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Abstract. We present new results from accurate and fully general-relativistic simulations of

the coalescence of unmagnetized binary neutron stars with various mass ratios. The evolution

of the stars is followed through the inspiral phase, the merger and prompt collapse to a

black hole, up until the appearance of a thick accretion disk, which is studied as it enters

and remains in a regime of quasi-steady accretion. Although a simple ideal-fluid equation

of state with Γ = 2 is used, this work presents a systematic study within a fully general

relativistic framework of the properties of the resulting black-hole–torus system produced

by the merger of unequal-mass binaries. More specifically, we show that: (1) The mass of

the torus increases considerably with the mass asymmetry and equal-mass binaries do not

produce significant tori if they have a total baryonic mass Mtot & 3.7 M⊙; (2) Tori with

masses Mtor ∼ 0.2M⊙ are measured for binaries with Mtot ∼ 3.4 M⊙ and mass ratios

q ∼ 0.75 − 0.85; (3) The mass of the torus can be estimated by the simple expression

M̃tor(q,Mtot) = [c1(1 − q) + c2] (Mmax − Mtot), involving the maximum mass for the

binaries and coefficients constrained from the simulations, and suggesting that the tori can

have masses as large as M̃tor ∼ 0.35M⊙ for Mtot ∼ 2.8 M⊙ and q ∼ 0.75 − 0.85;

(4) Using a novel technique to analyze the evolution of the tori we find no evidence for the

onset of non-axisymmetric instabilities and that very little, if any, of their mass is unbound; (5)
Finally, for all the binaries considered we compute the complete gravitational waveforms and

the recoils imparted to the black holes, discussing the prospects of detection of these sources

for a number of present and future detectors.

PACS numbers: 04.30.Db, 04.40.Dg, 04.70.Bw, 95.30.Lz, 97.60.Jd

1. Introduction

The numerical investigation of the coalescence and merger of binary neutron stars (NSs)

within the framework of general relativity is receiving increasing attention in recent years

(see e.g. [1, 2, 3, 4, 5, 6, 7, 8] and references therein). Drastic improvements in the simulation

front regarding mathematics (e.g. formulation of the equations), physics (e.g. incorporation

of equations of state (EOS) from nuclear physics) and numerical methods (e.g. use of

high-resolution methods and adaptive mesh refinement) along with increased computational

resources have allowed to extend the scope of the early simulations (e.g. [9]). Larger initial

separations have recently started being considered and some of the existing simulations have

http://arxiv.org/abs/1001.3074v1
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expanded the range spanned by the models well beyond black-hole (BH) formation [3, 8, 7].

This is allowing the computation of the entire gravitational waveform from the early inspiral

to the decaying tail of the late ringing of the formed BH. The construction of such waveform

templates is still one of the driving motivations to perform binary NS simulations, as such

events are among the most promising sources of detectable gravitational radiation for laser

interferometric detectors. The current estimate for the detection rate relative to the first-

generation interferometric detectors is ∼ 1 event per ∼ 40 − 300 years, increasing to an

encouraging ∼ 10 − 100 events per year for the advanced detectors [10]. The second major

incentive behind this type of simulations is establishing whether the end-product of the merger

can act as the underlying mechanism operating at the central engine of short-hard gamma-ray

bursts (SGRBs) [11, 12]. The consensus emerging from the existing simulations indicates the

formation, depending on the suitability of the initial parameters of the simulated model, of

a BH of stellar mass surrounded by a hot disk. Driven by neutrino processes and magnetic

fields such a compact system may be capable of launching a relativistic fireball with an energy

of ∼ 1048 erg on a timescale of 0.1− 1 s [13].

This paper is dedicated in particular to investigating the late-time dynamics of the torus

formed after the merger of unequal mass NS binaries. As we describe below all but one

model of our initial sample have unequal mass ratio. Previous simulations have shown that

the key parameter controlling the amount of mass left in the disk for a given initial mass

in the system and EOS is the NS mass ratio [14, 1]. Broadly speaking the general trend

is simple: the larger the departure from equal-mass ratio, the more important tidal effects

become in the less massive star, resulting in its tidal disruption. Because this takes place

when the separation is still comparatively large, the angular momentum of the matter is still

large and it yields in larger-size and more massive disks. Early and low-resolution simulations

with an ideal-gas EOS [14] have been shown to yield a disk mass of several percents of the

total mass of the system for a mass ratio of ∼ 0.85. Improved simulations by [1] which

adopted a hybrid EOS to mimic realistic, stiff nuclear EOS, indicate that the mass of the disk

is ∼ 0.01 M⊙ or slightly larger when the merger does not result in prompt collapse to a BH

but in the formation of a hypermassive NS of large ellipticity instead (which later collapses

to a BH following angular momentum transport by gravitational radiation emission). Similar

disk masses as large as ∼ 0.02 M⊙ are also reported in the latest simulations of [8] in which

the initial orbital separation of the two stars is larger than in previous works.

Observational data seems to indicate that the total gravitational masses of the known

galactic NS binary systems are in a narrow range ∼ 2.65 − 2.85 M⊙ [15] and there is

also evidence indicating that the masses of the two NSs are nearly equal, with the baryonic

mass ratio q ≡ M1/M2 being between 1 and ∼ 0.7 (Hereafter we will refer to q simply

as the “mass ratio” but report in table 1 also the ratio in the ADM masses q
ADM

; q and

q
ADM

do not coincide because of the nonlinear relation between baryonic and gravitational

mass). Nevertheless, there is no theoretical reason to assume that unequal mass NS binaries

could not be produced as often in nature as the seemingly prevailing equal mass systems,

particularly for twin giant progenitors [16, 17]. There are, indeed, recent computations which

contradict the predominance of the very nearly equal masses measured for all known binary

NSs to date [18, 17]. On the one hand, binary population synthesis computations performed

by [18] show two peaks in the observability-weighted distribution of double NSs. One of

these peaks is around q ∼ 1 and appears when both masses are close to 1.4 M⊙. The second

peak is around considerably smaller mass ratios and depends on the assumed maximum

mass of a NS (which is in turn dependent on the EOS considered): the higher this mass

(the stiffer the EOS) the more significant the second peak is [18, 19]. However, the crucial

parameter determining the shape of the distribution is the inclusion of hypercritical accretion
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on to compact objects during the brief but critical “common-envelope” evolution phase of the

close binary [19]. Similarly, recent computations by [17] also accounting for the effects of

hypercritical accretion during the red-giant evolution of the less massive component of the

binary lead to a pattern of NS binaries consisting of pulsars which are ∼ 50% more massive

than their companion NSs.

An additional issue which motivates our study has to do with the investigation of

the long-term stability and dynamics of the formed accretion disks. It is well known

that thick accretion disks orbiting BHs may be subject to a number of instabilities, both

axisymmetric, such as the so-called “runaway instability” [20], or non-axisymmetric, such as

the “Papaloizou-Pringle instability” [21]. The first one, in particular, if present, could destroy

the torus on dynamical timescales, challenging the viability of the BH–torus SGRB model.

Early time-dependent, general relativistic hydrodynamical simulations in axisymmetry of the

runaway instability of non-self-gravitating tori around BHs were performed by [22, 23]. The

distribution of specific angular momentum in the disk, ℓ ≡ −uφ/ut, with uφ and ut being

the corresponding components of the 4-velocity uµ, was the key parameter discriminating

stable from unstable models in those simulations. It was found that ℓ−constant models were

runaway unstable while power-law distributions ℓ = Krα were stable for very small values of

the angular momentum slope α (much smaller than the Keplerian valueα = 0.5). Recent fully

relativistic simulations by [24] which take into account the self-gravity of the disk for the first

time indicate that self-gravity does not favour the appearance of the instability, irrespective of

the angular momentum distribution. Under the effect of a perturbation, marginally stable

models show the presence of axisymmetric oscillations for several dynamical timescales

without the manifestation of the runaway instability, as [25] had previously found for the case

of non-self-gravitating tori. Indeed, the introduction of perturbations triggers QPOs lasting

tens of orbital periods, with amplitudes that are modified only slightly by the small loss of

matter across the cusp [25, 26]. The spectral distribution of the associated eigenfrequencies

shows the presence of a fundamental p mode and of a series of overtones in a harmonic ratio

2:3, which have been proposed to explain the QPOs observed in the X-ray luminosity of

LMXBs containing a BH candidate with the QPOs of small tori near the BH [27, 28, 29]. In

addition, when sufficiently massive and compact, the oscillations of these tori are responsible

for an intense emission of gravitational waves [25, 30, 31, 26].

Overall, the ab-initio simulations reported here indicate that large-scale tori with masses

Mtor ∼ 0.2M⊙ can be produced as the result of the inspiral and merger of binary NSs with

unequal-masses and that even larger masses can be predicted for binaries with smaller total

masses. These tori are typically of large size, with quasi-Keplerian distribution of angular

momenta, showing quasi-stationary evolutions and the absence of dynamical instabilities. As

such, these results may provide additional information relevant to all of the above issues

for BH–torus systems formed in a fully consistent manner within the framework of general

relativity. Furthermore, the gravitational-wave emission computed here reveals that the

waveforms are sensitive to the mass ratio in the binary, both during the inspiral and after

the merger, and could be used to extract important information on the structure and EOS of

the progenitor stars. Such observations, however, will most likely have to rely on the advanced

detectors which will become operative in a few years.

The paper is organised as follows: Section 2 describes the mathematical and numerical

framework of our simulations. Section 3 discusses the dynamics of the coalescence and

merger of our model sample. Next, in Section 4 we focus on the analysis of the tori

formed after the merger and on their physical properties. The issue of the gravitational-

wave emission from unequal-mass NS mergers is discussed in Section 5 and the main

conclusions of our investigation are presented in Section 6. In addition Appendix A provides
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quantitative measures of the accuracy of our numerical methods. We use a spacelike signature

(−,+,+,+) and a system of units in which c = G = M⊙ = 1 (or in cgs units whenever

more convenient). Greek indices are taken to run from 0 to 3, Latin indices from 1 to 3 and

we adopt the standard convention for the summation over repeated indices.

2. Mathematical and Numerical Setup

All the details on the mathematical and numerical setup used for producing the results

presented here are discussed in depth in [32, 3]. In what follows, we limit ourselves to a

brief overview.

2.1. Einstein and Hydrodynamics equations

The evolution of the spacetime is obtained using the CCATIE code, a three-dimensional finite-

differencing code providing a solution of a conformal traceless formulation of the Einstein

equations with a “1 + log” slicing condition and a “Gamma-driver” shift condition (the

interested reader is addressed to [32, 33] for a detailed discussion of the equations and gauges

used). The general-relativistic equations are instead solved using the Whisky code presented

in [34, 35, 33], which adopts a flux-conservative formulation of the equations as presented

in [36] and high-resolution shock-capturing schemes. The Whisky code implements several

reconstruction methods, such as Total-Variation-Diminishing (TVD) methods, Essentially-

Non-Oscillatory (ENO) methods [37] and the Piecewise Parabolic Method (PPM) [38]. Also,

a variety of approximate Riemann solvers can be used, starting from the Harten-Lax-van Leer-

Einfeldt (HLLE) solver [39], over to the Roe solver [40] and the Marquina flux formula [41]

(see [34, 35] for a more detailed discussion). All the results reported hereafter have been

computed using the Marquina flux formula [42] and a PPM reconstruction. We stress again

(as already done in [3, 7]) that the use of high-order methods and high-resolution is essential

to be able to draw robust conclusions on the inspiral and merger. Lower-order methods in

the reconstruction and low resolution may yield convergent and apparently reasonable results

which however contain a large truncation error. Specific examples of this type of problem are

presented in Appendix A of [3] and in Figure 4 of [7]. Also, a measure of our overall accuracy

is presented in Appendix A below and shows that by employing such methods we are able to

conserve energy and angular momentum to ∼ 1% over a timescale of ∼ 140ms.
The system of hydrodynamics equations is closed by an EOS. As discussed in detail

in [3], the choice of the EOS plays a fundamental role in the post-merger dynamics and

significantly influences the survival time, against gravitational collapse, of the hyper-massive

neutron star (HMNS) likely produced by the merger. It is therefore important that special

attention is paid to use EOSs that are physically motivated, as done in [43] within a

conformally flat description of the fields and a simplified treatment of the hydrodynamics.

Because we are here mostly concerned with drawing a first qualitative picture of the properties

of the torus in a space of parameters that is as vast as computationally affordable, we have

employed the commonly used “ideal-fluid” EOS, in which the pressure p is expressed as

p = ρ ǫ(Γ − 1), where ρ is the rest-mass density, ǫ is the specific internal energy and Γ is

the adiabatic exponent. Such an EOS, while simple, provides a reasonable approximation

and we expect that the use of realistic EOSs would not change the main results of this work.

Furthermore, it was shown in [44] that the inspiral of equal-mass binaries of NSs described

by realistic EOSs can be reproduced quite well by studying NSs with the same mass and radii

but constructed as polytropes with Γ = 2.
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As in [3], the gravitational-wave signal is extracted using two methods. The first method

uses the Newman-Penrose formalism so that the gravitational-wave polarization amplitudes

h+ and h× are then related to Ψ4 by simple time integrals [45]

ḧ+ − iḧ× = Ψ4 , (1)

where the double overdot stands for the second-order time derivative and the curvature scalar

Ψ4 ≡ −Cαβγδn
αm̄βnγm̄δ (2)

is defined as a particular component of the Weyl curvature tensor, Cαβγδ, projected onto a

given null frame {l,n,m, m̄} (see [32] for details). The second and independent method

is instead based on the measurements of the non-spherical gauge-invariant perturbations of a

Schwarzschild BH (see refs. [46, 47, 48] for some applications of this method to Cartesian-

coordinate grids). In particular, the gravitational-wave polarization amplitudes are in this case

expressed in terms of gauge-invariant metric perturbations [49]

h+ − ih× =
1√
2r

∑

ℓ,m

(
Q+

ℓm − i

∫ t

−∞

Q×

ℓm(t′)dt′

)
−2Y

ℓm . (3)

where −2Y
ℓm are the s = −2 spin-weighted spherical harmonics and Q×

ℓm, Q+
ℓm the (gauge-

invariant) odd-parity (or axial) current multipoles and even-parity (or polar) mass multipoles

of the perturbed metric, respectively. In practice, these multipoles are computed on a set of

2-spheres of fixed coordinate radius riso = 200 (i.e. ∼ 300 km).

Although the two wave-extraction methods yield results with differences which are

smaller than 1%, hereafter we will concentrate only on the one using the gauge-invariant

perturbations as it reduces the number of integration constants to be determined when

computing the gravitational-wave strain.

2.2. Adaptive Mesh Refinements and Grid setup

The grid hierarchy is handled by the Carpet mesh refinement driver [50]. It implements

vertex-centered mesh refinement, also known as the box-in-box method, and allows for

regridding during the calculation as well as multiple grid centers. With mesh refinement,

a small number of grids with varying resolution called refinement levels overlay each other,

nested in a way that the coarsest grid has the largest extent, and the finest grid the smallest

extent. While the refined grids in the interior allow for an increased resolution where it is

most desired, the outer boundary can at the same time be kept at a large distance.

The timestep on each grid is set by the Courant condition (expressed in terms of the speed

of light) and so by the spatial grid resolution for that level; the typical Courant coefficient

is set to be 0.35. The time evolution is carried out using 4th-order–accurate Runge-Kutta

integration algorithm. Boundary data for finer grids are calculated with spatial prolongation

operators employing 3rd-order polynomials and with prolongation in time employing 2nd-

order polynomials. The latter allows a significant memory saving, requiring only three

timelevels to be stored, with little loss of accuracy due to the long dynamical timescale relative

to the typical grid timestep.

For the inspiral phase of the system of binary NSs, two grid centers {rc,i : i = 1, 2} are

defined, with one grid center located at the grid point where the rest-mass density reaches its

maximum ρmax = max(ρ) and the other grid center located at the π-symmetric point (i.e. the

grid point correspondent to ρmax and rotated by 180 degrees around the z-axis). The grid

hierarchy is composed of six refinement levels and a 2 : 1 refinement factor for successive

levels. Once the condition ρmax = max(ρmax,i) ≥ 1.2 ρmax,initial is satisfied, which is
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known from experience to occur during the merger phase and well before collapse, the grid

hierarchy is reduced to a single grid center fixed at the origin of the grid. At the initial time,

the finest grids cover each star completely. Later, during the merger phase, matter outflows

cross the boundary to the second finest grid and subsequently to the other coarser refinement

levels. The grid resolution varies from ∆1 = 0.15 (i.e. ∼ 221m in cgs units) for the finest

level to ∆6 = 4.8 (i.e. ∼ 7.1 km) for the coarsest level, whose outer boundary is at 240 in

our units (i.e. ∼ 360 km). Initially, there are of the order of 100 grid points across the linear

dimension of a star. The torus surrounding the BH after collapse is usually not contained

within the finest grid, but its high-density region is instead covered by the second finest grid

with resolution ∆2 = 0.3.

The whole grid is set up to be symmetric with respect to the (x, y) plane for both unequal-

mass stars and equal-mass stars. The boundary conditions are chosen to be radiative for the

metric to prevent gravitational waves from scattering back into the grid, and static for the

hydrodynamical variables. Note that the above setup is identical to that adopted in [3].

Table 1. Properties of the binary NS initial data. From left to right the columns show: the name

of the model (assembled from its rounded total baryonic mass preceded by the letter M and its

mass ratio preceded by the letter q), the total baryonic mass Mtot of the system, the total ADM

mass M
ADM

of the system, the ratio of the baryonic masses of the two stars q = M2/M1,

the ratio of the ADM masses of the two stars, the total angular momentum J , the initial orbital

frequency νorb, the initial maximum rest-mass density ρmax, the mean radius r̄i of each star,

and the axis ratio Āi of each star. The mean radius is defined as r̄i ≡ (r⊢+r⊣+r⊥+rpol)/4,

where r⊢ and r⊣ are the radii of the star parallel to the line connecting the stars, r⊥ is the

radius in the equatorial plane perpendicular to that line, and rpol is the radius perpendicular

to the equatorial plane. The axis ratio is defined as the ratio between the mean radius parallel

to the line connecting the stars, and the mean radius in the plane perpendicular to that line,

namely Āi ≡ (r⊥ + rpol)/(r⊢ + r⊣). All values except ρmax are provided by the output of

the LORENE code, and the accuracy of Mtot and J is the one at which the Whisky code is

able to reproduce them for the present setup.

Model Mtot M
ADM

q, q
ADM

J/1049 νorb ρmax/10
14 r̄2, r̄1 Ā2, Ā1

(M⊙) (M⊙) (g cm2/s) (Hz) (g/cm3) (km)

M3.6q1.00 3.56 3.23 1.00, 1.00 8.92 303.32 7.58 12.0, 12.0 0.95, 0.95
M3.7q0.94 3.68 3.33 0.94, 0.94 9.37 306.56 9.75 12.0, 11.0 0.95, 0.96
M3.4q0.91 3.40 3.11 0.91, 0.92 8.33 299.06 7.58 13.1, 12.1 0.93, 0.95
M3.4q0.80 3.37 3.08 0.80, 0.81 8.36 303.62 9.21 13.8, 11.3 0.90, 0.97
M3.5q0.75 3.46 3.14 0.75, 0.77 8.40 300.84 12.7 13.0, 10.1 0.89, 0.98
M3.4q0.70 3.37 3.07 0.70, 0.72 7.98 298.47 12.8 14.6, 10.0 0.85, 0.98

2.3. Initial data

We use quasi-equilibrium initial data generated with the multi-domain spectral-method code

LORENE developed at the Observatoire de Paris-Meudon [51]. For more information on the

code and its methods, the reader is referred to the LORENE web pages [52]. In particular,

because the binaries are not expected to be corotating, we use irrotational configurations,

defined as having vanishing vorticity, and obtained under the additional assumption of a

conformally flat spacetime metric [51].

Some of the models investigated in this paper are publicly available on servers of

the Meudon group [52]. Others have been created by us specifically for the unequal-

mass simulations presented here. The models of the lowest mass ratios have been kindly
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provided by Dorota Gondek-Rosińska). The EOS assumed for the initial data is in all cases

the polytropic EOS p ≡ K ρΓ with an adiabatic index Γ = 2 and a polytropic coefficient

K = 0.0332 ρnuc c
2/nΓ

nuc = 123.6 (in units where c = G = M⊙ = 1), where ρnuc and nnuc

refer to the nuclear rest-mass and number densities, respectively. For this particular EOS,

the allowed maximum baryonic mass for an individual stable NS is ∼ 2.00 M⊙. The initial

coordinate separation of the stellar centers in all cases is d = 45 km.

The models used as initial data include both equal-mass models and most importantly

unequal-mass models. As mentioned in the Introduction, we here concentrate on the dynamics

of the massive tori resulting from the merger, whose formation is strengthened the smaller the

mass ratio becomes. While such unequal-mass binaries have not yet been observationally

detected [15] there is no theoretical reason ruling out their possible existence [18, 17]. A

full list of all considered models together with a selection of physical quantities defining

them, e.g. baryon and ADM mass, orbital frequency and initial angular momentum, etc., is

given in table 1. To distinguish simply the different binaries we adopt the following naming

convention: any initial data binary is indicated as M%q#, with % being replaced by the rounded

total baryonic mass Mtot of the binary neutron-star system and # by the mass ratio q. As an

example, M3.4q0.80 is the binary with total baryonic mass Mtot ≃ 3.4 M⊙ and mass ratio

q = 0.80.

3. Dynamics of the coalescence and merger

3.1. General dynamics

In a previous work [3], we have investigated the dynamics of the coalescence and merger

of equal-mass binary NSs for models with total baryonic mass Mtot = 2.912 M⊙ and

Mtot = 3.250 M⊙. It was found that for any of the two EOSs considered, binaries with

(initial) total baryonic mass below a certain limit do not collapse promptly to a BH but rather

yield an oscillating HMNS which undergoes delayed collapse to a BH. Independently of

the mass ratio, all of the binaries under consideration here have masses higher than those

considered in [3] and all collapse promptly never leading to a HMNS even if the EOS used

here is a non-isentropic one (see discussion in [3] on the different qualitative behaviour

between an isentropic and a non-isentropic EOS). This absence of a HMNS, however, is very

much the result of the chosen initial data rather than a feature of unequal-mass mergers and

has been here exploited simply to reduce the computational costs and boost the collapse to a

BH.

Figure 1 shows a selection of representative isodensity contours on the equatorial plane

for the equal-mass binary M3.6q1.00. At the initial time, the stars are in their quasi-

equilibrium configuration at a coordinate separation of 45 km. The binary progressively

speeds up while inspiralling. After slightly more than two orbits have been completed (namely

after about 5-6 ms), the stars merge, and about 2-3 ms later, an apparent horizon (which we

search with the code of [53]) is found. The ideal-fluid EOS employed in the simulations

allows for shock-heating and an increase of the specific internal energy ǫ, as shown in [3];

this, in turn, causes some matter to be ejected from the rotating central object and to propagate

into the surrounding atmosphere. The evolution of model M3.6q1.00 shows that matter is

ejected in small amounts during the inspiral phase and in larger amounts during the merger

phase, when the shocks are much stronger. Therefore, while small spiral arms can certainly be

observed in the outer regions during the merger phase (see the last two snapshots of figure 1),

they do not have sufficient angular momentum to reach distances as large as in the unequal-

mass models (see discussion below). Instead, the spiral arms wind around the rapidly rotating
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Figure 1. Isodensity contours for the M3.6q1.00model on the (x, y) plane. The times when

the frames have been taken are shown on top of the plots while the color-code for the rest-mass

density is indicated to the right of each plot. Additionally, isodensity contours are shown for

the values of ρ = 1010, 1011, 1012, 1012.5, 1013, 1013.5, 1014, 1014.5, 1015 g/cm3 . The

third frame (at time t = 5.760 ms) shows the onset of the merger, the last two frames (at times

t = 8.210ms, t = 8.276ms) show the behaviour of the system during the collapse to a BH.

central object formed by the two NS cores. Quantitative results regarding the BH spin and the

mass and angular momentum of the remaining disk will be discussed in subsequent sections.

To contrast the evolution of an unequal-mass binary, figure 2 shows the same selection

of isodensity contours on the equatorial plane as represented in figure 1, only now for
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Figure 2. Isodensity contours for the M3.4q0.70model on the (x, y) plane. The times when

the frames have been taken are shown on top of the plots while the color-code for the rest-mass

density is indicated to the right of each plot. Additionally, isodensity contours are shown for

the values of ρ = 1010, 1011, 1012, 1012.5, 1013, 1013.5, 1014, 1014.5, 1015 g/cm3 . The

third frame (at time t = 4.104 ms) shows the onset of the merger, the last two frames (at times

t = 6.620ms, t = 7.414ms) show the behaviour of the system during the collapse to a

BH. Note that the computational domain is much larger than what is shown and extends to

∼ 360 km

the M3.4q0.70 model, which has the smallest mass ratio considered in this work. The

asymmetry of the binary system is already apparent at the initial time. The heavier star is

much more compact than its extended less massive companion, which is deformed already
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at the initial distance by tidal forces. In addition, the center of mass does not coincide with

the point halfway between the centers of the stars, but it is shifted toward the more massive

star. During the inspiral phase, the heavier and more compact star is only slightly affected

by its companion, whereas the latter is decompressed rapidly while being accreted onto the

heavier star. This is visible in the three intermediate panels of figure 2. The tidal disruption

of the lower-mass NS when it still retains a large fraction of its angular momentum results in

an extended tidal tail which, unlike what happens in the equal-mass case, transfers angular

momentum outwards in a much more efficient way. This leads to the formation of large spiral

arms extending well beyond the domain shown in figure 2 and ultimately to a more rapid

ejection of matter. Gravitationally bound matter travelling along the spiral arms away from the

central object will form a more massive accretion torus around the central BH than that formed

in the case of an equal-mass, symmetric binary system. It should be noted that, although the

rest-mass density of the matter in these spiral arms is much smaller than the central one, it has

nevertheless densities ρ & 1010 g/cm−3
and thus well in a general-relativistic regime.

3.2. Properties of the black hole

As mentioned above, because of the large initial mass of the system and irrespective of the

mass ratio, the merged object rapidly collapses to a BH. Its mass and angular momentum have

been computed making use of the dynamical-horizon formalism [54, 55], which provides a

simple and accurate measure of the BH properties also when this is subject to the inflow

of mass and angular momentum [35]. In the case of the equal-mass binary, because the

disk resulting from the merger has comparatively small mass, the BH settles rapidly to

an approximately stationary configuration, and the mass and spin of the BH measured at

formation, i.e. M = 2.56 M⊙ and a ≡ J/M2 = 0.745, respectively, do not vary significantly

throughout the subsequent evolution of the system. On the other hand, when considering

unequal-mass binaries, the mass and the spin of the BH show, on the timescale of the

simulations, a variation in time of ∼ 5% and ∼ 2%, respectively, because of the continued

and intense accretion of both mass and angular momentum. Table 2 shows the corresponding

parameters for all models at the final time of the evolution, which is not the same for the

different binaries considered.

We note that finding and tracking the apparent horizon in the case of binaries with small

mass ratio is far from being simple since the asymmetry in the merger dynamics leads to

a noticeable motion of the “center-of-mass” of the system. Hence, the location of the trial

surface for the apparent horizon cannot be simply associated to a pre-existing black hole (as

in the case of BH binaries [32]) or to a pre-determined coordinate location (as in the case of

the collapse of a rotating star [35]). The end-result of this complication is that the apparent

horizon could not be tracked successfully in all the models under consideration. This was the

case of models M3.4q0.80 and M3.4q0.70, for which it was not possible to measure the

mass and spin of the corresponding BH. Furthermore, in the case of the binary M3.5q0.75
the measurements were not made with the dynamical-horizon formalism but rather by using

the ratio of the polar to equatorial circumference of the apparent horizon as discussed in detail

in [35]. Cross-checking the two measures (i.e. apparent-horizon distortion and dynamical-

horizon formalism) in the cases where both are possible shows that they are equally reliable

(see also the extended discussion in [35]). Overall, the data available suggests the existence

of a local maximum of a for q ∼ 0.9, but more data is clearly necessary to confirm this.

Interestingly, when inspecting carefully the apparent horizon in the low-q model

M3.5q0.75 it is possible to appreciate that its appearance precedes the time when the

two stellar cores merge and is in contrast with what happens with models with high-q. By
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comparison, we believe the same happens also for the binary M3.4q0.70, although in this

case we were not able to detect an apparent horizon. Of course these considerations have little

physical importance as the interior of the apparent horizon is causally disconnected with what

is astrophysically observable; nevertheless this result provides another interesting example of

the rich phenomenology relative to the appearance and dynamics of trapped surfaces (see, for

instance, the discussion in section 4 of [56]).

Table 2. Columns 2 − 5 report the properties of the final BH, i.e. mass, angular momentum,

spin parameter, and kick velocity, while columns 6−7 report the measured torus masses Mtor

and those inferred from relation (6), M̃tor. Also shown in columns 8 and 9, respectively, are

the numerical error ǫtor ≡ |1− (Mtor)HR
/(Mtor)MR

| as computed by comparing different

resolutions (medium, i.e. ∆1 = 0.19, and high, i.e. ∆1 = 0.15) for each model and the

relative error ǫfit ≡ |M̃tor −Mtor|/Mtor of the phenomenological expression for the mass

of the torus with respect to the numerical data. Clearly, the binaries with high mass ratio are

not well described by relation (6) even though their numerical error is not very large.

Model M J a ≡ J/M2 vkick Mtor |M̃tor| ǫtor ǫfit
(km/s) (M⊙) (M⊙)

M3.6q1.00 2.56 4.90 0.745 0.28 0.0010 0.021 28% > 100%
M3.7q0.94 2.64 5.18 0.743 121.95 0.0100 0.048 12% > 100%
M3.4q0.91 2.99 7.29 0.815 59.33 0.0994 0.103 0.8% 89.6%
M3.4q0.80 − − − 56.22 0.2088 0.193 1.5% 7.4%

M3.5q0.75 3.00† 7.13† 0.792† 18.05 0.0802 0.173 2.5% 8.1%
M3.4q0.70 − − − 15.82 0.2116 0.202 2.4% 4.6%

† We could not compute the dynamical horizon for this model, so the reported values are calculated

from the apparent horizon, with the method employed in Sections VA and VB1 of ref. [35].

Finally, also reported in table 2 is the recoil velocity imparted to the BH at the end of

the inspiral and computed using the gravitational-wave emission as discussed in [57, 32] for

binary BHs. We recall, in fact, that together with energy and angular momentum, gravitational

radiation also carries away linear momentum. If the binary system has a degree of asymmetry

(either in the mass or in the spin) then the trajectories of the two bodies will be (slightly)

different (e.g. with the smaller body moving more rapidly and, hence, being more efficient

in beaming its emission) and the momentum loss in any direction will not be balanced by an

equal loss in the diametrically opposite direction. This effect is well-known in binary BHs,

where the recoils from quasi-circular inspirals can be as larger as ∼ 4000 km (see [58] for

a recent review), but has never been reported before for binary NSs. The recoil velocities

reported in table 2 are clearly much smaller than those measured for binary BHs. However,

they could still yield astrophysically interesting results being comparable or larger than the

escape velocity from the core of a globular cluster that is vesc ∼ 50 km [59]. Furthermore,

and possibly surprisingly, the values reported here for irrotational binaries which have very

little initial spin, are not much smaller than those computed for non-spinning binary BHs (see,

e.g. [60] for a recent update) and have a local maximum for q ∼ 0.9.
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Figure 3. Isodensity contours for the binaries M3.6q1.00 (left panel) and M3.4q0.70
(right panel) showing the morphology of the tori at the onset of the QSA on the (x, y)
plane (upper row) and on the (x, z) plane (lower row). Note that the disks in the two

panels have very different lengthscales, with the one for M3.4q0.70 being about 3 times

larger than that for M3.6q1.00. The colormap used here is different from the one in

figures 1 and 2. Additionally, isodensity contours are shown for the values of ρ =
1010, 1011, 1012, 1013 g/cm3 .

4. Torus Formation and Properties

4.1. General Dynamics

In figures 3 and 4 we show color-coded contours of the rest-mass density for models

M3.6q1.00 (left panels) and M3.4q0.70 (right panels), either in the (x, y) plane (upper

rows) and in the (x, z) plane (lower rows). The snapshots in figure 3, in particular, correspond

to the time t ∼ 10ms when the systems enter the regime of quasi-stationary accretion (QSA,

see below for definition), shortly after the formation of the BH, while those in figure 4 refer

to the final time of the evolution, t ∼ 21ms. These figures allow for a closer view of the

morphological features of the disks, in particular, their spatial dimensions and thickness, and

are a natural continuation of the dynamics already shown in figures 1 and 2, although they use

a different colormap that has been tuned to yield a better contrast in the density profiles.

The large morphological differences between these two extreme models are clearly

visible in these figures. The equal-mass model produces a highly symmetric, geometrically

thin disk, similar to the ones already observed for other equal-mass initial data in [3]. The

unequal-mass model, on the other hand, is characterized by the presence of a large spiral

arm when the model enters the regime of QSA, which has not yet been accumulated onto

the central disk surrounding the formed BH. The asymmetry in the distribution of matter

at this stage is also apparent from the color map of the rest-mass density. Only at the end

of the simulation the disk of the unequal-mass binary acquires a more axisymmetric shape.

The diameter of the disks and their heights perpendicular to the horizontal plane differ in a

significant way between the two models. More specifically, at the end of the evolution, and
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Figure 4. The same as figure 3 but showing the tori at the end of the simulation.

using the ρ = 1010 g/cm
3

isodensity contour as the reference value below which material is

not considered part of the disk, our simulations yield disk diameters of ∼ 50 km for model

M3.6q1.00 and ∼ 150 km for model M3.4q0.70. The corresponding vertical scale for

both models is ∼ 5 km and ∼ 35 km, respectively.‡ Taking into account all the models of

our sample, we find that both scales increase as the mass ratio decreases. Even more worth

noticing is the fact that, in the cases considered, while the tori differ in size by about a factor

∼ 3, they differ by a factor ∼ 200 in mass, while having comparable mean rest-mass densities

(see further discussion in sections 4.2 and 4.8).

4.2. Rest-mass Evolution

In order to establish how the asymmetry in the mass of the two NSs in the binary leads to tori

with different masses we show in figure 5 the evolution of the total rest mass, defined as

Mtot =

∫

V

ρW
√
γ d3x =

∫

V

D
√
γ d3x , (4)

normalized to its initial value and for the different models. In this equation W ≡ αut is

the Lorentz factor, α being the lapse function, and γ is the determinant of the spatial metric.

All the curves in figure 5 have been shifted in time to coincide at tcoll, which represents the

(collapse) time at which a rapid decrease of the total mass takes place following the formation

of a BH. Note that, in practice, the collapse time is different for all models, ranging from

around 6 ms for model M3.4q0.70 to around 11 ms for model M3.4q0.80.

‡ Of course it should be noted that the spatial dimensions reported here depend on the cut-off chosen for the rest-

mass density. Using smaller cut-offs than ρ = 1010 g/cm3 would lead to considerably larger estimates for the sizes

of the tori.
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Figure 5. Evolution of the total rest masses Mtot normalized to their initial values for all the

models considered. The order of magnitude of the mass fraction in the accretion torus can

be read off the logarithmic mass scale on the vertical axis. The curves referring to different

models have been shifted in time to coincide at tcoll, which represents the time when the very

rapid decrease of the total rest mass takes place. Note that this time is not physically relevant

(the apparent horizon is usually found earlier than tcoll) and simply corresponds to when the

very large amount of rest-mass accumulated in a very few cells is numerically dissipated.

Figure 5 shows that all models conserve the baryonic mass almost perfectly (i.e. with

losses of . 10−6) up until the formation of the apparent horizon, after which most of the rest

mass disappears in the singularity. One obvious result which can be deduced from figure 5

is that the mass of the resulting accretion disk becomes larger the smaller the value of q.

However, this trend is not entirely monotone in the figure as it is also influenced by the initial

total baryonic mass of the binary. The particular values of the tori masses computed for

all models are reported in table 2. While the equal-mass model produces a disk of barely

10−3M⊙, models M3.4q0.80 and M3.4q0.70 produce significantly more massive tori

with masses of about 0.2M⊙. A more detailed discussion of the mass in the tori will be made

in section 4.8.

As the apparent horizon is formed, a substantial part of the rest-mass is still outside it,

although it will accrete rapidly onto the BH. This makes the mere definition of what is the

torus and its mass rather arbitrary and we decide therefore to define the torus mass Mtor

as the total baryonic rest mass outside the apparent horizon when the disk enters a regime

of quasi-steady accretion (QSA), a regime which is found in all models investigated. More

specifically, we compute the accretion rate as

Ṁtot =
d

dt

∫

V

ρW
√
γ d3x . (5)

and define the onset of the QSA as the point in time when the condition Ṁtot/Mtot <
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Figure 6. Evolution of the total baryonic mass Mtot (upper rows) and of the accretion rate

Ṁtot (lower rows) in the regime of QSA for the representative models M3.6q1.00 (left

panel) and M3.4q0.70 (right panel). Indicated with a vertical dashed line is the onset of

the QSA. Note that both Mtot and Ṁtot differ by almost two orders of magnitude when

comparing equal and unequal-mass binaries.

10−6(Gc−3 M⊙)
−2 is satisfied for the first time. In other words, we define the onset of

the QSA as the time when the accretion has stabilized and the matter is moving on essentially

circular orbits. This definition is again somewhat arbitrary, but has the advantage of allowing

for a systematic comparison of the differences in the properties of the accretion tori produced

by the several models considered in this work.

Figure 6 shows the evolution of the total rest mass Mtot (upper rows) and the mass

accretion rate Ṁtot (lower rows) in the regime of QSA for the two extreme models of our

sample, M3.6q1.0 (left panel) and M3.4q0.70 (right panel). Also indicated with a vertical

dashed line is the onset of the QSA and it should be noted that both Mtot and Ṁtot differ by

almost two orders of magnitude when comparing equal and unequal-mass binaries. An aspect

of the evolution of the accretion rate which is quite evident in figure 6 is the sharp difference

between equal- and unequal-mass binaries. The equal-mass case, in fact, shows an accretion

rate (and indeed the whole evolution of the torus) that is subject to quasi-periodic oscillations

as the torus moves in and out at about the radial epicyclic frequency. The mass flux of the

unequal-mass model, on the other hand, is rather constant in time and this reflects a very

different distribution of angular momentum in the tori. Both of these aspects will be further

discussed in the following sections.

4.3. Density evolution

Once the BH is formed, an effective gravitational potential well builds up in which the

torus undergoes radial oscillations. In the case of an equal-mass binary, the well is

essentially axisymmetric and the dynamics of oscillating relativistic tori in equilibrium and

in axisymmetry has been analyzed extensively in a series of papers [61, 28, 30, 26] in the

test-fluid approximation (where the self-gravity of the disk is neglected), with and without

magnetic fields, and for the cases of Schwarzschild and Kerr BHs. These papers have shown

that, upon the introduction of perturbations in the tori, a long-term oscillatory behavior is
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Figure 7. Evolution of the maximum of the rest-mass density ρmax, normalized to its initial

value for the representative models M3.6q1.00 (left panel) and M3.4q0.70 (right panel).

The rapid drops take place well after an apparent horizon has been formed and are caused by

the numerical methods which are no longer able to resolve the very large gradients in the very

central grid cells. The two insets provide a magnified view of the evolution of the density in the

torus and help to contrast the periodic accretion produced in the case of equal-mass binaries

and the QSA for the unequal-mass binaries.

found, lasting for tens of orbital periods. These oscillations correspond to axisymmetric

p-mode oscillations whose lowest-order eigenfrequencies appear in the harmonic sequence

2:3. This harmonic sequence is present with a variance of ∼ 10% for tori with a

constant distribution of specific angular momentum and of ∼ 20% for tori with a power-

law distribution of specific angular momentum. More recently, those studies have been

extended by [62], where systems formed by a BH (in the puncture framework) surrounded by

(marginally stable) self-gravitating disks have been evolved in axisymmetry. Even in this case,

the ratio of the fundamental oscillatory mode and the first overtone also shows approximately

the 2:3 harmonic relation found in earlier works [28, 30, 26].

The dynamics of the BH–torus system produced by the merger of model M3.6q1.00 is

considerably more complicated than that considered in the test-fluid studies, for which initial

configurations in stable equilibrium could be found. However, despite the fact these systems

are formed ab-initio as the end-products of highly dynamical events, it is remarkable that so

much of the phenomenology studied and reported in [61, 28, 30, 26] continues to apply also

here. Unfortunately, although the simulation extends to ∼ 26ms, the timeseries is much too

short to provide a firm evidence of the presence of the 2:3 harmonic relation, although the

spectral analysis of the data indicates that excess power is present at such frequencies.

To provide additional evidence that the harmonic behaviour is not just in the accretion

rate, figure 7 shows the evolution of the maximum of the rest-mass density ρmax, normalized

to the corresponding initial value, for the two extreme models of our sample, M3.6q1.00
and M3.4q0.70. The equal-mass model M3.6q1.00 (represented in the left panel of figure

7) shows the most regular and pronounced oscillatory behavior, as was already evident in the

time evolution of the total baryonic rest mass and accretion rate in figure 6. The two insets

in this figure magnify these features in the QSA regime and, in the case of M3.6q1.00 they

highlight the presence of both maxima and minima corresponding to configurations when the

torus reaches the point of closest approach to the BH (periapsis or pericenter) and of farthest
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excursion (apoapsis or apocenter), respectively. A similar trend can be hinted also for the

M3.4q0.70 model on the right panel of Fig 7, although the quality of the oscillations is

smaller in this case, most likely because in this case the enhanced tidal disruption during the

merger phase leads to a more complex dynamics. Interestingly, such oscillations seem to

become more regular during the final stages of the evolution, i.e. for t & 17ms, as the torus

reaches a more axisymmetric configuration.

A novel technique to analyze the evolution of the tori and to gain some insight on their

dynamics is that offered by spacetime diagrams for observers comoving with the black hole.

This is shown in figure 8, which reports the evolution of the color-coded rest-mass density

embedded in a spacetime diagram with the (x−x
AH

) coordinate on the horizontal axis, where

x
AH

is the position of the apparent horizon, and the coordinate time t on the vertical axis. The

color-code is indicated to the right of each plot and isodensity contours are shown for the

values of ρ = 1010, 1011, 1012, 1013 g/cm3. Note that while these values are the same for all

the panels, the spatial dimensions vary considerably. For each model, the dotted horizontal

line marks the onset of the regime of QSA.

By comparing the spacetime diagrams for all models it is evident that only the equal-mass

model M3.6q1.00 shows a global oscillatory movement with respect to the location of the

BH horizon. The movement is indeed global as all the isodensity contours plotted oscillate

simultaneously and the maximum and minimum radial extensions reached by the disk (as

signalled by the location of the 1010 g/cm
3

contour) are ∼ 25 km and ∼ 15 km, respectively.

It is these oscillations that produce the periodic increase in the maximum rest-mass density

reported in figure 7 and it is easy to appreciate that in this case the average density in the disk

is less than about 1012 g/cm
3
.

Scrolling through the different panels in figure 8 it is possible to appreciate that the

dynamics of the torus is strongly influenced by the mass ratio. More specifically, models

M3.4q0.80, M3.5q0.75, M3.4q0.70, show very rapid expansions corresponding to the

ejection of the large spiral waves discussed in the previous sections. As we will comment

later on, most of this matter is still bound but it nevertheless reaches distances which are

several hundreds of km away from the BH, leading to tori that have spatial dimensions as

large as ∼ 80 km. Furthermore, noticeably higher average rest-mass densities are reached in

the three low-q models. As a result, while tidal disruption sweeps away a large fraction of the

external layers of the less massive star in the binary, the corresponding tori are still able to

retain the inner and denser regions; this is particularly the case for models M3.4q0.80 and

M3.4q0.70, where the tori reach maximum densities as high as ∼ 1014 g/cm
3
.

4.4. Dynamical Instabilities

As mentioned in the Introduction, current models of GRBs assume that the central engine

is a system consisting of a BH and a thick disk, either formed at the late stages of the

coalescence of two NSs or after the gravitational collapse of a massive star. The energy supply

comes from the energy released by the accretion of disk material on to the BH and from the

rotational energy of the BH itself, which can be extracted, for instance, via the Blandford-

Znajek mechanism [63]. This vast amount of energy (a few 1053–1054 erg depending on

the mass of the disk and on the BH rotation and mass) is sufficient to power a GRB if the

energy released can be converted into γ-rays with an efficiency of about a few percent. This

scenario requires a stable enough system to survive for a few seconds. In particular, the

internal shock model [64] implies that the duration of the energy release by the source has

a duration comparable with the observed duration of the GRB. Any instability which might

disrupt the system on shorter timescales, such as as the so-called runaway instability [65],
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Figure 8. Evolution of the rest-mass density ρ along the positive x axis in a frame comoving

with the BH. The panels show the color-coded rest-mass density embedded in a spacetime

diagram with the (x − x
AH

) coordinate on the horizontal axis, being x
AH

the position

of the apparent horizon, and the coordinate time t on the vertical axis. The color-code is

indicated to the right of each plot. Additionally, isodensity contours are shown for the values

of ρ = 1010, 1011, 1012, 1013 g/cm3. For models M3.4q0.80 and M3.4q0.70, where

the horizon could not be tracked, x
AH

represents a guess for the border of the horizon. For

each model, the dotted horizontal line marks the onset of the regime of QSA.
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could pose a severe problem for the accepted GRB models. The runaway instability was first

pointed out in ref [20] and operates as follows: if the torus is initially filling its Roche lobe,

transfer of mass onto the BH is possible through the cusp located at the L1 Lagrange point. As

a result of accretion, the mass of the BH increases, thus leading to a change in the gravitational

field of the system and ultimately to a change in the position of cusp. This can move either

inwards (towards the BH) or outwards (away from the BH) and when this happens it leads to

a increase in the mass transfer and hence to the runaway accretion of the torus on a timescale

of a few milliseconds.

The runaway instability has been investigated under different assumptions and

approximations (see [22, 24] and references therein). Early simplified studies based on

stationary models showed that, on the one hand, the self-gravity of the disk favours the

instability, and, on the other hand, there are also parameters which may help to stabilize the

disk, such as the rotation of the BH and the radial distribution of specific angular momentum.

The first time-dependent, general relativistic hydrodynamical axisymmetric simulations of the

runaway instability of tori around BHs were performed by [22, 66, 25, 23], who treated the

dynamics of the gravitational field in an approximative way and neglected the self-gravity of

the torus. Overall [22, 25, 23] found that tori with constant distribution of specific angular

momentum were unstable while non-constant (power-law) angular momentum disks were

stable. More recently, in [24] the first simulations in full general relativity of marginally-

stable self-gravitating tori in axisymmetry were performed with the purpose of evaluating the

influence of the torus self-gravity on the runaway instability. The results of [24] indicate that

the tori are indeed stable irrespective of the angular momentum distribution. It is therefore

interesting that the results presented in figure 8, which are not restricted to axisymmetry

but are however constrained to much shorter timescales, reach the same conclusion: self-

gravitating tori around BHs, as those produced by the merger of binary NSs, are stable at least

on the dynamical timescales investigated here. Additional considerations on the stability of

the tori are presented in the following section.

4.5. Specific Angular-Momentum Evolution

Besides the rest-mass density, another quantity whose evolution is useful to understand the

dynamics of the tori is the the specific angular momentum. This quantity plays an important

role in defining the dynamics of point particles around black holes and in defining the

equilibrium of non-self gravitating tori around black holes [67]. As mentioned above, we

define the specific angular momentum as ℓ ≡ −uφ/ut and note that a similar but distinct

definition of the specific angular momentum was used in [1], namely j = huφ. The two

definitions have the same Newtonian limit of jNewt = ℓNewt = Ωr2, Ω being the angular

velocity. However, it is important to stress that only the definition used here yields the correct

zero radial epicyclic frequency for tori with constant specific angular momentum [see eqs. (43)

and (45) of [28]].

Figure 9 shows therefore the evolution of the specific angular momentum, where the

different panels show the color-coded specific angular momentum for an observer comoving

with the BH. The color-code is indicated to the right of each plot and in addition the same

isodensity contours reported in figure 8 are shown here to aid to follow the dynamics of

the matter. The most striking feature to note when scrolling through the different panels in

figure 9 is that the radial distribution changes radically but systematically when going from

the equal-mass binary M3.6q1.00 over to the most extreme unequal-mass binary considered

M3.4q0.70. In particular, while the specific angular momentum is decreasing outwards in

models M3.6q1.00, M3.7q0.94 and M3.4q0.91, is Keplerian and increasing outwards
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Figure 9. The same spacetime diagrams as in figure 8 but for the evolution of the specific

angular momentum ℓ = −uφ/ut. Note that the isocontours in this case refer to the rest-mass

density and are the same as in figure 8.

as ∼ x1/2 for the remaining models (see also the discussion in the following section).

Furthermore, the spacetime plots show that the matter located in the outer regions of the disks

acquires the largest values of the specific angular momentum. This is particularly visible in

the early evolution of model M3.4q0.80, in which a large spiral arm develops extending
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Figure 10. Profiles along the x-axis of the specific angular momentum of the tori produced

by the binaries M3.6q1.00 (blue lines extending to . 20 km) and M3.4q0.70 (red lines

extending up to & 70 km). The profiles are computed in a frame comoving with the BH and

for densities ρ > 1010 g/cm3. Different line types refer either to the onset of the QSA

(i.e. t ∼ 10ms, thin solid lines) or to the end of the simulation (i.e. t ∼ 22ms, thick

dashed lines). Note the marked difference with the unequal-mass specific angular momentum

increasing outwards.

beyond the computational boundary, and also in the late evolution of model M3.4q0.70
when the corresponding disk reaches the largest radial extension (cf. right panel of figures 3

and 4). Broadly speaking, our simulations show that, in agreement with the results of [1], the

smaller the value of q, the more the angular momentum is transported outwards by a torque

from the non-axisymmetric object that forms after the merger.

To better highlight the different behaviour of ℓ for different mass ratios we show in

figure 10 the profiles along the x-axis for the tori produced by the binaries M3.6q1.00 (blue

lines extending to . 20 km) and M3.4q0.70 (red lines extending up to & 70 km). The

profiles are computed in a frame comoving with the BH and for densities ρ > 1010 g/cm
3
.

Different line types refer either to the onset of the QSA (i.e. t ∼ 10ms, thin solid lines) or

to the end of the simulation (i.e. t ∼ 22ms, thick dashed lines). Quite clearly, the specific

angular momentum decreases outward at all times for the equal-mass binary, while it increases

outward for the unequal-mass one (although it was initially decreasing at the innermost

parts). At this point it is worth remarking that the Rayleigh’s criterion against axisymmetric

perturbations of rotating fluids requires that dℓ/dx ≥ 0 for a dynamical stability [68]. While

this criterion is clearly satisfied by model M3.4q0.70, it is equally-clearly violated by

M3.6q1.00, which is nevertheless stable. We believe this difference is due to the fact

that Rayleigh’s criterion assumes that the motion is stationary and purely azimuthal. While

this is essentially the case for the unequal-mass binary which does not show clear evidence

of epicyclic oscillations, it does not hold true for the unequal-mass binary which shows

instead large radial epicyclic oscillations. The nonlinear stability of M3.6q1.00, but also of

M3.7q0.94 and M3.4q0.91, seems therefore to indicate that Rayleigh’s criterion can and
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should be extended to account for fluids which are subject to large radial excursions.
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Figure 11. The same spacetime diagrams as in figure 9 but for the evolution of the angular

velocity Ω. Note that the isocontours in this case refer to the rest-mass density and are the

same as in figure 8.
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Figure 12. The same as in figure 10 but for the angular velocity. Shown as reference with

a dotted line is the Keplerian angular velocity ΩKep, which matches very well the outer

parts of the torus from the unequal-mass binary. Shown instead with a long-dashed line is

an exponentially decaying profile which instead reproduces well the profile for the equal-mass

binary.

4.6. Angular-velocity Evolution

In analogy with figures 8 and 9, figure 11 shows the spacetime diagram for the evolution of

the angular velocity Ω ≡ uφ/ut for all models of our sample. It is straightforward to notice

that for all models the angular velocity decreases with the radial distance from the apparent

horizon. While this is qualitatively in agreement with the results of [1], it is worth noting that

the radial fall-off is very different as the mass ratio is varied among the different binaries. This

is shown in figure 12 which reports the profiles of Ω along the x-axis for the tori produced

by the binaries M3.6q1.00 (blue lines extending to . 20 km) and M3.4q0.70 (red lines

extending up to & 70 km). As before, the profiles are computed in a frame comoving with

the BH and for densities ρ > 1010 g/cm
3

and different line types refer either to the onset

of the QSA (i.e. t ∼ 10ms, thin solid lines) or to the end of the simulation (i.e. t ∼ 22ms,
thick dashed lines). It is then clear that while the equal-mass binary has an exponentially

decaying profile (cf. long-dashed line), i.e. Ω ∝ exp[−k(x− x
AH

)] ∼ exp[−0.07(x− x
AH

)],
which does not change significantly with time, the unequal-mass binary reaches at the end of

the simulation a profile which is, especially in the outer parts, essentially Keplerian, i.e. with

ΩKep ∼ x−3/2 (cf. dotted line). This feature, which is also shared by the other low-q binaries,

explains the scaling of the specific angular momentum as ℓ ∼ x1/2 and provides firm evidence

that the tori produced in this case will be dynamically stable.

4.7. Matter Ejection

As a final but nevertheless important aspect of the formation and evolution of the tori, we

consider whether or not a part of the rest-mass of the system is ejected during the merger
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Figure 13. The same spacetime diagrams as in figure 9 but for the evolution of local fluid

energy ut. Note that the isocontours in this case refer to the rest-mass density and are the

same as in figure 8.

and the subsequent evolution. To determine whether a fluid particle is bound or unbound we

use the covariant time component of the 4-velocity ut and recall that, in an axisymmetric and

stationary spacetime, the value of ut for a particle moving along a geodesic is conserved. If the

particle is unbound, it moves outwards and −ut = W > 1 at infinity, where α ≡ 1, βi ≡ 0.

The local condition ut > −1 thus provides a necessary although not sufficient, condition for
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a fluid element to be bound; stated differently, if a particle reaches infinity it is because it

has ut < −1. Furthermore, this condition is exact only in an axisymmetric and stationary

spacetime, and our spacetimes attain these properties only in the final stages of the evolution.

Nevertheless, this is a useful condition for a first estimate of the amount of matter ejected

and a in-depth discussion on the assumptions implicit in this criterion and on how it applies

if one accounts for external forces are presented in [69]. (Note that the alternative criterion

for bound flows, namely hut > −1, would yield similar results since in the relevant regions

h ∼ 1.)

Figure 13 shows the evolution of ut embedded in a spacetime diagram much like the

ones presented before for the rest-mass density, the specific angular momentum and the

angular velocity. For all models under consideration, the criterion ut > −1 is well fulfilled,

namely all the matter in the tori is bounded, except for model M3.4q0.80 which clearly

shows in the early stages of its evolution, that a certain amount of unbound matter is ejected

before reaching the regime of QSA. Only for the outermost, very low-density regions of the

tori (which are not shown in the spacetime diagrams of figure 13) values of ut ≤ −1 are

encountered in the other models and are probably the manifestation of an outflowing wind

caused by the very large temperatures of those regions. As a final remark we note that

although the total amount of matter ejected in this way is rather small and only of the order

of ∼ 10−4 M⊙, it can nevertheless act as the site for the production of the neutron-rich heavy

elements that are formed by rapid neutron capture (i.e. the r-process) (see [70] and references

therein). Performing such calculations and thus determining to what extent binary NS mergers

contribute to the whole observed r-process material in the Galaxy requires a fully developed

reaction network and is outside the scope of this study, but will be the focus of our future

research.

4.8. A phenomenological expression for the mass in the torus

As mentioned above, determining the amount of rest-mass in the torus may be one of the most

important aspects of this research for the impact it has on the modelling of the emission in

SGRBs. Table 2 also reports the mass of the torus and since the latter slightly decreases in

time, we have arbitrarily chosen the time of t ∼ 17 ms as a reference (it is about the latest

time for which we have data from all the simulations). Because of the importance of the

information and because of the scarcity of the numerical data available, it would be valuable

to derive a phenomenological expression for the mass in the torus which can be constructed

on basic expectations and that can be constrained by using the numerical data.

Following this spirit, we first search for a phenomenological expression for the torus

mass which will depend only on the mass ratio and on the total mass of the binary, i.e. M̃tor =

M̃tor(q,Mtot). Next, we exclude the trivial case in which the total mass is larger than the

maximum mass of the binary system Mmax (based on the maximum allowed mass for isolated

stars with the given EOS); in practice we impose that M̃tor(q,Mtot ≥ Mmax) = 0 for any

value of q. Finally we impose the expectation that the mass of the torus should depend, at

least at lowest order, on the mass ratio (this was already noted by [1]) and yield the torus with

smallest possible mass for an equal-mass binary. Collecting all of this constraints, our ansatz

is

M̃tor(q,Mtot) = c1(1− q)(Mmax −Mtot) + c2(Mmax −Mtot)

= [c3(1 + q)M∗ −Mtot] [c1(1− q) + c2] , (6)

where in the second expression we have written the maximum mass of the binary in terms of

the maximum mass M∗ of an isolated nonrotating star, i.e. Mmax = c3(1 + q)M∗.
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Note that as introduced in expression (6), the coefficients c2 and c3 have a direct physical

interpretation: c2 is proportional to the mass of the torus for equal-mass binaries, while c3
parameterises the excess of maximum mass that can be supported in the binary because of

the stabilizing effect produced by the nonzero spin of the stars and of the tidal potential

(i.e. c3 is expected to be slightly larger than 1). The three coefficients, c1, c2 and c3 can

then be computed by comparing expression (6) with the numerical data reported in table 2

as well as the one computed in [3] for equal-mass binaries. The fitting procedure then yields

c1 = 1.115±1.090, c2 = 0.039±0.023, c3 = 1.139±0.149, with a reduced χ2 ≃ 2×10−3.
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Figure 14. Different symbols show the torus mass Mtor measured either in the simulations

reported here (red crosses) or in those reported in [3] (green squares). Also shown in

the parameter space (q,Mtot) considered here is the phenomenological modelling M̃tor

suggested by expression (6). Note that to highlight the functional behaviour of the

phenomenological expression, the x− and y−axes are shown as decreasing when moving

to the right and to the left, respectively.

Figure 14 shows the torus mass Mtor either as measured in the simulations reported here

(red crosses) or in those presented in [3] (green squares) and against the phenomenological

modelling M̃tor suggested by expression (6) in the region where Mtot ≤ Mmax. Note that to

highlight the functional behaviour of the phenomenological expression, the x− and y−axes

are shown as decreasing when moving to the right and to the left, respectively. Overall, the

figure shows rather generically that: 1) the mass of the torus increases with the asymmetry in

the mass ratio; 2) that such an increase is not monotonic and that for sufficiently small mass

ratios the tidal disruption leads to tori that have a smaller mass for binaries with the same total

mass; 3) that tori with masses . 0.21M⊙ have been measured and even more massive ones,

i.e. with masses up to ∼ 0.35M⊙, are possible for mass ratios q ∼ 0.75− 0.85.

We note that somewhat similar considerations about the mass of the torus were made also

in [1], where a different phenomenological expression for the mass of the torus was proposed.

When applied to the data computed here, the expression suggested in [1] does not reproduce

well the data and yields rather large errors. There are a number of reasons which could justify

these differences and that are related to the different initial data chosen (ref. [1] has only

two initial total masses which are smaller than those considered here), to the different EOSs
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employed (ref. [1] uses cold but realistic EOSs in contrast to the ideal-fluid chosen here) and

to the different numerical techniques adopted (ref. [1] uses a uniform grid with rather coarse

resolution in place of the mesh-refined grid employed here). All these differences make the

comparison between the two calculations rather difficult, although they also motivate a closer

comparison using at least the same initial data and the same EOSs, and which will be the

subject of our future work. However, common conclusions of both calculations are: that the

mass of the torus can be as large as ∼ 0.1M⊙ and larger; that it increases with the mass

asymmetry in the binary; that is largest for systems with smaller total mass. We believe

these features are robust and will be also present when different initial data and EOSs are

considered.

A final note of caution must be mentioned: Although figure 14 indicates a very good

match between the data and expression (6), it also shows that the latter is inaccurate for

q ≃ 1, where the tori masses are much smaller and the prediction leads to small but negative

values; luckily, the regime where (6) is less accurate is also the least interesting one from an

astrophysical point of view. Most importantly, however, it is clear that the attempt to produce

a phenomenological description for the mass of the torus after having investigated only a

small portion of the space of the parameters (especially with respect to the total mass of the

binary) and after using as support only 8 simulations is a very demanding task and potentially

a flawed one. However, because we believe that expression (6) is a reasonable description of

the expected results, we foresee that it will reveal its robustness as additional simulations are

performed and the coefficients will be further improved. This will indeed be the subject of

our future work.

5. Gravitational-Wave Emission

Figure 15 shows the waveforms in the two polarizations of the gravitational-wave amplitude

(h+)22 (upper panels) and (h×)22 (lower panels) for all the models considered and as

computed from the gauge-invariant perturbations of a Schwarzschild spacetime. As predicted

by the post-Newtonian approximation [71], the inspiral phase is characterized by harmonic

oscillations at roughly twice the orbital frequency but that show an increase both in amplitude

and frequency as the merger approaches. We note the initial part of the inspiral of the binary

M3.4q0.80 shows a comparatively larger contamination from the initial spurious burst of

radiation. This is simply due to the fact that such a binary has been constructed with a

comparatively larger initial violation of the constraints (i.e. the violation of the L2 norm of the

Hamiltonian constraint is ∼ 3 × 10−6 and about 50% larger than the violation measured in

other binaries). We believe that this larger initial error is also the one responsible for a longer

time spent by this binary before the merger.

As already discussed before, because of the very high total mass of the systems no

transient HMNS forms, whose dynamics would have been dramatically imprinted on the

waveforms (cf. the detailed comparison of the HMNS dynamics for different EOSs presented

in [3]). As a result, the post-merger waveform is essentially the one corresponding to the

collapse of the HMNS to a BH. Indeed, as noted above, in the low-q cases M3.5q0.75 and

M3.4q0.70, for which a common apparent horizon is found almost simultaneously with the

merger, the part of the waveform produced by the newly formed BH starts essentially together

with the end of the one coming from the inspiral.

The ringdown part of the waveform starts increasingly early for binaries with smaller

mass ratios and its signature in the waveform is also less evident. More specifically, while

the ringdown of the BH created after the merger can be clearly identified in the waveform

of the equal-mass model M3.6q1.00, it becomes much less clear as one scrolls down in
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Figure 15. Gravitational waveforms in the two polarizations h+ (upper panels) and h× (lower

panels) as computed from the lowest ℓ = m = 2 multipole for all the binaries considered. For

those models where it was found, the vertical dashed lines mark the time of the first detection

of the apparent horizon. Note that as the mass ratio q decreases, the ringdown part of the

signal starts earlier but it is also less evident because of the increasingly large accretion after

the formation of the apparent horizon. Finally, shown as an aid to comparison, the panel of

the binary M3.4q070 also reports with dotted lines the waveforms for the equal-mass binary

M3.6q1.00.

the different panels of figure 15 and it seems almost absent in model M3.4q0.70. Indeed

it is necessary to examine M3.4q0.70 on a logarithmic scale in order to appreciate the

presence of an exponential ringdown. We believe that this behaviour is mostly likely due to the



Accurate evolutions of unequal-mass neutron-star binaries 29

Figure 16. Scaled power spectral densities h̃+(f)f1/2 , for all the binaries considered when

placed at a distance of 100Mpc. Shown also are the noise curves of the Virgo detector (dotted

magenta), of the advanced LIGO detector (dashed blue) and of the planned Einstein Telescope

(dashed red).

copious mass accretion after the formation of the apparent horizon that becomes increasingly

large as the mass ratio decreases. We recall, in fact, that the mass accretion rate following

the BH formation is highly sensitive on the mass ratio and inversely proportional to it (see

figure 5 where this is very apparent). Under these conditions of very intense mass accretion,

the BH is continuously “hit” by generically nonspherical flows of matter which prevent its

natural ringdown, essentially “chocking” it. A detailed analysis on the role played by mass

accretion on the properties of the ringdown has already been investigated in [72], where

however the BH ringdown was always observed because of the intrinsically perturbative

nature of the approach. The rather different accretion regime reached in these simulations

suggests therefore that the dynamics observed in figure 15 reflects a nonlinear response of

the BH that was not accessible in the work of [72]. Additional work is needed to clarify the

relation between hypercritical accretion and BH ringdown and will be the subject of future

investigations.

A more systematic analysis of the waveforms as a function of the mass ratio is beyond

the scope of this paper and will be considered elsewhere using more realistic or parameterized

EOSs. Here, however, as an aid to comparison, the panel relative to the binary M3.4q070 in

figure 15 also reports with dotted lines the waveforms for the equal-mass binary M3.6q1.00
and highlights that besides the different amplitude evolution, the mass asymmetry also results

into a different phase evolution which is likely to provide important information on the EOS.

In addition, we show with black continuous lines in figure 16 the scaled power spectral

densities (PSD) of h+, i.e. h̃+(f)f
1/2, for all the binaries considered when placed at a

distance of 100Mpc (see [33] for a definition of h̃+(f)). Shown also here are the noise

curves of the Virgo detector (dotted magenta), of the advanced LIGO detector [73] (dashed

blue) and of the planned Einstein Telescope (ET) [74] (dashed red). Since the number of

cycles computed is very small, the peak emission is the one corresponding to the last stages

of the inspiral, around 0.6 − 0.7 kHz for all models considered. The amplitude, however,

depends sensitively on the mass ratio, being maximal for the high-q binaries and above the

noise curve for Virgo in these cases. As the mass ratio is decreased, in fact, the peak values
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of the PSD decrease and the binaries at the distances considered become then undetectable by

an interferometer like Virgo (we recall that the binary M3.4q0.80 has an extended inspiral

induced by the larger initial violation of the constraints; hence its PSD amplitude is spuriously

increased in figure 16). New-generation detectors such as advanced LIGO will instead be able

to reveal the inspiral signal in the frequency interval ∼ 0.3− 2.0 kHz, while essentially all of

the late-inspiral and merger signal would be measured by the Einstein Telescope (see ref. [75]

for an introduction to science reach of third-generation detectors such as ET, and ref [76]

for a detailed discussion of the impact that gravitational waves from NSs may have on such

detectors). Table 3 summarizes this by reporting the signal-to-noise ratios (SNRs) for the

different detectors and clearly highlights that present detectors are unlikely to detect any of

the binaries considered here if at a distance of 100Mpc and observed only during the final

part of the inspiral. On the other hand, advanced detectors will be able to reveal these sources

even at such large distances (the only ones that can provide an interesting event rate) and, in

the case of third-generation detectors such as ET, even measure them with significant SNRs.

Model SNR for Virgo SNR for adLIGO SNR for ET

M3.6q1.00 0.41 2.56 47.47
M3.7q0.94 0.41 2.59 48.33
M3.4q0.91 0.38 2.48 45.40
M3.4q0.80 0.46 3.29 55.68
M3.5q0.75 0.36 2.38 42.56
M3.4q0.70 0.34 2.29 40.48

Table 3. SNR as computed for the different binaries considered as computed when placed at a

distance of 100Mpc for a presently operating detector such as Virgo, as well as for detectors

of second and third generation, such as advanced LIGO and ET.

6. Conclusions

Numerical-relativity simulations of non-vacuum spacetimes have now reached a sufficient

stability and accuracy to be able to describe in a complete manner all of the stages of the

inspiral, merger and post-merger of binary NSs. Determining the properties of the black-hole–

torus system produced by the merger represents a key aspect in the modelling of the central

engine of SGRBs. Of the many different properties characterizing the torus, the total rest-mass

clearly represents the most important one, since it is the torus’ binding energy which can be

tapped to extract the large energies necessary to power the SGRB emission. However, the

rest-mass density and angular momentum distributions in the torus also represent important

elements which determine its secular evolution and need to be computed equally accurately

for any satisfactory modelling of SGRB engine.

As a first step towards modelling ab-initio the central engine of SGRBs, we have

here presented new results from accurate and fully general-relativistic simulations of the

coalescence of unmagnetized binary NSs with unequal masses as these are the ones expected

to yield the largest tori. The evolution of the stars has been followed through the inspiral

phase, the merger and prompt collapse to a BH, up until the appearance of a thick accretion

disk, which was studied as it enters and remains in a regime of quasi-steady accretion.

Although we have employed a simple ideal-fluid equation of state, we have performed a

systematic study of the properties of the black-hole–torus obtaining a number of results that

can be summarized as follows:
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• The mass of the torus increases considerably with the mass asymmetry and equal-mass

binaries do not produce significant tori if they have a total baryonic mass Mtot &

3.7 M⊙. Those produced have masses Mtor ∼ 10−3 M⊙ and a radial extension of

∼ 30 km.

• Tori with masses as large as ∼ 0.2M⊙ have been measured with binaries having

Mtot ∼ 3.4 M⊙ and mass ratios q ∼ 0.75 − 0.85. The tori in these cases are much

more extended with typical sizes & 120 km.

• The mass of the torus can be described accurately by the simple expression

M̃tor(q,Mtot) = [c3(1 + q)M∗ −Mtot] [c1(1− q) + c2], involving the maximum mass

for the binaries and coefficients, both of which can be constrained from the simulations.

• Using the phenomenological expression we conclude that tori with masses as large as

M̃tor ∼ 0.35M⊙ can be produced for binaries with total masses Mtot ∼ 2.8 M⊙ and

q ∼ 0.75− 0.85.

• Tori from equal-mass binaries exhibit a quasi-periodic form of accretion associated with

the radial epicyclic oscillations of the tori, while those from equal-mass binaries exhibit

a quasi-steady form of accretion.

• When analyzing the evolution of the angular-momentum distribution in the tori, we find

no evidence for the onset of non-axisymmetric instabilities, that angular momentum is

transported outwards more efficiently for smaller values of q thus yielding Keplerian

angular-velocity distributions, and that very little of the mass of the tori is unbound.

• Present gravitational-wave detectors are unlikely to detect any of the binaries considered

here if at a distance of 100Mpc and observed only during the final part of the inspiral.

• Advanced detectors will be able to reveal these sources even at large distances and

measure them with significant SNRs in the case of third-generation detectors such as

ET.

Overall, these results indicate that large-scale tori with large masses and quasi-stationary

evolutions can be produced as the result of the inspiral and merger of binary NSs with unequal-

masses. Hence, they may provide the energy reservoir needed to power short GRBs. Although

complete and accurate, our results are also far from being realistic. Much remains to be done

to improve them either by considering physically-motivated EOSs, or by including the effect

of magnetic fields, or by taking into account the modifications introduced by a self-consistent

treatment of the radiation transfer. All and each of these improvements will be the subject of

our future research.
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Appendix A. On our accuracy: conservation of mass and angular momentum

In a recent work [5] we have discussed in detail the convergence properties of our numerical

simulations and, in particular, the deterioration of the convergence rate at the merger and

during the survival of the merged object, when strong shocks are formed and turbulence

develops. In particular, in figure 3 of that work we have shown a very stringent measure

of the overall conservation properties of our simulations by reporting the time evolution of the

energy and angular momentum which are partially radiated during the simulation. In order to

reduce the computational costs associated with the measurements made in [5], we had limited

ourselves to a single configuration and in particular one that, because of the rather high mass,

formed a BH soon after the merger. In particular, we had considered an equal-mass binary

with a total baryonic mass of Mb = 3.56M⊙ and a total ADM mass of M
ADM

= 3.23M⊙ as

evolved from an initial (coordinate) separation of ∼ 45 km. As a result, we were able to show

an overall conservation of both mass and angular momentum to a precision of ∼ 1% over a

timescale of ∼ 10ms.

Figure A1. Left panel: Evolution of the maximum rest-mass density normalized to its initial

value. Shown with different colours are the different parts of the evolution which are then also

magnified in the three insets (cf. the timescale to associate the insets to the different parts of

the evolution). Right panel: The same as in the left panel but in terms of the ℓ = m = 2 mode

of the h+ polarization amplitude.

We here reconsider the same assessment of the conservation properties but for a far more

challenging case of a binary with a small total mass and for which the HMNS survives a

considerably larger time before collapsing to a BH. In particular, we examine the evolution

of an equal-mass binary with a total baryonic mass of Mb = 2.912M⊙ and a total ADM

mass of M
ADM

= 2.694M⊙ as evolved from an initial (coordinate) separation of ∼ 45 km;

this same binary was indicated as 1.46-45-IF in [3] and evolved there only up to 25ms. As

representative information about the binary inspiral and merger we report in the left panel

of figure A1 the evolution of the maximum rest-mass density normalized to its initial value

(cf. figure 15 in [3]). Shown with different colours are the different parts of the evolution and
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which are also magnified in the different insets (cf. the timescale to associate the insets to the

three parts of the evolution). They refer to the immediate formation of the HMNS (red line),

to the secular evolution of the HMNS as a contracting bar-deformed object (green line) and

to the exponential growth when the threshold to black-hole formation has been crossed (blue

line). The right panel of the same figure shows instead the same stages of the evolution but in

terms of the ℓ = m = 2 amplitude of the + polarization. Note that the timescale over which

the evolution is reported is ∼ 140ms and thus a factor ∼ 5 larger than the one discussed in [3]

(As for the evolutions in [5], here too we have used a rotational symmetry around the z-axis

to reduce computational costs).

Figure A2. Left panel: conservation of energy. The black continuous line is the ADM mass

computed as an integral over the whole grid, while the long-dashed blue line is the energy

carried from gravitational waves outside the grid and magnified by a factor of 10; the red

short-dashed line is the sum of the two and it should be conserved. The numerical violation

is at most 1.5% (cf. dot-dashed line). Right panel: the same as in the left panel but for the

conservation of the angular momentum. Also in this case the violation is at most 1%.

In analogy with figure 3 of [5], we show in the left panel of figure A2 the evolution of

the total mass as normalized to the initial value (cf. left panel of figure 3 of [5]). Indicated

with different lines are the volume-integrated values of the ADM mass (solid black line), of

the energy lost to gravitational waves magnified of a factor 10 (long-dashed blue line), and of

their sum (short-dashed red line). The last quantity should be strictly constant and this is the

case to a precision of ∼ 0.5% during the inspiral, but with a secular decrease that brings the

total error to be ∼ 1.5% at the end of the simulation (as an aid to comparison the value at 1.015
is shown with a dot-dashed line). Similar considerations apply also to the conservation of the

angular momentum as shown in the right panel of figure A2 (cf. right panel of figure 3 of [5])

which uses the same conventions as the left panel (here Jvol is computed with the integral

(15) in [3]). In this case the radiative losses are much larger (almost 15% of the available

angular momentum is lost to gravitational waves) but the overall conservation is still accurate

to ∼ 1%. Once again it is worth nothing that the timescale over which we can show accurate

conservation of mass and angular momentum is a factor ∼ 14 larger than the one discussed

in [5] and provides us with great confidence over the numerical accuracy of our results. Of

course this does not provide us with any measure of whether such results are indeed realistic.
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[32] Pollney D, Reisswig C, Rezzolla L, Szilágyi B, Ansorg M, Deris B, Diener P, Dorband E N, Koppitz M, Nagar

A and Schnetter E 2007 Phys. Rev. D76 124002

[33] Baiotti L, Hawke I and Rezzolla L 2007 Class. Quantum Grav. 24 S187–S206

[34] Baiotti L, Hawke I, Montero P and Rezzolla L 2003 Computational Astrophysics in Italy: Methods and Tools

vol 1 ed Capuzzo-Dolcetta R (Trieste: MSAIS) p 210
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