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Abstract Using binomial coefficients, new, simple, and efficient algorithms are
presented for the accurate and fast calculation of the heat capacity of solids depend-
ing on the Debye temperature. As will be seen, the present formulation yields com-
pact, closed-form expressions which enable the straightforward calculation of the heat
capacity of solids for arbitrary temperature values. Finally, the algorithm is used to
simulate the variation of the specific heat capacity with temperature of MgO and ZnO
crystals. The results were compared with those reported in the literature and found to
be in close agreement with those of other studies.
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1 Introduction

Debye functions are widely used in the study of many physical problems, especially in
the evaluation of the heat capacity of solids [1–21]. A knowledge of the heat capacity of
a substance not only provides essential insight into its vibrational properties but is also
mandatory for many applications [4,22,23]. In the literature, various efficient numer-
ical methods have been proposed for improving the evaluation of the n-dimensional
Debye function, Debye temperature, and other types of Debye functions [10–13].
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An accurate evaluation of the n-dimensional Debye function gives the Debye tem-
perature of solids, which defines a boundary between the quantum-mechanical and
classical behavior of phonons [24–26]. Debye functions can also be used in the com-
putation of heat capacities of solids using Tarasov equations [6].

The aim of the study is to present an analytical expression to simplify the calcula-
tion of heat capacity in terms of an n-dimensional Debye function in any temperature
range using the binomial coefficients [27]. The method is tested as an accurate and
valid method for calculation of Debye functions of solids by applying it to ZnO and
MgO samples [14,28–35].

2 Expression for Specific Heat Capacity and its Application to MgO and ZnO
Crystals

Under the Debye approximation, the heat capacity per unit volume at constant volume
is given by [4]

Cv = 3NkLV

(
θ

T

)
(1)

where N is the Avogadro number, k is the Boltzmann constant, θ is the Debye tem-
perature of solids, and T is the absolute temperature. In Eq. 1, the quantity LV (x) is
defined as

LV (x) = 3

(
T

θ

)3
xD∫

0

x4ex

(ex − 1)2 dx (2a)

= 3

(
T

θ

)3

I4(2, xD) (2b)

where xD = θ
T . The quantities In(s, xD) occurring in Eq. 2b are generally defined as

In (s, xD) =
xD∫

0

xnex

(ex − 1)s dx . (3)

We put ex = t in Eq. 3 and obtain

In(s, xD) =
exD∫
1

[ln(t)]n

(t − 1)s dt. (4)

For the evaluation of Eq. 4, we use the following binomial expansion theorem for
an arbitrary real n and |x | > |y| (see [13,36]):
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(x ± y)n =
∞∑

m=0

(±1)m Fm (n) xn−m ym (5)

where Fm(n) is the binomial coefficient. Substituting Eq. 5 into Eq. 4, we obtain for
In(s, xD) integrals the following series formulae:

In (s, xD) = lim
N→∞

N∑
m=0

(−1)m Fm (−s) Hnm (s, xD) (6)

where

Hnm (s, xD) =
∫ exD

1
[ln (t)]n t−s−mdt . (7)

In order to derive the formulas for Eq. 7, we use the partial integration method.
Then, finally we obtain

Hnm (s, xD) = n! [1 − e−xDw
{
1 + xDw + 1

2! x
2
Dw2 . . . . . .

}]
wn+1

= n!
[

1 − e−xDw

(
n∑

k=0

(xDw)k

k!

)]
w−(n+1) (8)

where w = m + s − 1. Taking into account Eq. 6 in Eq. 1, we obtain for the specific
heat capacity the following simply structured formulae:

Cv = 9Nk

(
T

θ

)3

lim
L→∞

L∑
m=0

(−1)m Fm (−2) H4m (2, xD). (9)

Considering Eq. 8 for w = m+s and the binomial coefficients, we obtain for Debye
functions the following formulae:

Dn (s, xD) = n

xn
D

lim
M→∞

M∑
m=0

(−1)m Fm (−s) Hnm (s, xD) . (10)

In Eqs. 6, 9, and 10, the indices N , L , and M are the upper limits of summations,
respectively.

In order to demonstrate the accuracy and efficiency of the derived method, we have
presented a comparison of numerical results using alternative methods (see Table 1).
The validity and reliability of the method is then tested by applying it to ZnO and
MgO crystals [14,31]. The temperature dependence of the specific heat capacity of
ZnO and MgO crystals using our obtained formula, Eq. 9, are investigated. Debye tem-
peratures θ for ZnO and MgO crystals have been taken as 920 K and 946 K, respectively
[37,38].

123



Int J Thermophys (2009) 30:1048–1054 1051

Ta
bl

e
1

C
om

pa
ra

tiv
e

va
lu

es
of

n-
di

m
en

si
on

al
D

eb
ye

fu
nc

tio
ns

n
s

x D
E

q.
10

N
R

ef
.[

13
]

N
R

ef
.[

36
]

2
1

5
0.

17
23

29
03

48
57

62
47

82
14

52
83

1
80

0
0.

17
23

29
03

48
57

62
47

82
14

52
83

1
80

0
0.

17
23

29
03

48
57

62
47

82
14

5

5
1

4.
5

0.
10

16
41

18
33

96
98

89
09

66
60

73
0

80
0

0.
10

16
41

18
33

96
98

89
09

66
60

73
0

80
0

0.
10

16
41

18
33

96
98

89
09

68

7
1

0.
8

0.
69

11
24

06
52

68
65

23
06

73
13

94
4

80
0

0.
69

11
24

06
52

68
65

23
06

73
13

94
4

80
0

0.
69

11
24

06
52

68
65

23
06

73

9
1

3.
4

0.
15

41
37

73
86

77
89

25
41

45
78

56
9

80
0

0.
15

41
37

73
86

77
89

25
41

45
78

56
9

80
0

0.
15

41
37

73
86

77
89

25
41

46

12
1

5.
4

0.
03

61
88

49
23

38
28

13
26

04
70

09
82

80
0

0.
03

61
88

49
23

38
28

13
26

04
70

09
82

80
0

0.
03

61
88

49
23

38
28

13
26

04
7

15
1

2.
4

0.
26

61
40

91
56

64
72

94
95

19
54

08
7

30
0

0.
26

61
40

91
56

64
72

94
95

19
54

08
7

30
0

0.
26

61
40

91
56

64
72

94
95

19
55

20
1

1.
24

0.
52

33
61

58
50

90
03

28
43

76
61

93
3

30
0

0.
52

33
61

58
50

90
03

28
43

76
61

93
3

30
0

0.
52

33
61

58
50

88
85

96
80

74
5

25
1

4.
2

0.
07

29
64

96
70

62
18

58
71

09
01

59
88

10
0

0.
07

29
64

96
70

62
18

58
71

09
01

59
88

10
0

0.
07

29
64

96
70

62
18

58
71

36
84

30
1

3.
42

0.
12

58
42

61
06

59
03

68
83

94
97

19
2

10
0

0.
12

58
42

61
06

59
03

68
83

94
97

19
2

10
0

0.
12

58
42

61
06

59
06

55
66

07
81

21
10

18
2.

35
06

67
71

24
76

46
45

22
92

30
43

×1
0−

27
80

0
2.

35
06

67
71

24
76

46
45

22
92

30
43

×1
0−

27
80

0
–

32
12

4.
8

8.
94

86
13

40
05

45
20

10
24

87
45

28
×1

0−
21

80
0

–
–

–

123



1052 Int J Thermophys (2009) 30:1048–1054

3 Numerical Results and Discussion

Firstly, the Mathematica software system (Version 5.0) was used to calculate Debye
functions using the formulae presented in this study. The results obtained for Debye
functions are shown in Table 1. In order to demonstrate the accuracy and efficiency of
the methods described above, Table 1 also includes values obtained from other studies
[13,36]. For comparison with studies by other authors, the n-dimensional Debye func-
tions are derived using formulas given in Refs. [13] and [36]. Table 1 demonstrates
excellent agreement between our results and those of Refs. [13] and [36]. This clearly
demonstrates that the formulae obtained yield significant accuracy for arbitrary values
of n, s, xD.

The variation of the specific heat capacity Cv against temperature (T ) of ZnO and
MgO crystals are shown in Figs. 1 and 2 for the temperature range from 0 K to 2,100 K.
Figures 1 and 2 also illustrate the comparison of our results with those of Seko et al.
[31] and Lu et al. [14] for MgO and ZnO samples.

From Fig. 1, it is shown that our results for MgO crystals are in excellent agreement
with the results of Seko et al. [31]. Our results are also in agreement with those of Lu et
al. [14], particularly in the temperature ranges, (50 K to 300 K) and (700 K to 2,100 K).

Fig. 1 Temperature dependence of heat capacity Cv for MgO crystals: Lu et al. [14]; Seko et al. [31];
“Calculated”

123



Int J Thermophys (2009) 30:1048–1054 1053

Fig. 2 Temperature dependence of heat capacity Cv for ZnO crystals: Seko et al. [31]; “Calculated”

In Fig. 2, we compare the results for ZnO crystals, which demonstrate excellent
agreement between our results and those of Seko et al. [31] in the temperature range
from 250 K to 1,800 K.

In this study, an efficient and accurate method is presented for calculation of the
heat capacity of a solid depending on the Debye temperature for all values of m, s, n,
and xD. We are not aware of any previously published research undertaking calcu-
lation of Debye functions with n, s, xD, except for Ref. [13]. The use of the simple
analytical expression for modeling and simulation can be useful in the development
of high-quality devices and has wide fields of application.

In conclusion, we have presented a simple analytical expression for calculation of
specific heat capacities of solids depending on Debye functions using binomial coef-
ficients with all integer values of parameters n, s, and xD. The analytical expression
obtained in this work can be used in the study of many physical problems, espe-
cially in the calculation of the heat capacity of solids. The use of the computer pro-
grams presented for calculation of n-dimensional Debye functions can be also used
in the investigation of the quantum-mechanical behavior of phonons. We note that
the derived expressions for the n-dimensional Debye functions can be evaluated effi-
ciently, quickly, and accurately.
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