ∗ (vq + vcand) log (vq + vcand) ∗ cpolytest

where vq is the number of vertices in the query polygon,

and cpolytest is a proportionality constant. Database sys-

tems may use algorithms other than plane sweep to test for

overlap between polygons. However, since the complexity

of almost all overlap testing algorithms is a function of the

number of vertices of the polygons, variations of the above

formula can typically be used. Each system should replace

the n log n term in the formula with the complexity of the

overlap testing algorithm it uses.

3.3. Notes

• Estimating the cost of a window query does not require

knowing its actual selectivity. It only requires knowing

the selectivity of the filtering step. All candidate poly-

gons identified by the filtering step have to be tested in

the refinement step, whether or not they appear in the

final result of the query.

• The parameters required by the cost model are ob-

tained from several sources. N , T , m, and h should

be available in the system catalogs. cseqio, crandio,

cpolyio, cvertio, cMBRtest, and cpolytest are calibration

constants that are provided by the system implementer

at system development or installation time. These con-

stants depend on the specific database system and its

run-time environment. vq is known at query optimiza-

tion time. Finally, sMBR and vcand must be estimated.

The next section introduces histograms that can be

used to accurately estimate these two parameters.

• The cost model we have presented here is, like all es-

timation models used in query optimization, a simpli-

fication of reality. For example, it does not capture

such things as buffer pool management, or the degree

to which the system is able to overlap the CPU time

of the refinement step on some polygons with the I/O

time to fetch others. Certainly, variants of the equa-

tions we have given are possible, and different variants

may be more accurate for different systems. Neverthe-

less, the key point remains that any reasonable model

must involve the parameters sMBR and vcand.

4. SQ-histograms

In this section, we introduce a novel approach to build-

ing histograms that represent the distribution of polygon

data. These histograms capture information not only about

the location of the data polygons, but also about their size

and complexity. We call these histograms SQ-histograms,

for structural quadtree histograms, because they capture

the structure of the data polygons and are based on a

quadtree partitioning of the space. In this paper, we use

SQ-histograms to estimate sMBR and vcand.

SQ-histograms partition the data objects into possibly

overlapping rectangular buckets. The partitioning is based

on the object MBRs, and tries to group similar objects

together in the same buckets, with each object being as-

signed to one histogram bucket. Each bucket stores the

number of objects it represents, their average width and

height, and their average complexity, as well as the bound-

aries of the rectangular region containing these objects. The

objects within a bucket are assumed to be uniformly dis-

tributed. SQ-histograms are built off-line as part of updating

the database statistics. If the database is update intensive,



the SQ-histograms could potentially become inaccurate and

should therefore be periodically rebuilt.

4.1. Partitioning the data into buckets

The goal of partitioning the data into buckets is to have each

bucket represent a “homogeneous” set of objects. This goal

– minimizing variation within a bucket – is a common goal

for all histogram techniques. The partitioning algorithm

should take into account:

• The location of the objects. A bucket should represent

objects that are close to each other in the space. This

minimizes the “dead space” within a bucket. Similar

rules are used for histograms for traditional data.

• The size (area) of the objects. The size of the objects in

a bucket determines the expected number of objects in

this bucket that overlap a query window. The larger the

objects in a bucket, the more likely they are to overlap a

query window. As such, grouping objects with widely

varying sizes in the same bucket should be avoided.

• The complexity of the objects. Estimating the cost

of the refinement step requires accurately estimating

vcand, which requires the variation in object complex-

ity within a bucket to be as small as possible.

SQ-histograms are built using a quadtree data struc-

ture [18]. A quadtree is a recursive data structure in which

each node represents a rectangular region of the space. A

node can have up to four children, each representing a quad-

rant of the region that the parent node represents (Figure 1).

SQ-histograms partition the space into buckets using this

quadtree partitioning.

The algorithm for building an SQ-histogram starts by

building a complete quadtree with l levels for the space con-

taining the data, where l is a parameter of the histogram

construction algorithm. The different levels of this com-

plete quadtree represent partitionings of the space at several

different resolutions. We use this property to separate the

data polygons according to size and location by assigning

each polygon to a quadtree node.

The quadtree level to which a polygon is assigned is the

highest level (i.e., the furthest from the root) such that the

width and height of the polygon MBR are less than or equal

to the width and height of the quadtree nodes at this level.

Informally stated, this means that the polygon “fits” in a

quadtree node at this level but not at higher levels. Note that

choosing a quadtree level for a polygon depends only on the

dimensions of the polygon MBR and not on its location. Af-

ter choosing a quadtree level for a polygon, we choose the

quadtree node at this level that contains the center of the

polygon MBR. The polygon is assigned to this node. Fig-

ure 1 demonstrates assigning polygons to quadtree nodes.

NW NE

SW-NW SESW-NE

SW-SW SW-SE

NW NE

NW

SE

NE SW

SW

SE

Figure 1. A quadtree partitioning and the assignment of

polygons to quadtree nodes

For the purpose of illustration, the quadtree in this figure is

not complete.

After assigning all the polygons to quadtree nodes, the

complete quadtree can be used as an accurate histogram.

Each quadtree node represents a number of polygons with

similar location and size. Polygons that are far from each

other will have MBRs whose centers lie within different

quadtree nodes, and polygons with widely varying sizes will

be assigned to nodes at different levels of the quadtree. Note

that the algorithm for building Filter Tree spatial indexes

also uses a quadtree partitioning to segregate objects by size

and location [19].

The algorithm for assigning polygons to quadtree nodes

does not take into account the complexity of the polygons.

It assumes that polygons in the same vicinity and with sim-

ilar sizes have similar complexities. In the next section, we

present a solution for cases in which this assumption does

not hold.

The problem with the complete quadtree is that it may

take too much memory. Database systems typically limit

the amount of memory available to histograms. This trans-

lates to an upper bound on the number of buckets that a

histogram can have. In our case, we can reduce the number

of buckets by reducing the number of levels of the complete

quadtree. However, this limits the granularity at which the

space is partitioned. Instead, we want to start with a com-

plete quadtree with as many levels as we wish, but still guar-

antee that the final histogram will fit in the assigned mem-

ory.

To satisfy this requirement, we start with a histogram in

which the buckets correspond to the non-empty nodes of

the complete quadtree. We repeatedly merge buckets corre-

sponding to sibling quadtree nodes among which the data

distribution has little variation, until the number of buck-

ets drops to the required bound. We must choose a method

of measuring the variation in data distribution among four

histogram buckets (corresponding to sibling nodes in the

quadtree). For example, we could use the variance of the

number of polygons represented by the buckets, or the



maximum difference in the number of polygons. We use

this measure to compute the variation in data distribution

among every set of four buckets corresponding to four sib-

ling nodes of the quadtree. Sets of sibling nodes at all levels

of the quadtree are considered in this computation. After

this computation, we merge the histogram buckets corre-

sponding to the four sibling quadtree nodes with the least

variation in data distribution.

The merging operation is repeated as many times as

needed to satisfy the memory requirement2. We merge

buckets corresponding to sibling quadtree nodes only if they

contain objects initially assigned to the same quadtree level.

This guarantees that objects in a histogram bucket always

have similar sizes.

After choosing the histogram buckets, the boundaries of

each bucket are set to the MBR of all the objects that it

represents. This step is required because polygons can ex-

tend beyond the boundaries of the quadtree nodes to which

they are assigned. It results in histogram buckets that poten-

tially represent overlapping regions of the space. After this

step, the regions represented by the histogram buckets no

longer correspond exactly to the regions represented by the

quadtree nodes. Thus, the quadtree cannot be used as an in-

dex to search for buckets that overlap a given query window.

We use the quadtree only to build the SQ-histogram, not to

search it at cost estimation time. At cost estimation time, a

sequential search is used to determine the buckets that over-

lap the query window. Note that the histogram construction

algorithm requires only one scan of the data.

4.2. Handling objects with varying complexities

The above algorithm does not take into account the com-

plexity of the polygons when creating the histogram buck-

ets. To handle data sets in which polygons with similar

sizes and locations may have widely varying complexities,

we should build not one but several quadtrees, one for “low

complexity” objects, one for “medium complexity” objects,

and so on.

To build an SQ-histogram using this approach, we deter-

mine the minimum and maximum number of vertices of all

the polygons in the data set. This requires an extra scan of

the data. We also specify the number of quadtrees to build

as a parameter to the algorithm. The range of vertices in

the data set is divided into sub-ranges of equal width, where

the number of sub-ranges is equal to the required number

of quadtrees. Each quadtree represents all the objects with

a number of vertices in one of these sub-ranges. We de-

cide the quadtree to which a data object is initially assigned

based on the number of vertices of this object. When merg-

ing buckets, we only merge buckets corresponding to sib-

ling nodes of the same quadtree. We merge the buckets

2Repeatedly choosing the buckets with the least variation can be done

in O(n log n) using a priority queue.

xlbi xrbi

xlq xrqox

Figure 2. The x-dimension of a query overlapping a bucket

with the least variation in data distribution among all sib-

ling nodes of all quadtrees.

4.3. Assuming uniformity within a bucket

To estimate the cost of a given query, we need to estimate

sMBR and vcand for this query. This requires estimating the

fraction of the objects in a bucket whose MBRs overlap the

query MBR. This is the fraction of the objects in the bucket

that appear in the result of the filtering step, and we term it

fi, where i is the index of the bucket in the histogram. In

estimating fi, we assume a uniform distribution within the

histogram buckets.

Let bi be a histogram bucket and q be a query MBR.

If q does not overlap bi, fi = 0. If q totally encloses bi,

fi = 1. If q is totally enclosed in bi or partly overlaps it, fi

is the probability of q overlapping an object represented by

bi. Next, we consider computing this probability assuming

the objects in bi are uniformly distributed.

For q to overlap an object in bi, it must overlap it in both

the x and y (horizontal and vertical) dimensions. Consider

the x dimension, and let the left and right boundaries of bi

be xlbi and xrbi, respectively. Let the left and right bound-

aries of q be xlq and xrq , respectively. Let ox be the av-

erage width of the MBRs of the objects represented by bi.

Figure 2 illustrates these quantities.
Let fxi be the probability of q overlapping an object rep-

resented by bi, o, in the x dimension. fxi is given by
fxi = 1 − Pr{o left of q} − Pr{o right of q}

Since we are assuming a uniform distribution within bi, the
leftmost point of o is uniformly distributed between xlbi and
xrbi − ox. Thus, fxi is given by

fxi = 1−
max(xlq − ox − xlbi, 0)

xrbi − ox − xlbi

−
max(xrbi − ox − xrq, 0)

xrbi − ox − xlbi

Similarly, the probability of q overlapping an object in
the y dimension is given by

fyi = 1−
max(ybq − oy − ybbi, 0)

ytbi − oy − ybbi

−
max(ytbi − oy − ytq, 0)

ytbi − oy − ybbi

where ybbi and ytbi are the bottom and top boundaries of bi,

respectively, ybq and ytq are the bottom and top boundaries

of q, respectively, and oy is the average height of the MBRs

of the objects represented by bi. To estimate fi, we use

fi = fxi ∗ fyi.

From these formulas, we see that estimating fi requires

each histogram bucket to store the boundaries of the region

that it represents, and the average width and height of the

MBRs of the objects that it represents. To estimate sMBR

and vcand, each bucket must also store the number of ob-

jects it represents and the average number of vertices in

these objects.



(a) (b)

Query Data

Figure 3. The difficulty of estimating actual selectivities.

The query overlaps the data polygons in (a) but not in (b)

4.4. Estimation using SQhistograms

To estimate sMBR and vcand, we use a sequential search

of the histogram buckets to identify the buckets that over-

lap the MBR of the query window. We estimate the re-

quired quantities using the formulas sMBR =
∑

i∈B fiNi

and vcand =

∑

i∈B
fiNiVi

sMBR
, where B is the set of indices

in the histogram of buckets overlapping the query window

MBR, Ni is the number of objects in bucket i, and Vi is the

average number of vertices per object in bucket i.
SQ-histograms provide an estimate for the MBR selec-

tivity of window queries, but not for their actual selectivity.

We do not attempt to estimate the actual selectivity of win-

dow queries, as this would require information about the

exact layout of the vertices of the query and data polygons.

One cannot estimate whether or not two general polygons

overlap based only on their MBRs, areas, or number of ver-

tices. To demonstrate this, consider the two cases presented

in Figure 3. The first case is a query polygon that overlaps

two data polygons. The polygons in the second case are

identical to the ones in the first case, except that the query

polygon is flipped vertically. In the second case, the query

polygon does not overlap either of the data polygons, de-

spite the MBRs, areas, shapes and number of vertices being

the same as in the first case.

The query optimizer can use the MBR selectivity esti-

mated using an SQ-histogram as an upper bound on the ac-

tual selectivity of the query. Alternately, the actual selec-

tivity of the query can be estimated using sampling (Sec-

tion 5.7).

4.5. Comparison with MinSkew partitioning

Acharya, Poosala, and Ramaswamy recently proposed a

partitioning scheme for building histograms for spatial data

called MinSkew partitioning [1]. Like SQ-histograms,

MinSkew partitioning is based on the MBRs of the data ob-

jects. Partitioning starts by building a uniform grid that cov-

ers the input space and determining the number of objects

that overlap each grid cell. The partitioning algorithm main-

tains a set of buckets currently in the histogram. This set

initially contains one bucket representing the whole space.

The algorithm repeatedly splits a bucket into two until the

histogram has the required number of buckets. The bucket

to split and the split point are chosen to give the maximum

reduction in spatial skew, defined as the variance of the

number of objects in the grid cells constituting the bucket.

The algorithm builds several grids at different resolutions

and generates an equal number of buckets from each grid.

To reduce computation time, the splitting decision is based

on the marginal frequency distributions of the grid cells in

the buckets.

Both MinSkew partitioning and SQ-histograms have to

choose a partitioning of the space from an intractably large

number of possibilities. SQ-histograms deal with this prob-

lem by considering only quadtree partitionings of the space.

MinSkew partitioning restricts itself to binary space parti-

tionings along the grid lines, which is a more general set

than quadtree partitionings. However, MinSkew partition-

ing based on the marginal frequency distribution uses a one-

dimensional measure of variation to construct the multi-

dimensional partitioning, while SQ-histograms use a multi-

dimensional measure of variation.

Another advantage of SQ-histograms is taking the varia-

tion in object sizes into account. MinSkew partitioning only

considers the number of objects that overlap a grid cell, and

not the sizes of these objects. SQ-histograms, on the other

hand, assign small and large objects to different quadtree

levels and thus place them in different buckets.

The most important issue in comparing SQ-histograms

and MinSkew partitioning is that SQ-histograms contain in-

formation about the complexity of the objects. This infor-

mation is essential for accurate cost estimation. Our exper-

iments in the next section demonstrate that SQ-histograms

are more accurate than MinSkew partitioning, even if we

add the number of vertices to the information stored in the

MinSkew buckets.

5. Experimental evaluation

5.1. Generating synthetic polygons

In our experiments, we need to generate random polygons

for the test queries and the synthetic data sets. To gener-

ate a polygon, we start by choosing a rectangle in the space

within which the polygon is generated. This rectangle spec-

ifies the size and location of the polygon. We then choose a

number of points at random inside this rectangle. These

points are the vertices of the polygon. Next, we choose

a random horizontal line that cuts through the rectangle,

and divide the points into two groups: points that lie above

this line and points that lie below it. The points in each

of the groups are sorted by their x (horizontal) coordinate,

and connected in the sorted order to create two “chains” of

points. To avoid generating self-intersecting polygons, the
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Figure 4. Generating a synthetic polygon

Figure 5. Synthetic data set

leftmost and rightmost points of the two chains are moved

vertically so that they lie on the splitting line. Next, the two

chains of points are connected at their end-points, forming

a polygon. Finally, we rotate the polygon by a random an-

gle to avoid generating polygons that are all horizontally

aligned. This algorithm generates monotone polygons [12],

a very general class of polygons. Figure 4 gives an exam-

ple of a polygon generated by this algorithm. Figure 4(a)

shows the initial rectangle, the split line, and the two chains

of points. Figure 4(b) shows the generated polygon.

5.2. Experimental setup

5.2.1. Data sets. In this paper, we present results for one

real and one synthetic data set (except in Section 5.3, where

we use three other synthetic data sets). Results on other

synthetic data sets corroborate the conclusions drawn here.

The real data set we use is the set of polygons represent-

ing land use in the state of California from the Sequoia 2000

benchmark [20]. This data set consists of 58, 586 polygons

having between 4 and 5, 583 vertices, with an average of 56
vertices per polygon.

The synthetic data set we present here consists of 10, 000
polygons generated using the above procedure. The poly-

gons have between 3 and 100 vertices, with an average

of 20 vertices per polygon. 30% of the polygons are dis-

tributed uniformly throughout the space, and 70% of the

polygons are distributed in three clusters at different parts

of the space. The rectangles in which the points of the

polygons were generated have areas between 0.0025% and

0.75% of the area of the space, and aspect ratios uniformly
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Figure 6. Query selectivity (Sequoia data set)

distributed in the range 1–3. Figure 5 presents a 20% sam-

ple of this data set.

5.2.2. Query workloads. The number of vertices for

the polygonal query windows is randomly chosen from the

range 3–15. The polygons are generated inside rectangles

of 9 different sizes, with areas ranging from 0.01% to 10%
of the area of the space. Each workload contains 50 queries

at each size, for a total of 450 queries.

When issuing a workload on some data set, we choose

the centers of the rectangles in which the query polygons

are generated at random from the centers of the MBRs of the

data objects (i.e., the rectangles follow a distribution similar

to the data [13]). Experiments with workloads in which the

queries are uniformly distributed in the space give the same

conclusions. In this paper, we use the same workload for

each data set in all the experiments. For the Sequoia data

set, the average selectivities of the queries of different sizes

are shown in Figure 6. The figure shows both the MBR se-

lectivity (the selectivity of the filtering step) and the actual

selectivity (the selectivity of the whole query after both fil-

tering and refinement). The selectivity of an operation is

defined as the fraction of objects that appear in its result.

Figure 6 shows that the MBR selectivity of a window query

is only a very loose upper bound for its actual selectivity.

5.2.3. Run-time environment. Our experiments were

conducted on a Pentium Pro 200 MHz machine with 128

Mbytes of RAM running Solaris 2.6. We used one disk for

the database, another disk for the log, and a third disk for

the software (the database system and our test programs, as

well as any working files and result files). Our experiments

were conducted on the university version of the Paradise

object-relational database system [14]. Both the server and

the client programs were run on the same machine, and the

server buffer pool size was set to 32 Mbytes.

5.2.4. Error metric. In measuring the estimation accu-

racy of the various techniques, we use the average rela-



tive estimation error as our error metric. The relative er-

ror in estimating a quantity, x, for a query is defined as
|estimated value of x−measured value of x|

measured value of x . Queries with

a result size of zero are removed from the test run. Since

the query distribution is similar to the data distribution, we

encounter very few queries with a result size of zero.

5.3. Importance of the cost of refinement

In this section, we illustrate the significance of the cost of

refinement, and the importance of including it in any win-

dow query cost model. The data sets and query workloads

used in this section are different from those used in our re-

maining experiments.

To generate the data sets for this experiment, we generate

a set of 10, 000 uniformly distributed squares, each with an

area of 0.01% of the area of the space. We generate three

data sets, each consisting of randomly generated polygons

having these squares as their MBRs. The polygons of the

first, second, and third data sets have 10, 100, and 1000
vertices, respectively. Since the polygons of the three data

sets have the same MBRs, the filtering step for any window

query will be the same for all three data sets.

Table 1 presents the average execution time for 50 win-

dow queries on each data set, starting with a cold buffer

pool. The same queries are executed for all data sets.

The query windows are random polygons with 100 vertices

each, and their MBRs are squares with an area of 1% of the

area of the space. The centers of these MBRs are randomly

chosen from the centers of the data polygon MBRs. R-tree

indexes are available for all data sets, and they are used by

all the queries.

Vertices Execution time (secs)

10 0.2

100 0.5

1000 3.4

Table 1. Cost of a query with MBR area = 1% of space

There is a significant difference in execution time be-

tween the three data sets. The MBRs of the polygons in the

three data sets are the same. Therefore, the filtering step

of a window query will be the same for all three data sets.

The difference in execution time is due to differences in the

refinement step.

This demonstrates the need to incorporate the cost of re-

finement in estimating the cost of window queries. Any

window query cost model that does not take into account

the complexity of the data and query polygons, and does

not estimate the cost of the refinement step, will not be able

to distinguish between these three data sets. Even if such a

cost model accurately estimates the execution time for one

data set, it will be inaccurate for the other two.

Table 1 also illustrates the significance of the cost of re-

finement, thereby validating one of the main premises of

this paper. If we take the execution time for the 10-vertex

data set to be an approximation of the filtering time for all

three data sets, we see that refinement for the 1000-vertex

data set is over an order of magnitude more expensive than

filtering.

In the next sections, we demonstrate the effectiveness of

our proposed techniques in estimating the cost of window

queries, including the cost of the refinement step. The re-

mainder of the paper uses the real and synthetic data sets

described in Section 5.2.1 and the workloads described in

Section 5.2.2.

5.4. Estimation accuracy using SQhistograms

In this section, we demonstrate the accuracy of SQ-

histograms in estimating sMBR and vcand compared to

MinSkew partitioning and assuming uniformity. We com-

pare to MinSkew partitioning because it is identified as a

winner among several techniques in [1]. We compare to as-

suming uniformity because it is the simplest approach in the

absence of information about the data distribution. To allow

MinSkew partitioning to be used for estimating vcand, we

have each bucket store the average complexity of the ob-

jects it represents, in addition to the information required

in [1].

The SQ-histograms are given 5 Kbytes of memory. They

are built starting with 10 complete quadtrees of 8 levels

each. We use 10 quadtrees to accommodate the varying

complexities of the data objects. The histograms are built

using the “maximum difference in the number of objects”

to measure the variation in distribution among the quadtree

nodes (Section 5.6 provides a detailed study of the ef-

fect of the different parameters of histogram construction).

MinSkew partitioning is also given 5 Kbytes of memory.

We start the MinSkew partitioning with a 25 × 25 grid.

This grid is progressively refined two times, so that the final

buckets are generated from a 100 × 100 grid.

Figures 7 and 8 present the error in estimating sMBR and

vcand for the Sequoia and synthetic data sets, respectively.

Each point in the figures represents the average relative esti-

mation error for 50 queries of a particular size. The figures

show that using a histogram is always more accurate than

assuming uniformity, and that SQ-histograms are generally

more accurate than MinSkew partitioning. The figures also

show that SQ-histograms are accurate enough in the abso-

lute sense to be useful to a query optimizer. The irregular-

ities in Figure 7(a) are due to one or two queries per data

point that have a filtering step with a small measured result

size appearing in the denominator of the error formula, thus

leading to a large relative estimation error.
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Figure 7. Estimation error (Sequoia data set)
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Figure 8. Estimation error (Synthetic data set)

5.5. Accuracy of the window query cost model

We determine two sets of calibration constants for the win-

dow query cost model presented in Section 3. One set of

constants is for a cold buffer pool and the other is for a

warm buffer pool. These constants calibrate the cost model

for use with Paradise in our run-time environment to esti-

mate the execution time of window queries in seconds. In

the interest of space, the values of these constants are not

shown here.

Figures 9 and 10 show the actual execution times of the

workloads on the Sequoia and synthetic data sets, respec-

tively. The figures show the execution times when we start

with a cold buffer pool for every query (i.e., when the buffer

pool is flushed between queries), and when the buffer pool

is kept warm (i.e., not flushed between queries). An R-tree

index is available, but the query optimizer may choose not

to use it for queries with large areas and, hence, a large

expected selectivity. The figures also show the estimated

execution times using the calibration constants for our en-

vironment and with sMBR and vcand estimated using SQ-

histograms built using the parameters described in the pre-

vious section. Each point in the figures is the average exe-

cution time for 50 queries of a particular size.

The figures show that, even with the variability in exe-

cution time, with the simplifying assumptions made by the

cost model, and with the estimation errors introduced by

histograms, the cost model still estimates the overall ex-

ecution times of the window queries relatively accurately.

While the estimated time does not, in general, match the ac-

tual time exactly, it is likely to be good enough for query

optimization.

The cost model is more accurate for a warm buffer pool

than it is for a cold buffer pool. A warm buffer pool reduces

the variability in query execution time, making cost estima-

tion easier. The cost model is also more accurate for the

Sequoia data set than it is for the synthetic data set. Queries

on the Sequoia data set have longer execution times, so esti-

mation accuracy is more important for this data set. On the

other hand, the short execution times of the queries on the

synthetic data set make small estimation errors appear more

pronounced.

5.6. Parameters of histogram construction

Next, we turn our attention to the effect of the different pa-

rameters of the SQ-histogram construction algorithm. The
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default histogram for this experiment uses 5 Kbytes of

memory, and is built starting with one 10-level quadtree

using “maximum difference in the number of objects” to

measure the variation in data distribution. We vary each of

the histogram construction parameters in turn and show that

the histogram is robust under all these variations. The errors

shown in this section are average errors for all the queries

of the workload.

Figure 11 shows the effect of the amount of memory

available to a histogram on its accuracy. The figure shows

the error in estimating sMBR for the Sequoia data set us-

ing SQ-histograms and MinSkew partitioning occupying

the same amount of memory. SQ-histograms are more ac-

curate than MinSkew partitioning for the whole range of

available memory. As expected, more available memory re-

sults in more estimation accuracy. Notice, though, that the

error at 5 Kbytes is already reasonable, and that the slope of

the error beyond this point is small.

Figure 12 shows the effect of the number of levels in the

initial complete quadtree on the accuracy of SQ-histograms

in estimating sMBR for the Sequoia and synthetic data sets.

Starting with more quadtree levels is generally better, as it

0%

10%

20%

30%

40%

50%

60%

70%

0 2 4 6 8 10 12 14 16 18 20

Memory (KBytes)

R
e

la
ti

v
e

 E
rr

o
r

SQ-histogram

MinSkew

Figure 11. Effect of available memory on the accuracy of

estimating sMBR (Sequoia data set)

allows the histogram to consider the space at a finer gran-

ularity. Furthermore, using more levels allows for better

separation of objects according to size. However, having

too many levels may actually increase the error by creating

a histogram with an unnecessarily large number of small

buckets. The most important observation, though, is that
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the error is relatively flat for a wide range of initial quadtree

levels. The histogram construction algorithm is not overly

sensitive to this parameter.

Next, we compare SQ-histograms constructed using dif-

ferent measures of variation in the data distribution. We

experiment with three measures of variation. The first is

the maximum difference between the number of objects in

the different buckets. The second is the maximum differ-

ence between the number of objects in the different buck-

ets relative to the maximum number of objects in any of

the buckets. The third is the variance of the number of ob-

jects in the buckets. We also try choosing the buckets to

merge based on the total number of objects in these buck-

ets. Under this scheme, we merge the buckets in which the

total number of objects is minimum. This scheme tries to

construct histograms where the buckets all have the same

number of objects, similar to equi-depth histograms for tra-

ditional data [17]. Figure 13 presents the error in estimating

sMBR using SQ-histograms constructed using the different

measures of variation. Maximum difference is the winner

by a small margin. More importantly, we notice that the

histogram is robust across three of the four methods.
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In the interest of space, we do not present the results for

starting with different numbers of quadtrees for different

object complexities. The number of quadtrees does affect

histogram accuracy, but the effect is small.

5.7. Sampling

In this section, we consider sampling for selectivity estima-

tion. Figure 14 presents the accuracy of using sampling to

estimate the MBR selectivity and the actual selectivity for

the Sequoia data set (similar results were obtained for the

synthetic data set). The figure presents the errors for sample

sizes of 100 and 200 random tuples. Sampling is very inac-

curate for queries with low selectivity because most of the

samples taken are negative samples (i.e., do not satisfy the

selection predicate). Thus, the figure presents the average

errors for all queries in the workloads with actual selectivi-

ties > 1%.

Sampling is less accurate than SQ-histograms for esti-

mating MBR selectivities. The key advantage of sampling

is that, since it accesses and tests the actual data objects, it

can be used to accurately estimate actual selectivities. His-

tograms provide only summary information that does not

reflect the exact layout of the data objects, and hence can-

not be used to estimate actual selectivities. Using the MBR

selectivities estimated using the histograms as estimates of

the actual selectivities leads to large errors (shown in the

figure).

The disadvantage of sampling is its cost. Sampling in-

volves the I/O cost of fetching the sampled tuples, as well

as the high CPU cost of the exact geometry test for the ob-

jects in the sample. In our experiments, we found that tak-

ing a positive sample of one polygon (i.e., a sample where

the polygon does overlap the query window) takes up to 25

ms when all the required indexes are buffered. A negative

sample can often be detected by testing the MBRs of the

query and polygon. In this case, the sample usually takes

less than 1 ms if the indexes are in the buffer pool. Thus, the

argument that sampling is expensive, which is often made

in the context of traditional data, is more pronounced in the

context of spatial data.



As expected, estimation accuracy increases with increas-

ing the number of samples. Hence, one can reduce the error

as desired by increasing the number of samples.

6. Conclusions

Accurate estimation of the cost of spatial selections requires

taking into account the I/O and CPU costs of the refinement

step. This requires estimating the MBR selectivity of the

query and the average number of vertices in the candidate

polygons identified by the filtering step.

SQ-histograms effectively estimate these two quantities

and can be used to provide reasonably accurate cost esti-

mates. SQ-histograms are also robust for a wide range of

construction parameters.

Sampling can also be used to estimate these two quanti-

ties. Sampling does not work well for very selective queries.

For other queries, sampling offers the additional benefit of

accurately estimating the actual selectivity of the query in

addition to its MBR selectivity. However, sampling from

spatial databases is expensive because the samples require

expensive polygon overlap tests.

Estimating the cost of spatial operations, in general, re-

quires information about the location, size, and complex-

ity of the data objects. In this paper, we demonstrated how

to effectively capture these properties using SQ-histograms,

and how to use them for accurate estimation of the cost of

spatial selections.
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