
Accurate Estimation of the Degree Distribution of Private Networks

Michael Hay, Chao Li, Gerome Miklau, and David Jensen

Department of Computer Science
University of Massachusetts Amherst

{mhay, chaoli, miklau, jensen}@cs.umass.edu

Abstract—We describe an efficient algorithm for releasing
a provably private estimate of the degree distribution of
a network. The algorithm satisfies a rigorous property of
differential privacy, and is also extremely efficient, running on
networks of 100 million nodes in a few seconds. Theoretical
analysis shows that the error scales linearly with the number of
unique degrees, whereas the error of conventional techniques
scales linearly with the number of nodes. We complement the
theoretical analysis with a thorough empirical analysis on real
and synthetic graphs, showing that the algorithm’s variance
and bias is low, that the error diminishes as the size of the
input graph increases, and that common analyses like fitting a
power-law can be carried out very accurately.

Keywords-privacy; social networks; privacy-preserving data
mining; differential privacy.

I. INTRODUCTION

The analysis of social networks is crucial to addressing a

diverse set of societally important issues including disease

transmission, fraud detection, efficiency of communication

networks, among many others. Although technological ad-

vances have allowed the collection of these networks (often

massive in scale), privacy concerns have severely restricted

the ability of social scientists and others to study these

networks. Valuable network data remains locked away in

institutions, far from the scientists who are best equipped to

exploit it, because the data is too sensitive to share.

The challenges of analyzing sensitive graph-structured

data have recently received increased attention. It is now

well-known that removing identifiers from a social network

and releasing a “naively anonymized” isomorphic network

can leave participants open to a range of attacks [1],

[7], [17]. In response, a number of more sophisticated

anonymization techniques have been proposed [3], [7], [13],

[22], [23]. These techniques transform the graph—through

the addition/removal of edges or clustering of nodes into

groups—into a new graph which is then published. The

analyst uses the transformed graph to derive estimates of

various properties of the original.

The conventional goals of such algorithms are privacy and

utility, although neither is satisfactorily achieved. Existing

approaches provide anonymity, typically through transfor-

mations that make each node indistinguishable from others,

but they lack rigorous guarantees of privacy. They rely

on the assumption that the adversary’s knowledge is lim-

ited [3], [13], [22] and/or fail to prove that the guaran-

tee of anonymity ensures that private information is not

disclosed [7], [13], [22], [23]. In terms of utility, while

the transformed graph necessarily differs from the original,

the hope is that it retains important structural properties of

interest to the analyst. A drawback of existing techniques is

that they lack formal bounds on the magnitude of the error

introduced by the transformation. A common strategy for

assessing utility is to measure familiar graph properties and

compare these measures numerically to the original data.

Empirically, it appears that with increasing anonymity, the

graph is rapidly distorted and some metrics are systemati-

cally biased [3], [7], [13], [22], [23].

A final limitation of existing techniques is that few scale

to the massive graphs that are now collected and studied.

Most existing techniques have been evaluated on graphs

of about 5,000-50,000 nodes, and may be difficult to scale

much larger [7], [13], [22], [23].

In this work, we focus on a specific utility goal—

estimating the degree distribution of the graph—and develop

an algorithm that provides provable utility, strong privacy,

and excellent scalability. The algorithm returns the degree

distribution of the graph after applying a complex two-

phase process of random perturbation. The error due to

random noise is provably low, yet sufficient to prevent even

powerful adversaries from extracting private information.

The algorithm can scale to graphs with hundreds of millions

of nodes. The techniques we propose here do not result in a

published graph. Instead we release only an estimate of the

true degree distribution to analysts.

We choose to focus on the degree distribution because it

is one of the most widely studied properties of a graph.

It influences the structure of a graph and processes that

operate on a graph, and a diverse line of research has studied

properties of random ensembles of graphs consistent with a

known degree distribution [12], [14], [18].

The simple strategy of releasing the exact degree distri-

bution fails to provide adequate privacy protection. Some

graphs have unique degree distributions (i.e., all graphs

matching this degree distribution are isomorphic) making

the release of the degree distribution no safer than naive

anonymization. In general, it is unclear how to determine

what the degree distribution reveals about the structure of the

graph. The problem is compounded when either the adver-

sary has partial knowledge of graph structure, or the degree

distribution is only one of several statistics published. Our

goal is to design an approach that provides robust privacy

protection against powerful adversaries and is compatible

with releasing multiple statistics.
The algorithms proposed here satisfy a rigorous privacy

standard called differential privacy [4]. It protects against

any adversary, even one with nearly complete knowledge

of the private data. It also composes well: one can release

multiple statistics under differential privacy, so long as

the algorithm for each statistic satisfies differential privacy.

Thus while we focus on the degree distribution, additional

statistics can be incorporated into the privacy framework.
While an existing differentially private algorithm [5] can

be easily adapted to obtain noisy answers to queries about

the degree distribution, the added noise introduces consider-

able error. In this work, we capitalize on a recent innovation

in differentially private algorithms that has been shown to

boost accuracy without sacrificing privacy [8]. The technique

performs a post-processing step on the noisy answers, using

the fact that the queries impose constraints on the space of

possible answers to infer a more accurate result. We apply

this technique to obtain an accurate estimate of the degree

distribution of a graph.
Our contributions include the following.

• (Privacy) We adapt the definition of differential privacy

to graph-structured data. We present several alterna-

tive formulations and describe the implications for the

privacy-utility tradeoff inherent in them.

• (Scalability) We provide an implementation of the

inference step of Hay et al. [8] that is linear, rather

than quadratic, in the number of nodes. As a result of

this algorithmic improvement the technique can scale to

very large graphs, processing a 200 million node graph

in 6 seconds. We also extend the inference technique

to include additional constraints of integrality and non-

negativity.

• (Utility) We assess utility of the resulting degree dis-

tribution estimate through comprehensive experiments

on real and synthetic data. We show that: (i) estimates

are extremely accurate under strong privacy parameters,

exhibiting low bias and variance; (ii) for power-law

graphs, the relative boost in accuracy from inference

increases with graph size; (iii) an analyst can use

the differentially private output to accurately assess

whether the degree distribution follows a power-law.

These contributions are some of the first positive results

in the private analysis of social network data, showing that

a fundamental network analysis task can be performed ac-

curately and efficiently, with rigorous guarantees of privacy.
Admittedly, the degree distribution is just one property

of a graph, and there is evidence that a number of other

properties are not constrained by the degree distribution

alone [12], [14]. Nevertheless, it is hard to imagine a useful

technique that distorts the degree distribution greatly. Thus

it is important to know how accurately it can be estimated,

independently of other properties. A long-term goal is to

develop a differentially private algorithm for publishing a

synthetic graph offering good utility for a range of analyses.

Because of the degree distribution’s profound influence on

the structure of the graph, we believe that accurate estimation

of it is a critical step towards that long-term goal.

II. DIFFERENTIAL PRIVACY FOR GRAPHS

We first review the definition of differential privacy, and

then propose how it can be adapted to graph data.

A. Differential privacy

To define differential privacy, we consider an algorithm

A that operates on a private database I . The algorithm

is randomized and the database is modeled as a set of

records, each describing an individual’s private information.

Differential privacy formally limits how much a single

individual record in the input can influence the output of the

algorithm. More precisely, if I ′ is a neighboring database—

i.e., one that differs from I by exactly one record—then an

algorithm is differentially private if it is likely to produce

the same output whether the input is I or I ′.
The following is a formal definition of differential privacy,

due to Dwork [4]. Let nbrs(I) denote the set of neighbors

of I—i.e., I ′ ∈ nbrs(I) if and only if |I ⊕ I ′| = 1 where

⊕ denotes symmetric difference.1

Definition II.1 (ε-differential privacy). An algorithm A is ε-
differentially private if for all instances I , any I ′ ∈ nbrs(I),
and any subset of outputs S ⊆ Range(A), the following
holds:

Pr[A(I) ∈ S] ≤ exp(ε)× Pr[A(I ′) ∈ S]

where probability Pr is over the randomness of A.

The parameter ε measures the disclosure and is typically

also an input to the algorithm. For example, the techniques

used in this paper add random noise to their outputs, where

the noise is a function of ε. The choice of ε is a matter of

policy, but typically ε is “small,” say at most 1, making the

probability “almost the same” whether the input is I or I ′.
An example illustrates why this protects privacy. Suppose

a hospital wants to analyze the medical records of their

patients and publish some statistics about the patient popu-

lation. A patient may wish to have his record omitted from

the study, out of a concern that the published results will

reveal something about him personally and thus violate his

privacy. The above definition assuages this concern because

whether the individual opts-in or opts-out of the study, the

probability of a particular output is almost the same. Clearly,

1Differential privacy has been defined inconsistently in the literature.
The original definition (called indistinguishability) defines neighboring
databases in terms of Hamming distance [5]. Note that ε-differential privacy
(as defined above) implies 2ε-indistinguishability.

any observed output cannot reveal much about his particular

record if that output is (almost) as likely to occur even when

the record is excluded from the database.

B. Differential privacy for graphs

In the above definition, the database is a table whereas in

the present work, the database is a graph. Below we adapt

the definition of differential privacy to graphs.

The semantic interpretation of differential privacy rests on

the definition of neighboring databases. Since differential

privacy guarantees that the output of the algorithm can-

not be used to distinguish between neighboring databases,

what is being protected is precisely the difference between

neighboring databases. In the above definition, a neighboring

database is defined as the addition or removal of a single

record. With the hospital example, the patient’s private infor-

mation is encapsulated within a single record. So differential

privacy ensures that the output of the algorithm does not

disclose the patient’s medical history.

With network data, which is primarily about relationships

among individuals, the correspondence between private data

and database records is less clear. To adapt differential pri-

vacy to graphs, we must choose a definition for neighboring

graphs and understand the privacy semantics of that choice.

We propose three alternatives offering varying degrees of

privacy protection.

We model the input as a graph, G = (V,E), where V
is a set of n entities and E is a set of edges. Edges are

undirected pairs (u, v) such that u and v are members of

V . (Results are easily extended to handle directed edges.)

While the meaning of an edge depends on the domain—it

could connote friendship, email exchange, sexual relations,

etc.—we assume that it represents a sensitive relationship

that should be kept private. The focus of the present work is

concerned with graph structure, so the inclusion of attributes

on nodes or edges is left for future work.

The first adaptation of differential privacy to graphs is

mathematically similar to the definition for tables. Neighbor-

ing graphs are defined as graphs that differ by one “record.”

Given a graph G, one can produce a neighboring graph G′ by

either adding/removing an edge in E, or by adding/removing

an isolated node in V . Restricting to isolated nodes ensures

that the change to V does not require additional changes

to E to make it consistent with V . Formally, G and G′ are

neighbors if |V ⊕V ′|+|E⊕E′| = 1. Because this adaptation

allows neighboring graphs to differ by at most one edge, we

call it edge-differential privacy.

An edge-differentially private algorithm protects individ-

ual edges from being disclosed. For some applications,

edge-differential privacy seems to be a reasonable privacy

standard. For example, consider the study of Kossinets and

Watts [10], in which they analyze a graph derived from the

email communication among students and faculty of a large

university. What makes this dataset sensitive is that it reveals

who emails whom; edge-differential privacy protects email

relationships from being disclosed.

However, in some applications, it may be desirable to

extend the protection beyond individual edges. For example,

Klovdahl et al. [9] analyze the social network structure of

“a population of prostitutes, injecting drug users and their

personal associates.” In this graph, an edge represents a

sexual interaction or the use of a shared needle. Edges are

clearly private information, but so too are other properties

like node degree (the number of sexual/drug partners) and

even membership in the network.

A second adaptation of differential privacy to graphs pro-

vides much stronger privacy protection. In node-differential
privacy, two graphs are neighbors if they differ by at most

one node and all of its incident edges. Formally, G and G′

are neighbors if |V ⊕ V ′| = 1 and E ⊕ E′ = {(u, v)|u ∈
(V ⊕ V ′) or v ∈ (V ⊕ V ′)}.

Node-differential privacy mirrors the “opt-in/opt-out” no-

tion of privacy from the hospital example. It assuages any

privacy concerns, as a node-differentially private algorithm

behaves almost as if the participant did not appear in at all.

While node-differential privacy is a desirable privacy

objective, it may be infeasible to design algorithms that are

both node-differentially private and enable accurate network

analysis. A differentially private algorithm must hide even

the worst case difference between neighboring graphs, and

this difference can be large under node-differential privacy.

For instance the empty graph (n isolated nodes) is a neighbor

of the star graph (a hub node connected to n nodes). We

show in Sec III-A that estimates about node degrees are

highly inaccurate under node-differential privacy.

To span the spectrum of privacy between edge- and node-

differential privacy, we introduce an extension to edge-

differential privacy that allows neighboring graphs to differ

by more than a single edge. In k-edge-differential privacy,

graphs G and G′ are neighbors if |V ⊕V ′|+ |E⊕E′| ≤ k.

A larger setting of k leads to greater privacy protection.

If k = 1, then k-edge-differential privacy is equivalent to

edge-differential privacy. If k = |V |, then k-edge-differential

privacy is even stronger than node-differential privacy, as the

set of neighboring graphs under k-edge-differential privacy

is a superset of the neighbors under node-differential privacy.

If 1 < k < |V |, then k-edge-differential privacy prevents

the disclosure of aggregate properties of any subset of k
edges. Notice that for those nodes whose degree is less

than k, it provides essentially equivalent protection as node-

differential privacy. Nodes whose degree is k or larger face

more exposure. However, nodes with large degree also have

greater influence on the structure of the graph. If our goal

is to also allow analysts to accurately measure the graph

structure, then it may be necessary to expose high degree

nodes to greater privacy risk.

For the remainder of the paper, we will use k-edge-

differential privacy as our privacy standard.

III. ESTIMATING THE DEGREE DISTRIBUTION UNDER

DIFFERENTIAL PRIVACY

In this section, we review the two techniques that form the

basis of our approach. The first is a technique by Dwork et

al. [5] for answering queries under differential privacy. The

second is a recent technique [8] that post-processes the noisy

output of the Dwork et al. algorithm to improve accuracy. We

use these techniques to obtain a noisy estimate of the degree

distribution of the graph. In the next section, we present a

fast and scalable implementation of the latter technique.

A. Differentially-private query answering

Dwork et al. [5] give a general technique that allows an

analyst to pose an arbitrary set of queries and receive noisy

answers. The input to the algorithm is a sequence of queries

Q where the answer to each query is a number in R. The

algorithm computes the true answer Q(I) to the queries on

the private data and then adds random noise to the answers.

The noise depends on the query sequence’s sensitivity.

Definition III.1 (Sensitivity). The sensitivity of Q, denoted
SQ, is defined as

SQ = max
I,I′∈nbrs(I)

‖Q(I)−Q(I ′)‖1 .

The sensitivity of a query depends on how neighboring

databases are defined. Intuitively, queries are more sensi-

tive under node-differential privacy than edge-differential

privacy, because the difference between neighboring graphs

is larger under node-differential privacy.

However, regardless of how neighbors are defined, the

following proposition holds. Let 〈Lap(σ)〉d denote a d-

length vector of independent random samples from a Laplace

distribution with mean zero and scale σ.

Proposition 1 ([5]). Let Q̃ denote the randomized algorithm
that takes as input a database I , a query Q of length d, and
some ε > 0, and outputs

Q̃(I) = Q(I) + 〈Lap(SQ/ε)〉d

Algorithm Q̃ satisfies ε-differential privacy.

While this proposition holds for any of the adaptations of

differential privacy, the accuracy of the answer depends on

the magnitude of SQ, which differs across the adaptations.

Using an example query, we illustrate the accuracy trade-

offs between k-edge- and node-differential privacy. Let Du

denote the query that returns the degree of node u if u ∈ V
and otherwise returns −1.

Since the addition of Laplace noise introduces error of

±SQ/ε in expectation, the accuracy of the answer depends

on ε and the sensitivity of Du. Under k-edge-differential

privacy, the sensitivity is k—in the worst case, neighboring

graphs differ by k edges that are all adjacent to u, making

u’s degree differ by k. Thus we expect an accurate answer

to Du when k/ε is small relative to u’s degree.

For node-differential privacy, however, the sensitivity is

unbounded, unless we impose some restriction on the size

of the input graph. If graphs are restricted to contain at most

n� nodes, then the sensitivity of Du is n�—the worst case

is a pair of neighboring graphs where u is connected to the

other n� − 1 nodes in one graph and absent in the other.

Since the magnitude of the error is the same as the range

of Du, the answer is useless. This example suggests it is

infeasible to accurately estimate node degrees under node-

differential privacy because the difference in node degrees

between neighboring graphs is too large.

Finally, we comment on the relationship between k and

ε. As observed previously, an algorithm that provides ε-

differential privacy for neighboring databases that differ

by a single record also provides kε-differential privacy for

neighboring databases that differ by at most k records [4].

To give a concrete example, suppose we run algorithm Q̃
with ε = 0.01 and compute SQ assuming edge-differential

privacy. Then as configured, Q̃ satisfies k-edge ε-differential

privacy for k = 1 and ε = 0.01; it also satisfies k-edge

ε-differential privacy for, say, k = 10 and ε = 0.1, or

even k = 100 and ε = 1.0. In the next section and in the

experiments, we assume that k = 1; however, the results

hold for k > 1 provided that ε is appropriately scaled as in

these examples.

B. Constrained inference

Hay et al. [8] introduce a post-processing technique that

operates on the output of algorithm Q̃. It can be seen as

an improvement on the basic algorithm of Dwork et al. [5]

that boosts accuracy without sacrificing privacy. The main

idea behind the approach is to use the semantics of a query

to impose constraints on the answer. While the true answer

Q(I) always satisfies the constraints, the noisy answer that

is output by Q̃ may violate them. Let q̃ denote the output of

Q̃. The constrained inference process takes q̃ and finds the

answer that is “closest” to q̃ and also satisfies the constraints

of the query. Here “closest” is measured in L2 distance and

the consistent output is called the minimum L2 solution.

Definition III.2 (Minimum L2 solution). Let Q be a query
sequence with a set of constraints denoted γQ. A minimum
L2 solution is a vector q that satisfies the constraints γQ

and minimizes ||q̃ − q||2.

As discussed in [8], the technique has no impact on

privacy since it requires no access to the private database,

only q̃, the output of the differentially private algorithm.

This technique can be used to obtain an accurate estimate

of the degree distribution of the graph. Our approach is to

ask a query for the graph’s degree sequence, a sequence

of non-decreasing numbers corresponding to the degrees

of the graph’s vertices. Of course, a degree sequence can

be converted to a degree distribution by simply counting

the frequency of each degree. The advantage of the degree

sequence query is that it is constrained, as explained below.

We now define S, the degree sequence query.2 Let

deg(i) return the ith smallest degree in G. Then, the

degree sequence of the graph is the sequence S =
〈deg(1) . . . deg(n)〉. Under 1-edge-differential privacy, the

sensitivity of S is 2: suppose a neighboring graph has an

additional edge between two nodes of degree d, d′, then two

values in S are affected, the largest i such that S[i] = d
becomes d+1, similarly for d′. Let S̃ denote the application

of the algorithm described in Proposition 1 to the S query.

A random output of S̃ is denoted s̃.

Query S is constrained because the degrees are positioned

in sorted order. The constraint set for S is denoted γS, and

contains the inequalities S[i] < S[i + 1] for 1 ≤ i < n. The

following theorem gives the minimum L2 solution for s̃.

Theorem 1 ([8]). Given s̃, let M [i, j] be the average of the
subsequence s̃[i, j]: M [i, j] =

∑j
k=i s̃[k]/(j − i + 1). The

minimum L2 solution s is unique and is defined as s[k] =
max1≤i≤k mini≤j≤n M [i, j].

We use S to refer to the algorithm that first computes S̃
and then applies constrained inference to obtain the above

minimum L2 solution. The following example provides an

intuition for how S uses sort constraints to reduce the error.

0 5 10 15 20 25

10
15

20

Index

C
ou

nt

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ●
ε= 1.0● S(I)

s~

s

Figure 1. Example sequence S(I), noisy estimate s̃ = S̃(I), and
constrained inference estimate s = S(I).

Example 1. Figure 1 shows a degree sequence S(I) for a 25
node graph, along with a sampled s̃ and inferred s. While the
values in s̃ deviate considerably from S(I), s lies very close
to the true answer. In particular, for subsequence [1, 20], the
true sequence S(I) is uniform and the constrained inference
process effectively averages out the noise of s̃. The twenty-
first position is a unique degree in S(I) and constrained
inference does not refine the noisy answer, i.e., s[21] = s̃[21].

As suggested by the example, the error of S can be

lower than that of S̃, particularly when the degree sequence

2We simplify the presentation, as well as later experiments, by assuming
that n is known. In practice, n is unlikely to be sensitive, especially for
large networks. Alternatively, one could derive a very accurate estimate of
n using Proposition 1 and then adjust S accordingly. This would result in
a small amount of additional error in the estimate for the number of low
degree nodes.

contains subsets of nodes with the same degree. Hay et

al. [8] theoretically analyze the error in terms of mean

squared error. For a query Q̃, the mean square error is

MSE(Q̃) = E[||Q̃ − Q(I)||2] =
∑

i E[(Q̃[i] − Q[i])2],
where the expectation is over the randomness of Q̃.

Theorem 2 ([8]). Let d be the number of unique degrees
in S(I). Then MSE(S) = O(d log3 n/ε2). In comparison,
MSE(S̃) = Θ(n/ε2).

This result shows that error scales linearly with the

number of unique degrees, rather than the number of nodes.

While this is a promising result, it is not clear what lower

MSE in the degree sequence means for an analyst interested

in studying the degree distribution. Furthermore, it is unclear

whether the closed form solution described in Theorem 1 can

be computed efficiently. These issues are addressed next.

IV. ALGORITHM FOR COMPUTING S

We now describe an efficient algorithm for applying

constrained inference to the noisy sequence s̃. A straight-

forward approach for computing s is to construct a dynamic

program based the definition of s from Theorem 1. However,

it requires linear time to compute each s[k], making the

total runtime quadratic, infeasible for many large graphs.

We present a novel algorithm that reduces the complexity

to linear time. The algorithm is a dynamic program that

works backwards from the end of the sequence, constructing

a partial solution for a subsequence of s. By working

backwards, we can reuse computations from previous steps

so updating the partial solution requires only (amortized)

constant time rather than linear time.

Before describing the algorithm, we introduce some no-

tation and restate the minimum L2 solution of Theorem 1

using this notation. Let the minimum cumulative average at

k be denoted as Mk = min1≤j≤k M [k, j]. Then we can

rewrite the solution at s[k] as follows:

s[k] = max
1≤i≤k

min
i≤j≤n

M [i, j] = max
1≤i≤k

Mi (1)

The basic idea behind the linear time algorithm is to

construct s incrementally, starting at the end of the sequence

and working backwards toward the beginning. At each

step �, the algorithm maintains a partial solution for the

subsequence s̃[�, . . . , n]—meaning that the sort constraints

are only enforced on this subsequence and the rest of s̃ is

ignored. At each step, the subsequence is extended to include

another element of s̃ and the partial solution is updated

accordingly.

We denote the partial solution as r̄�, and from Equation 1,

the value of r̄� at position k is equal to

r̄�[k] = max
�≤i≤k

min
i≤j≤n

M [i, j] = max
�≤i≤k

Mi (2)

Observe that partial solution r̄1 is equal to the desired s.

Given a partial solution r̄�, we can extend the solution to

�−1 by extending the subsequence to include the observation

s̃[�− 1] and updating the partial r̄� to obtain r̄�−1. There are

two components of the update procedure. First, we determine

the value for the new observation at position � − 1. From

Equation 2 the solution is simply the minimum cumulative

average starting at �− 1; i.e., r̄�−1[�− 1] = M�−1.

The second step is to check whether including the (�−1)th

element requires updating the existing solution for positions

�, . . . , n. From Equation 2, we can see that we must update

any k = �, . . . , n where the current solution r̄�[k] is smaller

than the new value at �− 1 position, r̄�−1[�− 1]:

r̄�−1[k] = max
�−1≤i≤k

Mi

= max
(
M�−1, max

�≤i≤k
Mi

)

= max
(
r̄�−1[�− 1], r̄�[k]

)
Thus, each step requires first computing M�−1 and then

updating the existing solution for positions �, . . . , n. We

show next that we can use the partial solution r̄� to simplify

the cost of finding M�−1. While computing an individual

M�−1 can take linear time in the worst-case, the amortized
cost is only O(1). Furthermore, we store partial solution r̄�

in such a way that once M�−1 is found, no additional work

is required to update the solution.

Given a partial solution r̄�, break it into subsequences

such that each subsequence is uniform and has maximal

length. Let J� be the set of indexes marking the ends of

the uniform subsequences. E.g., if all of the elements in r̄�

are distinct, then J� = {�, . . . , n}; if the values of r̄� are all

the same, then J� = {n}.
The following theorem shows how we can use r̄� to

compute the minimum cumulative average M�−1. Re-

call that M�−1 = min�−1≤k≤n M [� − 1, j]. Let j∗ de-

note the end index of this minimum average, i.e., j∗ =
arg min�−1≤j≤n M [�− 1, j].

Theorem 3. Given r̄� and a corresponding J�, one of the
following conditions holds. Either, j∗ = � − 1 or j∗ ∈ J�.
Furthermore, the set J�−1 = {j∗}∪{j|j ∈ J� and j > j∗}.

Theorem 3 shows that the set J� can be used to find

the minimum cumulative average for � − 1. The algorithm

proceeds by considering the indexes in J� in ascending

order. The initial cumulative average is set to M [�−1, �−1],
and the average is extended to the next endpoint in J� so

long as it reduces the average. When the average increases,

the algorithm terminates the search. The following Lemma

implies that this will be j∗.

Lemma 1. Let j∗ be defined as above, then
max�≤j≤j∗ Mj ≤M�−1 ≤Mj∗+1.

During the computation, we need only store the set J�

instead of the entire sequence of r̄�. Updating J� is much

faster than updating r̄� and from J� we can easily reconstruct

the solution r̄�. The details are shown in Algorithm 1, which

computes J� (lines 1-8) for � = n, . . . , 1. Then, it constructs

s using J1 (lines 10-16).

Algorithm 1 An algorithm for computing s given s̃

1: J ← ∅, J.push(n)
2: for k from n to 1 do
3: j∗ ← k, j ← J.top()
4: while J �= ∅ and M [j∗ + 1, j] ≤M [k, j∗] do
5: j∗ ← j, J.pop(), j ← J.top()
6: end while
7: J.push(j∗)
8: end for
9: b← 1

10: while J �= ∅ do
11: j∗ ← J.pop()
12: for k from b to j∗ do
13: s[k]←M [b, j∗]
14: end for
15: b← j∗ + 1
16: end while
17: return s

Example 2. The following table shows a sample input s̃
along with the computations used to compute s.

k s̃[k] s[k] arg mink≤j≤n M [k, j]
1 1 1 M [1, 1]
2 9 5 M [2, 5]
3 4 5 M [3, 4]
4 3 5 M [4, 4]
5 4 5 M [5, 5]

The algorithm begins with J5 = {5}. Stack J4 becomes
{4, 5} after s̃[4] is considered since s̃[4] < M5. When it
comes to s̃[3], the stack J3 is {4, 5} since M3 = M [3, 4].
When s̃[2] is added since M [2, 5] < M [2, 4], we know M2 =
M [2, 5] and J2 = {5}. Then s̃[1] arrives and makes J1

equal to {1, 5}. The algorithm rebuilds s as 1, 5, 5, 5, 5.

The time complexity of Algorithm 1 is O(n). First, once

the stack J is completed, reconstructing s (lines 10-16)

clearly takes O(n). Second, the complexity of computing

stack J is also linear: it can seen by considering the number

of times that line 5 executes. Since each execution of line

5 reduces the size of stack J by 1 and there are only O(n)
push operations on stack J , we know line 5 executes at most

O(n) times. In the worst-case the stack J can require O(n)
space. However, only the top of the stack is accessed during

computations and the rest can be written to disk as needed.

Incorporating additional constraints: The output of

the algorithm, s, may be non-integral and include negative

numbers, when in fact the values of the true degree sequence

are constrained to lie in {0, . . . , n − 1}. We would like

a solution that respects these constraints since they are

required in many applications. Theorem 4 shows that such

a solution is computed from s by simply rounding.

Theorem 4. Let γ′
S be the constraint set γS augmented with

the additional constraint that each count be an integer in the
set {0, . . . , n − 1}. Given s, the minimum L2 solution for
constraint set γS, let s′ denote the sequence derived from s
in which each element s[k] is rounded to the nearest value
in {0, . . . , n − 1}. Then s′ is a minimum L2 solution that
satisfies the constraint set γ′

S.

V. EXPERIMENTS

The goals of our experiments are two-fold. First, we

assess the scalability of the constrained inference algorithm

introduced in Section IV. Second, we want to understand

the tradeoff between privacy and utility. To do so, we first

characterize how the noise introduced for privacy distorts the

degree distribution. Then, using several metrics to compare

distributions, we assess how accurately the distributions

derived from S and S̃ approximate the true degree dis-

tribution. The accuracy depends on ε, which governs the

amount of privacy. We also assess how the privacy-utility

tradeoff changes with the size of the graph (does a bigger

graph allow for better utility at a fixed level of privacy?).

Finally, we consider one of the most common tasks that

analysts perform on a degree distribution: assessing whether

it follows a power-law. We measure how the added noise

affects the fit of a power-law model.

We experiment on both synthetic and real datasets. The

real datasets are derived from crawls of four online so-

cial networking sites: Flickr (≈1.8M nodes), LiveJour-
nal (≈5.3M), Orkut (≈3.1M), and YouTube (≈1.1M) [16].

To the best of our knowledge, these are the largest publicly

available social network datasets. The synthetic datasets

include Random, a classical random graph, which has a

Poisson degree distribution (λ = 10), and Power, a random

graph with a power-law degree distribution (α = 1.5).

A. Scalability

Figure 2 shows that the runtime of Algorithm 1 scales

linearly and is extremely fast. The left figure shows the

runtime on the real datasets and the right figure shows the

runtime on even larger synthetic datasets of up to 200M

nodes. In addition to Random and Power, we include two

non-random synthetic distributions, corresponding to the

best- and worst-case inputs for the runtime of the algorithm.

The best-case is Regular, a uniform degree distribution (all

nodes have degree 10), the worst-case is Natural, a distribu-

tion having one occurrence of each degree in {0, . . . , n−1}.
The small variation in runtime across datasets shows

that it is not particularly sensitive to the type of degree

distribution. Furthermore, it is extremely fast: processing a

200 million node graph takes less than 6 seconds. In contrast,

the algorithm of Hay et al. [8] takes 20 minutes for a 1

million node graph and over an hour to process a 2 million

node graph. The efficiency of the improved algorithm makes

the constrained inference approach practical for large graphs.

0.0e+00 1.0e+08 2.0e+08

0
1

2
3

4
5

6

Larger synthetic datasets

Data size

E
xe

cu
tio

n
tim

e(
se

co
nd

s)

power law
regular
random
natural

1e+06 3e+06 5e+06

0.
00

0.
05

0.
10

0.
15

Large real datasets

Datasize

E
xe

cu
tio

n
tim

e(
se

co
nd

s)

●

●

●

●

flickr

livejournal

orkut

youtube

power law
regular
random
natural

Figure 2. Runtime of Algorithm 1 on real (left) and larger synthetic
datasets (right).

B. Utility

We use two measures we use to assess accuracy. First,

we use the Kolmogorov-Smirnoff (KS) statistic, a measure

used to test whether two samples are drawn from the

same distribution. Let the empirical cumulative distribution

function (CDF) of sample X = X1, . . . , Xn be defined as

FX(x) = 1
n

∑n
i=1 I[Xi ≤ x]. Then the KS statistic between

X and Y is KS(X, Y) = maxx |FX(x)− FY (x)|.
The KS statistic is insensitive to differences in the tails of

the two distributions, so we also use the Mallows distance

(aka Earth Mover’s distance) to capture deviations in the tail.

Given samples X and Y each of size n, with X(i) denoting

the ith largest sample in X , the Mallows p-distance is

Mallowsp(X, Y) =
(1

n

n∑
i=1

∣∣X(i) − Y(i)

∣∣p)1/p

An example shows how Mallows distance is more sensitive

than the KS statistic to the tail of the distribution. Consider

three graphs A, B, and C in which all nodes have degree 1,

except in B one node has degree 2 and in C one node has

degree n−1. The KS statistic between A and either B or C
is O(n−1). The Mallows distance (p = 1) between A and B
is O(n−1), but between A and C, the Mallows distance is

O(1), capturing the difference between their largest degrees.

A visual comparison of distributions: Figure 3(a) shows

the true degree distribution along with the differentially

private approximations, revealing that S produces a very

accurate approximation while S̃ does not. The distributions

are represented using the complementary CDF (CCDF),

denoted CF and defined as CFX(x) = 1 − FX(x). Thus,

each line shows what fraction of nodes have a degree greater

than the given value on the x-axis. Abusing notation, we

use S(I), s̃, and s, which are all degree sequences, to refer

to their corresponding degree distributions. Thus, the line

labeled S(I) refers to the true degree distribution and the

lines labeled s̃ and s refer to the degree distributions derived

from differentially private sequences s̃ and s (here ε = 0.01).

Figure 3(a) shows that noise added to produce s̃ substan-

tially distorts the degree distribution. In contrast, s is a much

more accurate approximation of S(I). While s exhibits some

deviations from the true distribution, the deviations appear

to oscillate around the true distribution. This demonstrates

that, by exploiting the sort constraints, constrained inference

can filter out much of the noise in s̃.

Bias & variance analysis: In addition to showing

individual samples s̃ and s, we also analyze the bias and

variance of randomized algorithms S̃ and S. More pre-

cisely, we measure bias of S as the expected difference

between the CCDFs of S and S(I) for each degree—i.e.,

biasS(x) = E[CFS(x)−CFS(I)(x)] where the expectation

is over the randomness in S. The variance of S is varS(x) =
E[(CFS(x) − E[CFS(x)])2]. We focus on S because it is

evident from Figure 3(a) that S̃ exhibits substantial bias.

We evaluate the bias/variance of S empirically thru re-

peated sampling. The results are shown in the bottom panel

of Figure 3(a). The y-axis is the difference in cumulative

probability between S and S, CFS(x) − CFS(I)(x). The

line shows the average difference (bias) and the error bars

depict the standard deviation from the average (square root

of variance). The line remains near 0, suggesting that S may

be an unbiased or nearly unbiased estimator of S(I). The

variance peaks wherever the CCDF exhibits steepest change.

Accuracy vs. privacy: Figures 3(b) and 3(c) show

the relationship between privacy and the accuracy for two

measures of accuracy—KS in 3(b), Mallows in 3(c). We

report the average accuracy over 10 trials (random samplings

of s̃). The amount of privacy is controlled by the parameter ε
(horizontal axis)—smaller ε corresponds to stronger privacy.

The results show that S is uniformly more accurate than

S̃, across all datasets, settings of ε, and both measures

of accuracy. Furthermore, for low settings of ε (stronger

privacy), the difference in accuracy is greater, suggesting that

the benefit of constrained inference increases with privacy.

Also shown in the figure is the accuracy of an estimate

based on random sampling (10% of the degrees are sampled

uniformly at random). While sampling does not provide

differential privacy, it can serve as a useful reference point.

Sampling has very low KS distance (as expected), but higher

Mallows distance because random sampling is unlikely to

select the high degree nodes in the tail. In fact, sampling has

higher Mallows distance than S (except on Random, which

is a distribution without long tails). Since analysts often

cannot obtain complete graphs and must rely on samples,

this result suggests that the additional error due to privacy

can be small compared to the sampling error.

Accuracy vs. size: Figure 3(d) shows how the privacy-

utility tradeoff of S improves as the graph increases in size.

The figure reports accuracy on Power graphs of varying size,

from 10K to 5M nodes. The results show a clear separation

between S̃ and S: as the size of the graph increases, the

accuracy of S̃ remains constant whereas the accuracy of S
improves. Thus, with S, larger datasets yield either more

privacy (given a fixed accuracy target, we can lower ε) or

better utility (higher accuracy for fixed ε).

The accuracy of S̃ does not improve with graph size

because random noise is added to each degree, thus the

average error per degree does not change with the size of the

graph. However, as Example 1 showed, S can be very accu-

rate when the degree sequence contains long subsequences

of uniform degrees. As the graph size increases, accuracy

improves because the subsequences of uniform degree grow

longer (in a power-law graph, the expected proportion of

nodes with a given degree is a constant independent of n).

In this experiment, the parameters k and ε of the privacy

condition remain fixed as n increases. If node degrees were

to increase with graph size, then holding ε fixed would mean

that while the absolute disclosure remains fixed, the relative
disclosure about a node’s neighborhood would increase

with n. When evaluating graph models where node degrees

increase with size (e.g., forest-fire graphs [11]), it may be

appropriate to decrease ε as n increases.

Modeling power-law distributions: Our final exper-

iment assesses how accurately the analyst can estimate

the parameters of a power-law model using S̃ or S. The

experiment is designed as follows. First, we sample a Power
graph with parameters θ = (α = 1.5, xmin = 10). We

fix this as the true degree distribution. Then we sample s̃
and s and derive corresponding distributions. To each of

these three degree distributions, we fit a power-law model

using maximum likelihood [2]. The result is three different

estimates for the parameters θ, which we denote θ̂, θ̃, and

θ̄ respectively. We are interested in comparing the model fit

to the true degree distribution, θ̂, to the models fit under

differential privacy, θ̃ and θ̄.

The individual parameter estimates are shown in the

middle and right plot of Figure 3(e), but the leftmost plot

provides a holistic assessment of the model fit. It assesses

model fit using the D statistic of Clauset et al. [2] which

measures the KS statistic on the power-law tail of the

distribution. We consider two variants of this measure: in

one, the tail is defined by the estimate of xmin under s̃ or

s; in the other, xmin is based on the true xmin.

The plots reveal that using either S̃ or S, the analyst will

estimate a model that has a close fit to the tail of the original

(power-law) distribution, when the tail is defined by the

xmin estimated on the noisy distribution. However, it also

shows that the size of the tail is under-estimated (the power-

law behavior becomes apparent only for large degrees). If we

compare the models based on how well they fit the true tail

of the power-law distribution (solid lines of leftmost plot),

we see that S̃ has considerable distortion (note the log-scale)

while S is reasonably accurate even at small ε.

flickr
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

s~

s
s

x

0 1 4 9 19 49

−
0.

15
0.

05
livejournal

x

0 1 4 9 19 49

orkut

x

0 1 4 9 19 49 99

youtube

x

0 1 4 9 19 49

power

x

0 1 4 9 19 49 99

random

x

0 1 4 9 19 49

C
F

(x
)

bi
as

S
((x

))

(a) Complementary CDFs of S(I), s̃ and s (top). Bias of S (bottom)

flickr

εε

0.010 0.032 0.100 0.320 1.000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

S
~

S
sampling

livejournal

εε

0.010 0.032 0.100 0.320 1.000

orkut

εε

0.010 0.032 0.100 0.320 1.000

youtube

εε

0.010 0.032 0.100 0.320 1.000

power

εε

0.010 0.032 0.100 0.320 1.000

random

εε

0.010 0.032 0.100 0.320 1.000

K
S

 d
is

ta
nc

e
to

 S

(b) Privacy (ε) vs. Accuracy (KS distance)

flickr

εε

0.010 0.032 0.100 0.320 1.000

5e
−

02
5e

−
01

5e
+

00
5e

+
01 S

~

S
sampling

livejournal

εε

0.010 0.032 0.100 0.320 1.000

orkut

εε

0.010 0.032 0.100 0.320 1.000

youtube

εε

0.010 0.032 0.100 0.320 1.000

power

εε

0.010 0.032 0.100 0.320 1.000

random

εε

0.010 0.032 0.100 0.320 1.000

M
al

lo
w

s
di

st
an

ce
 to

 S

(c) Privacy (ε) vs. Accuracy (Mallows distance with p = 2)

0e+00 2e+06 4e+06

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

power

size

K
S

 d
is

ta
nc

e
to

 S

●●●●●●● ● ● ● ● ● ● ● ●

●

S
~

S
sampling

0e+00 2e+06 4e+06

1
2

5
10

50
20

0

power

size

M
al

lo
w

s
di

st
an

ce
 to

 S

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

S
~

S
sampling

(d) Size vs. Accuracy for fixed ε = 0.01

Power−law Fit

εε

K
S

 d
is

ta
nc

e
to

 s

0.010 0.032 0.100 0.320 1.000

0.
00

1
0.

00
5

0.
02

0
0.

10
0

θθ~ from x̂min

θθ~ from x~min

θθ from x̂min

θθ from xmin

θθ̂ from x̂min

Estimating αα

εε

A
bs

ol
ut

e
E

rr
or

 to
 αα̂

0.010 0.032 0.100 0.320 1.000

0.
00

2
0.

00
6

0.
01

0
0.

01
4

αα~
αα

Estimating xmin

εε

x

0.010 0.032 0.100 0.320 1.000

10
20

50
20

0
50

0

x~min

xmin

sample

(e) Accuracy of estimating power-law model using S̃, S.

Figure 3. The privacy-utility tradeoff of two differentially private estimators S̃ and S.

VI. RELATED WORK

The constrained inference technique that underlies this

work was originally proposed in [8]. That work focuses on

using constraints to improve accuracy for a variety of count-

ing queries. While applications to degree estimation were

recognized by the authors, a number of issues necessary

for practical network analysis were left open. The present

paper shows that inference only requires linear time and

that the framework can be extended to include the additional

constraints of integrality and non-negativity constraints. Fur-

ther, we resolve open questions about the practical utility of

the algorithm—showing that it scales to large graphs and

produces accurate, nearly unbiased estimates of the degree

distribution—and provide a more complete characterization

of the privacy-utility tradeoffs.

Most prior work focuses on protecting privacy through

anonymization, transforming the graph so that nodes cannot

be re-identified [3], [7], [13], [22], [23]. The output is a

published graph which the analyst can study in place of the

original. While publishing a graph allows a broader range of

analysis, anonymization is a much weaker notion of privacy

and is vulnerable to attack (e.g., [6], [21]).

Furthermore, for the analyst interested in studying the

degree distribution, these techniques may not scale to large

graphs and can introduce considerable distortion. For exam-

ple, the technique of Liu & Terzi [13], which is the most

scalable approach, appears to considerably bias power-law

degree distributions, reducing the power-law coefficient by

0.5 for reasonable settings of the privacy parameters. Our

estimates have much smaller error (e.g., 0.004 at ε = 0.01)

and satisfy a much stronger privacy condition.

Differential privacy has been an active area of research

(Dwork [4] provides a survey). Enabling accurate analysis

of social networks is an often mentioned goal, but we

are aware of only a few concrete results: techniques for

computing properties such as clustering coefficient that have

high sensitivity [19], [20] and a forthcoming approach that

estimates the parameters of a random graph model [15].

VII. CONCLUSION

For the task of approximating the degree distribution of a

private social network, we present an algorithm that protects

privacy, scales to large graphs, and produces extremely

accurate approximations. Our approach satisfies differential

privacy, which means that, unlike approaches based on

anonymization, it provides extremely robust protection, even

against powerful adversaries. Finally, given the importance

of the degree distribution to the structure of a graph, we

believe that our techniques are a critical first step towards

the ultimate goal of publishing synthetic graphs that are both

accurate and ensure differential privacy.

ACKNOWLEDGMENTS

Hay and Jensen were supported by the Air Force Research

Laboratory and the Intelligence Advanced Research Projects Ac-

tivity (IARPA), under agreement number FA8750-07-2-0158. Hay,

Miklau, and Li were supported by NSF CNS 0627642. The U.S.

Government is authorized to reproduce and distribute reprints for

Governmental purposes notwithstanding any copyright notation

thereon. The views and conclusion contained herein are those of the

authors and should not be interpreted as necessarily representing

the official policies or endorsements, either expressed or implied, of

the Air Force Research Laboratory and the Intelligence Advanced

Research Projects Activity (IARPA), or the U.S. Government.

REFERENCES

[1] L. Backstrom, C. Dwork, and J. Kleinberg. Wherefore art
thou R3579X? . In WWW, 2007.

[2] A. Clauset, C. R. Shalizi, and M. Newman. Power-law
distributions in empirical data. SIAM Review, 2009.

[3] G. Cormode, D. Srivastava, S. Bhagat, and B. Krishnamurthy.
Class-based graph anonymization for social network data. In
VLDB, 2009.

[4] C. Dwork. Differential privacy: A survey of results. In TAMC,
2008.

[5] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating
noise to sensitivity in private data analysis. In TCC, 2006.

[6] S. Ganta, S. Kasiviswanathan, and A. Smith. Composition
attacks and auxiliary information in data privacy. In KDD,
2008.

[7] M. Hay, G. Miklau, D. Jensen, D. Towsley, and P. Weis.
Resisting structural re-identification in anonymized social
networks. In VLDB, 2008.

[8] M. Hay, V. Rastogi, G. Miklau, and D. Suciu. Boosting the
accuracy of differentially-private histograms through consis-
tency. arXiv:0904.0942, 2009.

[9] A. Klovdahl, J. Potterat, D. Woodhouse, J. Muth, S. Muth,
and W. Darrow. Social networks and infectious disease: the
Colorado Springs study. Soc Sci Med, 1994.

[10] G. Kossinets and D. Watts. Empirical Analysis of an Evolving
Social Network. Science, 311(5757):88–90, 2006.

[11] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graphs over
time: Densification laws, shrinking diameters and possible
explanations. In KDD, 2005.

[12] L. Li, D. Alderson, J. Doyle, and W. Willinger. Towards
a theory of scale-free graphs: Definition, properties, and
implications. Internet Mathematics, 2005.

[13] K. Liu and E. Terzi. Towards identity anonymization on
graphs. In SIGMOD, 2008.

[14] P. Mahadevan, D. Kiroukov, K. Fall, and A. Vahdat. System-
atic topology analysis and generation using degree correla-
tions. In SIGCOMM, 2006.

[15] D. Mir and R. Wright. A differentially private graph estima-
tor. In International Workshop on Privacy Aspects of Data
Mining, 2009.

[16] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and
B. Bhattacharjee. Measurement and analysis of online social
networks. In IMC, 2007.

[17] A. Narayanan and V. Shmatikov. De-anonymizing social
networks. In IEEE Symposium on Security and Privacy
(Oakland), 2009.

[18] M. Newman, S. Strogatz, and D. Watts. Random graphs with
arbitrary degree distributions and their applications. Physical
Review E, 64(2), 2001.

[19] K. Nissim, S. Raskhodnikova, and A. Smith. Smooth sensi-
tivity and sampling in private data analysis. In STOC, 2007.

[20] V. Rastogi, M. Hay, G. Miklau, and D. Suciu. Relationship
privacy: Output perturbation for queries with joins. In PODS,
2009.

[21] R. C.-W. Wong, A. W.-C. Fu, K. Wang, and J. Pei. Minimality
attack in privacy preserving data publishing. In VLDB, 2007.

[22] B. Zhou and J. Pei. Preserving privacy in social networks
against neighborhood attacks. In ICDE, 2008.

[23] L. Zou, L. Chen, and T. Ozsu. K-Automorphism: A general
framework for privacy preserving network publication. In
VLDB, 2009.

