
DOI 10.1007/s00607-007-0227-1
Printed in The Netherlands

Computing 80, 189–201 (2007)

Accurate evaluation of divided differences for polynomial interpolation
of exponential propagators

M. Caliari, Padua

Received May 22, 2006; revised March 14, 2007
Published online: April 30, 2007

© Springer-Verlag 2007

Abstract

In this paper, we propose an approach to the computation of more accurate divided differences for the
interpolation in the Newton form of the matrix exponential propagator ϕ(hA)v, ϕ(z) = (ez−1)/z. In this
way, it is possible to approximate ϕ(hA)v with larger time step size h than with traditionally computed
divided differences, as confirmed by numerical examples. The technique can be also extended to “higher”
order ϕk functions, k ≥ 0.

AMS Subject Classifications: 65D05, 65D20, 65M20.

Keywords: Accurate divided differences, Newton interpolation, exponential integrators.

1. Introduction

Exponential integrators for large stiff systems of ODEs{
ẏ(t) = f (y(t))

y(0) = y0
, (1)

where y(t) = [y1(t), . . . , yn(t)]T, are based on the efficient evaluation of ϕk(hA)v,
where h is a scalar related to the time step, A ∈ R

n×n a matrix (e.g., the linear part
[21], [13], [12], [19], [9] or the Jacobian [11], [6], [24] of f), v ∈ R

n a vector and

ϕ0(z) = exp(z), ϕk(z) =
1∫

0

e(1−s)z sk−1

(k − 1)!
ds, k = 1, 2, . . . (2)

In particular, for a time-independent non-homogeneous linear system{
ẏ = Ay + b

y(0) = y0
(3)

it is possible to obtain an exact and explicit integrator{
y(tj+1) = yj+1 = yj + �tjϕ(�tjA)v, v = (Ayj + b)

y0 = y(0)
, (4)

190 M. Caliari

where

ϕ(z) = ϕ1(z) =
{

ez−1
z

z �= 0

1 z = 0
.

Besides well-known Krylov methods (cf. [8], [22], [11]), other polynomial methods,
based on the direct series expansion (cf. [16], [3]) or interpolation (cf. [23], [17], [18],
[5]) of the scalar function ϕ1 (or exp, for the homogeneous linear case), have been
proposed. As pointed out by some authors (cf. [21], [23], [15], [5]), a difficult task
for the latter methods is the accurate computation of the expansion or interpola-
tion coefficients for high degrees, which leads to the use of higher precision floating
point arithmetics, e.g., quadruple precision, or to the reduction of the maximum
allowed time step size �tj = tj+1 − tj , since the degree of the approximation must
be increased with the time step size.

In particular, the interpolation at degree m in the Newton form

ϕ1(hA)v ≈
m∑

i=0

di

i−1∏
s=0

(hA − zsIn)v, (5)

where di are the divided differences of the function ϕ1 at the points zi and In the
identity matrix of order n, requires divided differences with high relative accuracy,
since the norm of the products of matrices can rapidly increase.

In this paper, following [15] for the function exp, we present an algorithm for
the accurate computation of the divided differences for the function ϕ1, based on
the Taylor expansion of the matrix function ϕ1(Zm), Zm a bidiagonal matrix, with the
points zi on the main diagonal and ones below of dimension m + 1, that is much
smaller than the dimension n of system (3). The scaling and squaring technique
usually needed for the good accuracy of the Taylor expansion of exp (cf. [15]) or ϕ1
is here replaced by a time-marching scheme based on (4). Moreover, with respect
to [15], we also introduce an improvement (described in Sect. 3.2) which allows the
computation of a larger number of divided differences without the loss of accuracy
due to underflow issues. Numerical examples are performed using the ReLPM (Real
Leja Points Method) for the approximation of ϕ1(hA)v [4], [5], [6], [2], which is based
on the interpolation in the Newton form at Leja points (see Sect. 2) of a real interval
[a, b] related to the spectrum (or the field of values) of the matrix A. Numerical
experiments reported in Sect. 4.1 show that, for “large” h, the Newton polynomial
interpolation converges only with our accurate computation of divided differences,
whereas it does not in the case of standard computation of the divided differences,
both in double and in quadruple precision.

For nonlinear systems (3), higher-order exponential integrators have been proposed
(cf. [13], [12], [19], [24]), which require the approximation of ϕk(hA)v also for k > 1.
In Sect. 3.1, we describe how to compute accurate divided differences for a general
ϕk function, k ≥ 0.

Accurate evaluation of divided differences 191

2. Standard divided differences

Let {xi}mi=0 be a set of distinct real points in the interval [a, b], with x0 = a and
xm = b. As it is well known, the divided differences for the function ϕ1 are di =
ϕ1[x0, x1, . . . , xi−1, xi], i = 0, . . . , m, where

ϕ1[x] = ϕ1(x),

ϕ1[x0, x] = ϕ1[x]−ϕ1[x0]
x−x0

(6a)

and, for j = 0, . . . , m − 1,

ϕ1[x0, . . . , xj−1, xj , x] = ϕ1[x0, . . . , xj−1, x] − ϕ1[x0, . . . , xj−1, xj]
x − xj

. (6b)

Hence, divided differences can be computed recursively following (6), even if this
approach is very vulnerable to roundoff errors.

First of all, the simple computation of the function ϕ1(x) can lead to a less and
less accurate value when x approaches 0. A more accurate computation of ϕ1(x),
suggested in [10, pp. 22–24], can be achieved by

ϕ1(x) =

⎧⎪⎪⎨
⎪⎪⎩

1 if |x| < ε

ex−1
log ex if ε ≤ |x| < 1

ex−1
x

if 1 ≤ |x|
, (7)

where ε is the machine precision, or using its Taylor series expansion for |x| < 1.

Moreover, as pointed out in [20], [23], in order to prevent numerical difficulties
related to overflow or underflow, it is convenient to interpolate, by a change of vari-
ables, the function ϕ1(c+γ ξ) of the independent variable ξ , ξ ∈ [−2, 2], c = (b+a)/2
and γ = (b − a)/4. The Standard Recurrence scheme (SR, based on (6), of total
cost O(m2/2)) for the computation of the divided differences for the interpolation
of ϕ1 (h(c + γ ξ)) on [−2, 2] is reported in Table 1. It is useful to introduce the scalar
parameter h which is related to the time step of the exponential integrator (see the
numerical experiments in Sect. 4.1).

Table 1. Standard Recurrence scheme (SR) for divided differences

• input: m, {ξi}mi=0 ∈ [−2, 2], h, c, γ
• for i = 0, . . . , m

• di := ϕ1 (h(c + γ ξi))
• for j = 1, . . . , i

• di := (di − dj−1)/(ξi − ξj−1)
end for

end for
• output: Divided differences {di}mi=0, for ϕ1 (h(c + γ ξ)) at {ξi}mi=0

192 M. Caliari

Finally, the sensibility of the Newton interpolation form to perturbations depends
on the distribution and ordering of the interpolation points: in [20] it is shown that
Leja points for the interval [−2, 2] assure optimal accuracy. If ξ0 ∈ [−2, 2] with
|ξ0| = 2 and {ξi}m−1

i=0 are the first m Leja points, the (m + 1)-th Leja point ξm is
defined recursively in such a way that

m−1∏
i=0

|ξm − ξi | = max
ξ∈[−2,2]

m−1∏
i=0

|ξ − ξi |. (8)

The first m Leja points for [−2, 2] can be extracted from a sufficiently larger set of
uniform distributed points on the interval and stored once and for all. Alternatively,
Fast Leja Points [1] can be used. Usually, ξ0 is chosen equal to 2 and thus ξ1 is the
other extreme point −2.

For high degree interpolation, a large number of divided differences are required.
Even with Leja points in [−2, 2], due to cancellation errors the SR cannot pro-
duce accurate divided differences with magnitude smaller than machine precision
(see Table 3 and [21] for an analogous with the coefficients of the Chebyshev series
expansion of ϕ1). This can lead to non-convergence of the polynomial interpolation
in the matrix case, where the divided differences are the coefficients of products of
matrices, which usually have very large norms.

3. Divided differences via matrix function

It can be shown (cf. [15]) that the divided differences {di}mi=0 for a function f (h(c +
γ ξ)) of the independent variable ξ at points {ξi}mi=0 ∈ [−2, 2] are the first column of
the matrix function f (Hm), where

Hm = h(cIm+1 + γ�m), �m =

⎛
⎜⎜⎜⎜⎜⎜⎝

ξ0
1 ξ1

1
. . .

. . .
. . .

1 ξm

⎞
⎟⎟⎟⎟⎟⎟⎠

.

In order to compute the first column of ϕ1(Hm), that is ϕ1(Hm)e1, we can consider
approaches based on Taylor expansion of order p with scaling and squaring (cf. [15],
p = 16), rational (p, q) Padé approximation with scaling and squaring (cf. [11],
p = q = 6) or rational (p, q) Chebyshev (cf. [14], [8], p = q = 14 or p = q = 16),
where p and q are respectively the polynomial degree of the numerator and of the
denominator of the approximation.

Taylor and rational Padé expansions are accurate only when all xi = h(c + γ ξi)

are close to zero. The matrix Hm has to be scaled by a factor τ in such a way that
maxi |τxi | < 1.59 for Taylor expansion of ϕ1(x) (cf. [15]) or ‖τHm‖∞ < 0.5 for
rational Padé expansion of ϕ1(x) (cf. [11]).

Accurate evaluation of divided differences 193

The standard technique of scaling and squaring for exp(z), with τ = 2−J for some
J , could be extended to the function ϕ1(z) by applying the recurrence (cf. [11])

ϕ1(2z) = ϕ1(z)

(
zϕ1(z)

2
+ 1

)
. (9)

Since ϕ1(τHm) is triangular, it would require O(m3/6) operations. Here we prefer
to exploit the exact time-marching scheme (4) in the following way: if one considers
the ODE {

ẏ(t) = Hmy(t) + e1

y(0) = 0
(10)

then [d0, d1, . . . , dm]T = ϕ1(Hm)e1 = yJ , where{
yj+1 = yj + τϕ1(τHm)(Hmyj + e1), j = 0, . . . , J − 1, τ = 1/J

y0 = 0,
. (11)

It is then possible to compute the whole matrix function ϕ1(τHm) (we used the Taylor
expansion of order p = 16, which does not require the solution of linear systems)
and then to recover ϕ1(Hm)e1 with the cost of triangular matrix vector products
O(m2/2). The procedure for the computation of ϕ1(Hm)e1 can be split into the 3
steps:

(1) scale the matrix Hm by a factor τ = 1/J such that maxi |τxi | < 1.59;
(2) compute ϕ1(τHm) by the Taylor expansion;
(3) recover, in J steps, ϕ1(Hm)e1 via (11).

Due to the special structure of Hm, the computation of ϕ1(τHm) can be carried
out essentially by Algorithm TS(II) in [15], and given as Algorithm TS(ϕk) in
Table 2, adapted for the generic function ϕk (τh(c + γ ξ)). The upper triangular
part of ϕ1(τHm) is empty and can be used to store an auxiliary vector for the com-
putation of Hmyj + e1 in (11): it is then possible to apply the time-marching scheme
storing only a matrix of dimension (m + 1) × (m + 1).

3.1. Higher-order ϕk functions

For higher-order ϕk functions, k > 1, we need a time-marching scheme similar
to (11) to recover ϕk(Hm)e1 from ϕk(τHm). It is possible to write the time-marching
scheme for the generic ϕk function, k ≥ 0. First, notice that

ϕk(z) = 1
k!

+ ϕk+1(z)z (12)

and

hkϕk(hz) =
h∫

0

e(h−s)z sk−1

(k − 1)!
ds.

194 M. Caliari

Table 2. Algorithm TS(ϕk) (Taylor Series for ϕk functions)

• input: m, {ξi}mi=0 ∈ [−2, 2], h, c, γ , τ
• for 0 ≤ j ≤ i ≤ m

• Fi,j := Fj,i := (τhγ)i/(i + k − j)!
end for

• for l = 2, . . . , 17
• for j = 0, . . . , m − 1

• Fj,j := τh(c + γ ξj) · F(j, j)/(l + k − 1)
• for i = j + 1, . . . , m

• Fj,i := τh
(
(c + γ ξi) · Fj,i + γ · Fj,i−1)

)
/(l + i − j + k − 1)

• Fi,j := Fi,j + Fj,i

end for
end for

end for
• for j = 0, . . . , m

• Fj,j := ϕk(τh(c + γ ξj))
end for

• output: F ≈ ϕk(τHm), where Fe1 are the divided differences for ϕk (τh(c + γ ξ)) at
{ξi}mi=0

If we consider, for k = 0, {
y′(t) = Hmy(t)

y(0) = e1
(13a)

and, for k > 0, {
ẏ(t) = Hmy(t) + tk−1

(k−1)!e1

y(0) = 0
(13b)

then y(1) = ϕk(Hm)e1, since y(t) = tkϕk(tHm)e1. Then, set t0 = 0, y0 = y(0),
τ = 1/J and tj = jτ . From the variation-of-constants formula, we have

yj+1 = y(tj+1) = ϕ0(τHm)yj +
tj+1∫
tj

ϕ0((tj+1 − s)Hm)
sk−1

(k − 1)!
e1ds

= ϕ0(τHm)yj +
τ∫

0

ϕ0((τ − ζ)Hm)
(ζ + tj)

k−1

(k − 1)!
e1dζ. (14)

The last integral is
τ∫

0

ϕ0((τ − ζ)Hm)
(ζ + tj)

k−1

(k − 1)!
e1dζ

=
k−1∑
i=0

(
k − 1

i

) τ∫
0

ϕ0((τ − ζ)Hm)
ζ i tk−1−i

j

(k − 1)!
e1dζ

Accurate evaluation of divided differences 195

=
k−1∑
i=0

(k − 1)!
(k − 1 − i)!(k − 1)!

τ∫
0

ϕ0((τ − ζ)Hm)
ζ i tk−1−i

j

i!
e1dζ

=
k−1∑
i=0

1
(k − 1 − i)!

tk−1−i
j τ i+1ϕi+1(τHm)e1. (15)

Now, using (12), for 0 ≤ i + 1 ≤ k,

ϕi+1(z) = ϕk(z)z
k−i−1 +

k−1∑
l=i+1

zl−i−1

l!
, (16)

it is possible to rewrite all the ϕi+1 functions in (15) in terms of ϕk and putting this
inside (15) we get

k−1∑
i=0

1
(k − i − 1)!

tk−1−i
j τ i+1ϕi+1(τHm)e1

=
k−1∑
i=0

1
(k − i − 1)!

tk−1−i
j

⎛
⎝τ kϕk(τHm)Hk−i−1

m e1 +
k−1∑

l=i+1

τ lH l−i−1
m

l!
e1

⎞
⎠ .

Coming back to (14), we only need to add ϕ0(τHm)yj by (16) for i + 1 = 0

yj+1 = τ kϕk(τHm)

(
k−1∑
i=0

(tjHm)k−i−1

(k − i − 1)!
e1 + Hk

myj

)

+
k−1∑
i=0

⎛
⎝ tk−1−i

j

(k − i − 1)!

k−1∑
l=i+1

τ lH l−i−1
m

l!
e1 + (τHm)i

i!
yj

⎞
⎠

= τ kϕk(τHm)

(
k−1∑
l=0

(tjHm)l

l!
e1 + Hk

myj

)

+
k−1∑
i=0

(τHm)i

(
k−2−i∑
l=0

tk−1−l
j

(k − 1 − l)!
τ l+1

(l + i + 1)!
e1 + yj

i!

)
. (17)

The solution of (13) y(tj+1) = yj+1 can be then exactly recovered by the computa-
tion of one matrix function ϕk(τHm), again by Algorithm TS(ϕk) in Table 2, applied
to a vector involving Hm and yj and yJ = ϕk(Hm)e1. Notice that, whereas the ϕ1
function can be used in the exact exponential integrator (4), where the time step
�tj can be arbitrarily large and the computation of ϕ1(Hm)e1 may require a large
number J of sub-steps in (11), higher order ϕk functions are used only for non-exact
higher-order exponential integrators (cf. [13], [12], [19], [24]), with a truncation error
depending on the time step size.

196 M. Caliari

3.2. Comments on algorithm TS(ϕk)

In the first for loop in Algorithm TS(ϕk) in Table 2 (and also in Algorithm TS(II)
in [15]), the terms Fi,j = Fj,i , which, at this stage, are the coefficients of the Taylor
expansion, can underflow with respect to double precision machine arithmetic for
i sufficiently large, and initialized to zero, thus leading to a loss of accuracy of the
corresponding divided differences. The easiest way to overcome this problem is to
fix a maximum number M1 of computable divided differences (and, consequently,
of the interpolation degree), with the drawback, when applying the interpolation
to exponential integrators, of the reduction of the maximum allowed time step. In
order to increase the maximum number of divided differences, one can pre-multiply
the terms Fi,j by a factor S “large” (say, S = 10300) and compute them as

F̃i,j = S(τhγ)i/(i + k − j)! = exp
[
ln S(τhγ)i − ln
(i + k + 1 − j)

]
= exp [ln(S) + i ln(τhγ) − ln
(i + k + 1 − j)] ,

where
(·) is the Euler’s Gamma function: clearly, the values ln
(i + k + 1 − j)

have to be computed directly using the function ln
 (cf., e.g., [7]). With this trick,
the terms F̃i,j can again be initialized to zero, when the argument of the exponential
function is negative and large in magnitude, but for i > M2
 M1 (see the next
section for typical values of M1 and M2). At the end of the algorithm, the matrix
elements F̃i,j , i �= j have to be scaled by the factor S−1 to get Fi,j . It is clear that
this strategy makes sense only when the final value of Fi,j does not underflow.

In order to show the gain of such an approach, let us consider the following example:

1/170! + 1/171! = 172/171! = exp(ln(172) − ln
(172)) ≈ 1.3860 · 10−307. But a
direct computation in double precision arithmetic leads to 1.3779 ·10−307 ≈ 1/170!,
since 1/171! underflows, with a relative error of 1/172 ≈ 0.0058. The computation
we suggest, S−1(exp(ln(S)− ln
(171))+ exp(ln(S)− ln
(172))), leads to a relative
error of about 1.5728 · 10−13.

4. Matrix polynomial interpolation: the Real Leja Points Method

In order to compute ϕ1(hA)v we use the Real Leja Points Method (ReLPM), pro-
posed in [5] and applied to advection-diffusion-reaction models in [4], [6], which has
shown very attractive computational features. It is based on Newton interpolation
at a sequence of Leja points on the real focal interval of a family of confocal ellip-
ses in the complex plane. The use of Leja points is suggested, besides the optimal
properties in the Newton interpolation form, by the fact that they guarantee maxi-
mal and superlinear convergence of the interpolant on every ellipse of the confocal
family, and thus superlinear convergence of the corresponding matrix polynomials.

A key step in the approximation procedure is given by estimating cheaply a real focal
interval, say [a, b], such that the “minimal” ellipse of the confocal family which con-
tains the spectrum (or the field of values) of the matrix has a capacity, the half sum
of the semi-axis, that is not too large. The numerical experience with matrices arising

Accurate evaluation of divided differences 197

from stable spatial discretizations of parabolic equations, which are the main target
of the ReLPM code [2], has shown that good results can be obtained at a very low
cost, simply by intersecting the Gerschgorin’s disks of the matrix with the real axis.

The kernel of the ReLPM code is given then by the interpolation of ϕ1(h(c + γ ξ)),
[a, b] = [c − 2γ, c + 2γ] at the Leja points {ξi} of the reference interval [−2, 2]. The
matrix Newton polynomial of degree m is

pm(hA)v = pm−1(hA)v + dm[(A − cIn)/γ − ξm−1In]qm−1, (18a)

where

qm−1 =
m−2∏
s=0

[(A − cIn)/γ − ξsIn]v

[d0, . . . , dm]T = ϕ1(Hm)e1

p0(hA)v = d0v.

(18b)

4.1. Numerical example

Let us consider the advection-diffusion equation

⎧⎪⎨
⎪⎩

u̇ = ∇2u − 〈α, ∇u〉 + b � = (0, 1)2

u(0) = u0 t = 0

u = 0 ∂�

, (19)

with α = (100, 100), b ≡ 10 and u0 ≡ 1. A discretization with central, second
order finite difference with n = 10000 uniformly distributed internal nodes leads to
a system of ODEs of type (3). We are interested in the approximation of y(�t) =
y0 + �tϕ1(�tA)(Ay0 + b), where the time step is h = �t = 0.005, and the spectral
interval for hA, estimated by Gerschgorin’s disks, is h · [−81608, 0] = [−408.04, 0].
Notice that this is a “large” time step, since there is a relative variation of the norm
of the solution y(�t) with respect to the norm y(0) of about one half.

First, we compute the first 223 divided differences at Leja points in [−2, 2] for
ϕ1(h(c+γ ξ)), with c =−40804 and γ = 20402 with the standard recurrence scheme
SR, in double and quadruple precision, and with the Taylor series approach TS(ϕk),
without and with the use of the ln
 function as described in Sect. 3.2. The results
are collected in Table 3. Both double and quadruple precision standard differences
stagnate around the corresponding machine precision. The divided differences pro-
duced by TS(ϕk) do not stagnate, but, without the use of the ln
 function, the first
terms initialized to zero appear at degree M1 = 143, whereas with the ln
 function
at degree M2 = 255. These values are typical for the discretization adopted, with
a spectral interval for the matrix A of the type [a, 0], since maxi |τh(c + γ ξi)| =
|τh(c + γ ξ1)| = |τh(−2γ + γ · (−2))| = τh · 4γ , which should be smaller than 1.59

198 M. Caliari

0 50 100 150 200 222

Degree of approximation

1e-08

1e-04

1e+00

1e+04

1e+08

1e+12

1e+16

1e+20

1e+24

1e+28
E

st
im

at
ed

 e
rr

or
 (

in
 E

uc
lid

ea
n

no
rm

)

Algorithm SR (double prec.)
Algorithm SR (quadr. prec.)
Algorithm TS(j

k
) (without lnG)

Algorithm TS(j
k
) (with lnG)

Fig. 1. Estimate relative errors for the matrix interpolation

(see Sect. 3) and the smallest term not initialized to zero in the first loop of TS(ϕk)

in Table 2 is

(τhγ)142

(142 + 1)!
<

(1.59/4)142

(142 + 1)!
≈ 3.3 · 10−305.

With the trick of the ln
 function it is instead

exp (ln(S) + 254 · ln(1.59/4) − ln
(254 + 2)) ≈ 5.1 · 10−307.

As in IEEE specifications, here we are assuming that the minimum value in double

precision is 2−1021−1 ≈ 2.2 · 10−308.

Next, we consider matrix interpolation. In the approximation (18), setting pm =
pm(hA)(Ay0 + b) we can choose

‖pm+1 − pm‖2 = |dm+1| · ‖qm+1‖2 ≈ em = ‖y(h) − (y0 + hpm)‖2 (20)

as an estimate of the approximation error. In Fig. 1, the estimated error relative to
‖y0‖2 computed with the four approaches described above is reported. With divided
differences computed with the standard recurrence, the matrix interpolation does
not converge, because they stagnate around machine precision (see Table 3) whereas
the norm of the qm increases in m. In this case, it would be necessary to split the time
step �t , choosing h < �t and applying the propagator (4). On the other hand, with

Accurate evaluation of divided differences 199

T
ab

le
3.

D
iv

id
ed

di
ff

er
en

ce
s

at
L

ej
a

po
in

ts
in

[−
2,

2]
fo

r
ϕ

1(
h
(c

+
γ
ξ
))

,h
=

0.
00

5,
c

=
−4

08
04

,γ
=

20
40

2

i
SR

,d
ou

bl
e

pr
ec

is
io

n
SR

,q
ua

dr
up

le
pr

ec
is

io
n

T
S(

ϕ
k
)

T
S(

ϕ
k
)

w
it

h
ln

0
0.

10
00

00
00

00
00

00
00

E
+

01
0.

10
00

00
00

00
00

00
00

E
+

01
0.

10
00

00
00

00
00

00
00

E
+

01
0.

10
00

00
00

00
00

00
00

E
+

01
1

0.
24

93
87

31
49

69
12

07
E

+
00

0.
24

93
87

31
49

69
12

07
E

+
00

0.
24

93
87

31
60

80
46

68
E

+
00

0.
24

93
87

31
60

80
46

68
E

+
00

2
0.

12
40

80
97

24
53

68
10

E
+

00
0.

12
40

80
97

24
53

68
10

E
+

00
0.

12
40

80
97

18
93

90
15

E
+

00
0.

12
40

80
97

19
02

15
15

E
+

00
3

0.
39

20
87

24
73

78
04

10
E

-0
1

0.
39

20
87

24
73

78
04

12
E

-0
1

0.
39

20
87

25
38

81
21

27
E

-0
1

0.
39

20
87

25
30

82
89

95
E

-0
1

4
0.

56
60

66
33

73
58

46
62

E
-0

1
0.

56
60

66
33

73
58

46
63

E
-0

1
0.

56
60

66
33

54
17

94
52

E
-0

1
0.

56
60

66
33

57
15

60
29

E
-0

1
5

0.
15

34
63

73
54

85
11

65
E

-0
1

0.
15

34
63

73
54

85
11

63
E

-0
1

0.
15

34
63

73
77

24
19

52
E

-0
1

0.
15

34
63

73
74

32
36

19
E

-0
1

6
0.

56
73

61
74

74
02

14
47

E
-0

1
0.

56
73

61
74

74
02

14
48

E
-0

1
0.

56
73

61
74

68
96

24
16

E
-0

1
0.

56
73

61
74

69
55

12
90

E
-0

1
7

0.
40

54
41

89
42

88
37

43
E

-0
1

0.
40

54
41

89
42

88
37

43
E

-0
1

0.
40

54
41

89
44

31
61

14
E

-0
1

0.
40

54
41

89
44

17
46

93
E

-0
1

8
0.

15
27

63
54

36
58

79
82

E
-0

1
0.

15
27

63
54

36
58

79
82

E
-0

1
0.

15
27

63
54

34
53

86
69

E
-0

1
0.

15
27

63
54

34
95

78
54

E
-0

1
9

0.
39

20
43

39
59

85
10

63
E

-0
2

0.
39

20
43

39
59

85
10

67
E

-0
2

0.
39

20
43

40
75

66
11

81
E

-0
2

0.
39

20
43

40
88

82
55

79
E

-0
2

..
.

..
.

..
.

..
.

..
.

11
2

0.
84

69
61

43
73

62
36

88
E

-1
6

0.
88

34
18

30
05

39
75

21
E

-1
6

0.
88

34
18

30
05

28
82

45
E

-1
6

0.
88

34
18

30
05

27
80

12
E

-1
6

11
3

0.
11

88
51

43
64

82
65

36
E

-1
6

0.
27

72
62

93
11

25
60

06
E

-1
6

0.
27

72
62

93
11

32
21

81
E

-1
6

0.
27

72
62

93
11

29
18

27
E

-1
6

11
4

0.
32

40
36

86
31

73
04

59
E

-1
6

0.
29

11
53

60
30

33
66

66
E

-1
6

0.
29

11
53

60
30

32
14

65
E

-1
6

0.
29

11
53

60
30

33
44

24
E

-1
6

11
5

0.
20

06
95

31
77

75
07

41
E

-1
6

0.
70

45
99

36
98

02
27

70
E

-1
7

0.
70

45
99

36
97

80
26

49
E

-1
7

0.
70

45
99

36
97

64
50

99
E

-1
7

11
6

–
0.

70
63

94
18

49
69

11
42

E
-1

7
0.

44
88

13
59

82
78

26
59

E
-1

7
0.

44
88

13
59

82
87

83
91

E
-1

7
0.

44
88

13
59

82
91

35
11

E
-1

7
11

7
0.

14
06

46
36

30
19

67
44

E
-1

6
0.

80
55

98
53

58
45

35
66

E
-1

7
0.

80
55

98
53

58
42

69
29

E
-1

7
0.

80
55

98
53

58
42

31
88

E
-1

7
11

8
–

0.
54

57
06

62
78

11
51

70
E

-1
7

0.
22

95
19

50
69

89
52

28
E

-1
7

0.
22

95
19

50
69

91
49

68
E

-1
7

0.
22

95
19

50
69

91
27

32
E

-1
7

11
9

0.
18

94
41

40
32

45
54

43
E

-1
6

0.
85

81
93

45
50

22
45

45
E

-1
8

0.
85

81
93

45
50

16
45

91
E

-1
8

0.
85

81
93

45
50

15
70

33
E

-1
8

12
0

0.
20

68
65

13
08

10
91

73
E

-1
6

0.
20

00
53

21
27

81
99

05
E

-1
8

0.
20

00
53

21
27

66
10

69
E

-1
8

0.
20

00
53

21
27

96
00

88
E

-1
8

12
1

–
0.

67
68

99
65

88
34

96
89

E
-1

7
0.

47
29

81
13

76
05

78
97

E
-1

8
0.

47
29

81
13

76
10

08
71

E
-1

8
0.

47
29

81
13

76
02

50
84

E
-1

8
12

2
0.

20
25

82
76

16
71

59
50

E
-1

6
0.

25
82

27
52

41
18

92
98

E
-1

8
0.

25
82

27
52

41
17

31
75

E
-1

8
0.

25
82

27
52

41
20

30
80

E
-1

8
..

.
..

.
..

.
..

.
..

.

17
5

0.
19

86
12

09
69

06
41

87
E

-1
7

0.
18

82
47

25
83

09
24

73
E

-3
4

0.
30

50
58

42
49

68
50

31
E

-3
4

0.
30

50
58

42
49

69
28

70
E

-3
4

17
6

0.
16

91
56

68
78

61
47

87
E

-1
7

0.
10

34
68

00
78

63
48

12
E

-3
4

0.
27

20
98

59
19

91
75

50
E

-3
4

0.
27

20
98

59
19

91
71

29
E

-3
4

17
7

–
0.

79
26

50
36

40
57

07
88

E
-1

7
0.

55
79

08
90

93
87

89
82

E
-3

5
0.

60
32

96
99

08
04

41
98

E
-3

5
0.

60
32

96
99

08
02

15
89

E
-3

5
17

8
0.

61
73

08
02

11
27

37
47

E
-1

7
–

0.
33

10
70

45
13

15
93

64
E

-3
5

0.
23

90
79

07
57

61
83

38
E

-3
5

0.
23

90
79

07
57

62
48

17
E

-3
5

17
9

0.
40

86
47

70
88

52
10

08
E

-1
7

–
0.

83
44

63
40

21
24

72
42

E
-3

4
0.

33
32

23
91

59
15

69
40

E
-3

5
0.

33
32

23
91

59
15

57
67

E
-3

5
18

0
0.

92
81

49
46

79
15

42
54

E
-1

7
–

0.
35

12
31

20
81

98
28

13
E

-3
4

0.
79

36
33

96
10

17
30

81
E

-3
6

0.
79

36
33

96
10

16
62

52
E

-3
6

18
1

–
0.

55
61

55
05

95
12

88
62

E
-1

7
–

0.
20

63
68

69
90

32
83

03
E

-3
5

0.
25

20
23

11
11

34
22

17
E

-3
6

0.
25

20
23

11
11

34
62

01
E

-3
6

18
2

0.
63

11
76

50
03

58
60

08
E

-1
8

–
0.

73
97

39
52

20
49

84
19

E
-3

5
0.

13
33

87
60

92
25

63
26

E
-3

6
0.

13
33

87
60

92
25

49
25

E
-3

6
18

3
0.

12
98

11
02

79
05

21
47

E
-1

6
–

0.
48

31
23

48
32

40
96

14
E

-3
5

0.
28

52
44

55
57

93
52

19
E

-3
7

0.
28

52
44

55
57

90
72

76
E

-3
7

18
4

–
0.

50
18

80
34

62
83

67
61

E
-1

7
–

0.
31

56
88

85
04

58
63

56
E

-3
4

0.
32

72
63

67
24

98
35

05
E

-3
7

0.
32

72
63

67
24

99
13

55
E

-3
7

18
5

0.
68

64
89

97
48

12
78

04
E

-1
7

–
0.

20
44

37
51

99
73

94
52

E
-3

4
0.

94
78

82
14

63
06

82
31

E
-3

8
0.

94
78

82
14

63
01

30
70

E
-3

8

200 M. Caliari

the Taylor expansion approach the estimated relative error is below 10−8 at degree
m = 222. Notice that convergence is achieved both without and with the use of the
ln
 function. However, since without the use of the ln
 function there is surely a
loss of accuracy at degree M1 = 143, it is not safe to use the divided differences
beyond that degree.

Finally, notice that the error estimate grows up to about 106 before starting to
decrease. This is not unexpected, since the decrease of the divided differences starts
to overtake the polynomial increase of the norm of the vector qm only for a suffi-
ciently high degree m.

5. Conclusions

We have shown that with divided differences accurately computed essentially by
Algorithm TS(ϕk) in Table 2 and the time-marching scheme (11) (with a total cost
of O(m2/2)), it is possible to interpolate in the Newton form the matrix function
ϕ1(hA)v with larger time step size h than with divided differences computed by the
standard recurrence scheme (6) (both in double and in quadruple precision). Here
A was the discretization matrix of a linear advection-diffusion PDE (19) and the
matrix function ϕ1(hA)v has been used inside the exact exponential integrator (4).
This approach can be extended to higher-order functions ϕk, k ≥ 0.

References

[1] Baglama, J., Calvetti, D., Reichel, L.: Fast Leja points. Electron. Trans. Numer. Anal. 7, 124–140
(1998).

[2] Bergamaschi, L., Caliari, M., Martı́nez, A., Vianello, M.: Comparing Leja and Krylov approxima-
tions of large scale matrix exponentials. In: Computational science – ICCS 2006 (Alexandrov, V. N.,
van Albada, G. D., Sloot, P. M. A., and Dongarra, J., eds.). Lecture Notes in Computer Science,
vol. 3994. Berlin Heidelberg: Springer 2006. 6th Int. Conf., Reading, UK, May 28–31, 2006, Proc.,
Part IV, pp. 685–692.

[3] Bergamaschi, L., Caliari, M., Vianello, M.: Efficient approximation of the exponential operator
for discrete 2D advection-diffusion problems. Numer. Linear Algebra Appl. 10(3), 271–289 (2003).

[4] Bergamaschi, L., Caliari, M., Vianello, M.: The ReLPM exponential integrator for FE discret-
izations of advection-diffusion equations. In: Computational science – ICCS 2004 (Bubak, M.,
Albada, G. D. v., Sloot, P. M. A., Dongarra, J., eds.). Lecture Notes in Computer Science, vol.
3039. Berlin Heidelberg: Springer 2004. 4th Int. Conf., Kraków, Poland, June 6–9, 2004, Proc.,
Part IV, pp. 434–442.

[5] Caliari, M., Vianello, M., Bergamaschi, L.: Interpolating discrete advection-diffusion propagators
at Leja sequences. J. Comput. Appl. Math. 172, 79–99 (2004).

[6] Caliari, M., Vianello, M., Bergamaschi, L.: The LEM exponential integrator for advection-
diffusion-reaction equations. J. Comput. Appl. Math. (2006). In: Proc. of numerical analysis: the
state of the art (NAC2005), Rende (CS), Italy, May 19–21, 2005, in press (available online December
5, 2006).

[7] Cody, W. J., Hillstrom, K. E.: Chebyshev approximations for the natural logarithm of the Gamma
function. Math. Comp. 21, 198–203 (1967).

[8] Gallopoulos, E., Saad, Y.: Efficient solution of parabolic equations by Krylov subspace methods.
SIAM J. Sci. Statist. Comput. 13(5), 1236–1264 (1992).

[9] González, C., Ostermann, A., Thalhammer, M.: A second-order Magnus-type integrator for non-
autonomous parabolic problems. J. Comput. Appl. Math. 189, 142–156 (2006).

[10] Higham, N. J.: Accuracy and stability of numerical algorithms, chap.: Principles of finite precision
computation. Philadelphia: SIAM, pp. 22–24 (1996).

Accurate evaluation of divided differences 201

[11] Hochbruck, M., Lubich, C., Selhofer, H.: Exponential integrators for large systems of differential
equations. SIAM J. Sci. Comput. 19(5), 1552–1574 (1998).

[12] Hochbruck, M., Ostermann, A.: Explicit exponential Runge-Kutta methods for semilinear para-
bolic problems. SIAM J. Numer. Anal. 43, 1069–1090 (2005).

[13] Caliari, M., Vianello, M., Bergamaschi, L.: Exponential Runge-Kutta methods for parabolic prob-
lems. Appl. Numer. Math. 53(2–4), 323–339 (2005).

[14] Lu, Y. Y.: Computing a matrix function for exponential integrators. J. Comput. Appl. Math. 161,
203–216 (2003).

[15] McCurdy, A., Ng, K. C., Parlett, B. N.: Accurate computation of divided differences of the expo-
nential function. Math. Comp. 43(186), 501–528 (1984).

[16] Moret, I., Novati, P.: The computation of functions of matrices by truncated Faber series. Numer.
Funct. Anal. Optim. 22(5–6), 697–719 (2001).

[17] Moret, I., Novati, P.: An interpolatory approximation of the matrix exponential based on Faber
polynomials. J. Comput. Appl. Math. 131(1–2), 361–380 (2001).

[18] Novati, P.: A polynomial method based on Fejér points for the computation of functions of un-
symmetric matrices. Appl. Numer. Math. 44(1–2), 201–224 (2003).

[19] Ostermann, A., Thalhammer, M., Wright, W.: A class of explicit exponential general linear methods.
BIT 46(2), 409–431 (2006).

[20] Reichel, L.: Newton interpolation at Leja points. BIT 30(2), 332–346 (1990).
[21] Schaefer, M. J.: A polynomial based iterative method for linear parabolic equations. J. Comput.

Appl. Math. 29(1), 35–50 (1990).
[22] Sidje, R. B.: Expokit. A software package for computing matrix exponentials. ACM Trans. Math.

Softw. 24(1), 130–156 (1998).
[23] Tal-Ezer, H.: High degree polynomial interpolation in Newton form. SIAM J. Sci. Statist. Comput.

12(1), 648–667 (1991).
[24] Tokman, M.: Efficient integration of large stiff systems of ODEs with exponential propagation

iterative (EPI) methods. J. Comput. Phys. 213, 748–776 (2006).

M. Caliari
Department of Pure and Applied Mathematics
University of Padova
Via Trieste 63
35121 Padova
Italy
e-mail: mcaliari@math.unipd.it

Verleger: Springer-Verlag GmbH, Sachsenplatz 4–6, 1201 Wien, Austria. – Herausgeber: Prof. Dr. Wolfgang Hackbusch,
Max-Planck-Institut für Mathematik in den Naturwissenschaften, Inselstraße 22–26, 04103 Leipzig, Germany. – Satz und
Umbruch: Scientific Publishing Services (P) Ltd., Chennai, India. – Offsetdruck: Krips bv, Kaapweg 6, 7944 HV Meppel,

The Netherlands. – Verlagsort: Wien. – Herstellungsort: Meppel. – Printed in The Netherlands.

