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ABSTRACT An accurate frequency estimator of complex sinusoid in additive white noise is proposed. It is

based on interpolation of Fast Fourier Transform (FFT) and Discrete-Time Fourier Transform (DTFT). Zero-

padding is firstly performed before the FFT of the sinusoid sampled data, and the coarse estimate is obtained

by searching the discrete frequency index of the maximum FFT spectrum line. Then the fine estimate is

obtained by employing the maximum FFT spectrum line and two DTFT sample values located on the left

and right side of the maximum spectrum line. The correlation coefficients between the Fourier Transform of

the noises on two arbitrarily spaced spectrum lines are derived, and theMSE calculation formula is derived in

additive white noise background based on the correlation coefficients. Simulations results demonstrate that

the proposed algorithm has lower MSE than the competing algorithms, and its signal-to-noise ratio (SNR)

threshold is lower compared with Candan algorithm, AM algorithm and Djukanovic algorithms.

INDEX TERMS Frequency estimation, FFT, DTFT, interpolation.

I. INTRODUCTION

Sinusoidal frequency estimation can be applied in numer-

ous fields such as radar, sonar, measurement, instrumen-

tation, power systems, communications and so on. Many

sinusoidal frequency estimators have been proposed and

they can be categorized into time-domain estimators [1]–[3]

and frequency-domain estimators [4]–[28]. Time-domain

estimators generally have low computational efficiency, and

are not appropriate to be used in real-time applications. On the

other hand, frequency-domain estimators based on FFT have

the advantage of high computation speed and can easily be

realized in hardware.

The sinusoidal frequency can be described as f0 = (m +

δ)1f , where m is the index of the peak magnitude of FFT,

and δ is the residual frequency with the value range of

[−0.5, 0.5]. 1f is the FFT frequency resolution. The FFT

based sinusoidal frequency estimators can usually be carried

out in two stages. Firstly, the coarse estimate is obtained by

searching the discrete frequency index of the maximum FFT

spectrum line. Next, the fine estimate is usually obtained by

interpolation with the maximum FFT spectrum line and the

neighboring spectrum lines.

The associate editor coordinating the review of this manuscript and

approving it for publication was Yue Zhang .

The maximum likelihood (ML) method produces the least

MSE [1] at the cost of low computational efficiency. The

maximum FFT spectrum line and the second largest spectrum

line are utilized to perform frequency estimation [4], [5]. But

when the signal frequency is close to an integral multiple

of 1f , the estimation error increases obviously. In consid-

eration of the above disadvantage of frequency interpolation

with two FFT spectrum lines, different improved methods

have been proposed [6]–[12]. Three samples around the peak

in the FFT spectrum are utilized for the frequency estima-

tion [6], [7]. Zero-padding is carried out before the FFT of

the sinusoid sampled data, and the two neighboring spectrum

line of the maximum FFT spectrum line are used for the fine

estimation [8]. RCTSL estimator [9] utilizes three samples

around the peak in the 2N -point FFT spectrum to get the

fine estimate. AM estimator [10] makes use of the two DFT

samples located on the left and right side of the maximum

FFT spectrum line, and its estimation variance is very close

to the Cramer-Rao lower bound (CRLB) after two iterations.

Based on the best linear unbiased estimation fusion rule, all

the spectrum lines can be used for the fine estimation [12],

and the precision after iterations is similar to that of the

estimator in [10]. When there are interfering signals, win-

dowing methods can be utilized [20]–[28]. The estimation

expression of Candan estimator [6] is generalized in [20]

when window functions are adopted. When generic cosine
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windows are used, Candan method [6] and AM method [10]

are generalized in [21].

An accurate sinusoidal frequency estimation algorithm

based on interpolation of FFT and DTFT is proposed in

this paper. Zero-padding is performed before the FFT of the

sinusoid sampled data. The coarse estimate is obtained by

finding the discrete frequency index of the maximum FFT

spectrum line. The fine estimate is obtained by employing

the maximum FFT spectrum line and two DTFT sample

values of the sinusoid located on the left and right side of

the maximum FFT spectrum line. These two DTFT sam-

ple values are closer to the DTFT peak of the sinusoid

than the spectrum lines used by the estimators in [6]–[10].

Therefore, these two DTFT sample values utilized by the

proposed estimator are less affected by the noise, and the

proposed estimator should outperform the existing estimators

in [6]–[10] in additive white noise. As the intervals between

the spectrum lines utilized by the proposed algorithm are

smaller than 1f which is the frequency resolution of

N -point FFT, the noise on these spectrum lines are correlated.

The correlation coefficients between the Fourier Transform

of the noises on two arbitrarily spaced spectrum lines are

derived. With these correlation coefficients, the MSE calcu-

lation formula is derived in additive white noise. Simulations

are performed, and the results demonstrate that the proposed

algorithm has lowerMSE than the competing algorithms, and

its signal-to-noise ratio (SNR) threshold is lower compared

with Candan algorithm [6], AM algorithm [10], Djukanovic

algorithms [13], [14].

The rest of the work is structured as follows. In Section II,

the estimation expression is derived and the iterative proce-

dures are described. In Section III, the MSE calculation for-

mula is derived. In section IV, the MSE calculation formula

and the performance of the proposed estimator are verified

through simulations. Finally, Section V concludes the work.

II. PROPOSED ALGORITHM

The signal can be expressed as [11]:

x(n) = s(n) + z(n), n = 0, 1, . . . ,N − 1 (1)

s(n) = Aej(2π fn/fs+ϕ), n = 0, 1, . . . ,N − 1 (2)

where the complex white noise term z(n) has zero mean and

its variance is σ 2. A is the amplitude, f is the frequency and

ϕ is the initial phase. fs is the frequency of sampling. N is the

samples number. The SNR can be defined as SNR = A2/σ 2.

Pad N zeros to s(n), s′(n) is obtained. The 2N -point FFT

of s′(n) in a noiseless case is

S (k) =

N−1
∑

n=0

Aejφe
j2π

f
fs
n
e−j π

N nk

= Aejφe
jπ (N−1)

(

f
fs

− k
2N

) sin

[

πN

(

f

fs
−

k

2N

)]

sin

[

π

(

f

fs
−

k

2N

)] ,

k = 0, 1, . . . , 2N − 1 (3)

The coarse estimate is obtained by finding the discrete

frequency index of the maximum FFT spectrum line which

is denoted as m. And the coarse estimate is m1f , where

1f = fs/(2N ) is the FFT frequency resolution.

The complex values of the maximum FFT spectrum line

and two DTFT sample values of s′(n) at the location f = (m±

0.5)1f are utilized to get the fine estimate. These two DTFT

sample values are closer to the DTFT peak of the signal than

the spectrum lines utilized by the estimators in [6]–[10].

At the location f = (m+ p)1f , the DTFT sample value of

s′(n) is

Sp =

N−1
∑

n=0

s(n)e−j2π fn|f=(m+p)1f (4)

By substituting f = (m + δ)fs/(2N ) into (3), formula (4)

can be expressed as

Sp =
Aejϕ

2N
·

1 − ejπ (δ−p)

1 − ejπ (δ−p)/N
(5)

When N ≫ π (δ − p), ejπ (δ−p)/N ≈ 1 + jπ (δ − p)/N.

Formula (4) can be expressed as

Sp =
bp

δ − p
(6)

where

bp =
jAejϕ

2π

[

1 − ejπ (δ−p)
]

(7)

In (6) and (7), let p equal to 0, 0.5 and −0.5 respectively.

After some deduction, the following expressions are obtained

S−0.5

S0

(

1 +
0.5

δ

)

− 1 = ejπδ

[

S−0.5

S0

(

1 +
0.5

δ

)

− j

]

(8)

S0.5

S0

(

1 −
0.5

δ

)

− 1 = ejπδ

[

S0.5

S0

(

1 −
0.5

δ

)

+ j

]

(9)

After some deduction with (8) and (9), δ can be estimated

as follows:

δ̂ = Re

{

0.5
[

(1 − j)S0.5 + (1 + j)S−0.5

]

(1 − j)S0.5 + 2jS0 − (1 + j)S−0.5

}

(10)

where the real part of the expression is taken in order to obtain

a real-valued estimate of δ in the noise background.

The sinusoidal frequency is

f̂ = (m+ δ̂) · 1f (11)

Inspired by the literature [10], the frequency can be esti-

mated in an iterativemanner to further improve the estimation

performance. The iterative procedures are shown as follows.

III. THEORETICAL ANALYSIS

The 2N-point DFT of is as follows:

X (k) = S(k) + Z (k), k = 0, 1, 2, . . . . . .N − 1 (12)

At the maximum spectrum line location, X (k) can be

expressed as

X0 = S0 + Z0 (13)

44374 VOLUME 8, 2020



L. Fan et al.: Accurate Frequency Estimator of Sinusoid Based on Interpolation of FFT and DTFT

TABLE 1. Iterative procedures of the estimator.

The two DTFT sample values of s′(n) at the location

f = (m± 0.5)1f are as follows:

X0.5 = S0.5 + Z0.5 (14)

X−0.5 = S−0.5 + Z−0.5 (15)

Replace S0, S0.5 and S−0.5 in (10) with X0, X0.5 and X−0.5

respectively, then δ̂ can be expressed as

δ̂

=
0.5[(1 − j)X0.5 + (1 + j)X−0.5]

(1 − j)X0.5 − (1 + j)X−0.5 + 2jX0

=
0.5[(1−j)S0.5+(1−j)Z0.5+(1+j)S−0.5+(1+j)Z−0.5]

(1−j)S0.5−(1+j)S−0.5+2jS0+(1−j)Z0.5−(1+j)Z−0.5+2jZ0

=
0.5[(1−j)S0.5+(1+j)S−0.5+(1−j)Z0.5 + (1 + j)Z−0.5]

1 +
(1−j)Z0.5−(1+j)Z−0.5+2jZ0
(1−j)S0.5−(1+j)S−0.5+2jS0

·
1

(1 − j)S0.5 − (1 + j)S−0.5 + 2jS0
(16)

Under high SNR, the following expression is obtained
[

(1 − j)Z0.5 − (1 + j)Z−0.5 + 2jZ0
]

≪
[

(1 − j)S0.5 − (1 + j)S−0.5 + 2jS0
]

(17)

Then a first order Taylor series expansion of (16) is made.

And (16) can be expressed as

δ̂

=
0.5

[

(1−j)S0.5+(1+j)S−0.5+(1−j)Z0.5+(1+j)Z−0.5

]

(1−j)S0.5−(1+j)S−0.5+2jS0

·

[

1−
(1−j)Z0.5−(1+j)Z−0.5+2jZ0

(1−j)S0.5−(1+j)S−0.5+2jS0

]

≈
0.5

[

(1−j)S0.5+(1+j)S−0.5

]

(1−j)S0.5−(1+j)S−0.5+2jS0
+

0.5
[

(1−j)Z0.5+(1+j)Z−0.5

]

(1−j)S0.5−(1+j)S−0.5+2jS0

−

[

(1−j)S0.5+(1+j)S−0.5

][

(1−j)Z0.5−(1+j)Z−0.5+2jZ0
]

2
[

(1−j)S0.5−(1+j)S−0.5+2jS0
]2

(18)

In the last step of (18), the assumption that
[

(1 − j)Z0.5 + (1 + j)Z−0.5

]

≪
[

(1 − j)S0.5 + (1 + j)S−0.5

]

under high SNR is used. Under the noiseless circumstance,

the estimate of δ is close to the true value. So the following

expression is obtained

0.5[(1 − j)S0.5 + (1 + j)S−0.5]

(1 − j)S0.5 − (1 + j)S−0.5 + 2jS0
≈ δ (19)

Substituting (19) into (18), (18) can be expressed as

δ̂ ≈ δ +
0.5

[

(1 − j)Z0.5 + (1 + j)Z−0.5

]

(1 − j)S0.5 − (1 + j)S−0.5 + 2jS0

−δ ·

[

(1 − j)Z0.5 − (1 + j)Z−0.5 + 2jZ0
]

[

(1 − j)S0.5 − (1 + j)S−0.5 + 2jS0
] (20)

After simple algebra, the following expression is obtained

δ̂−δ≈

[

(1−j)(0.5−δ)Z0.5+(1+j)(0.5+δ)Z−0.5−2jδZ0
]

(1−j)S0.5−(1+j)S−0.5+2jS0
(21)

Since the mean values of Z0, Z0.5 and Z−0.5 are all zero,

it can be concluded that E
(

δ̂

)

≈ E (δ). Therefore,δ̂ is the

unbiased estimate of δ.

The expression on the left of (21) is real-valued. Therefore,

the real part of the expression on the right of (21) is taken in

order to obtain a real-valued result as follows:

δ̂−δ≈Re

{

[

(1−j)(0.5−δ)Z0.5+(1+j)(0.5+δ)Z−0.5−2jδZ0
]

(1−j)S0.5−(1+j)S−0.5+2jS0

}

(22)

The MSE of the estimate of δ is

E

[

(

δ̂−δ

)2
]

≈E

[

(

Re

{

(1−j)(0.5−δ)Z0.5+(1+j)(0.5+δ)Z−0.5−2jδZ0

(1−j)S0.5−(1+j)S−0.5+2jS0

})2
]

(23)

In order to obtain the formula ofE

[

(

δ̂ − δ

)2
]

, the denom-

inator of (22) is considered first. According to the definition

of DTFT, the following expression is obtained

S (m+ i) = Aejφejπ (
N−1
2N )(δ−i) sin

[

π
2
(δ − i)

]

sin
[

π
2N

(δ − i)
] (24)

When N is large, (24) can be expressed as

S (m+ i) ≈ Aejφej
π
2 (δ−i)

2N sin
[

π
2
(δ − i)

]

π (δ − i)
(25)

Let i equals to 0, 0.5 and -0.5 respectively, the following

expressions are obtained

S0 ≈ ejφej
π
2 δ ·

2AN sin
(

π
2
δ
)

πδ
(26)

S0.5 ≈ ejφe
j π2

(

δ− 1
2

)

·
2AN sin

[

π
2
(δ − 0.5)

]

π (δ − 0.5)
(27)
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S−0.5 ≈ ejφej
π
2 (δ+

1
2 ) ·

2AN sin
[

π
2
(δ + 0.5)

]

π (δ + 0.5)
(28)

By substitution of (26)∼(28) into the denominator of (22),

the following expression is obtained

(1 − j)S0.5 − (1 + j)S−0.5 + 2jS0

≈ −j2Aejφej
π
2 δN

[

−δ cos (πδ/2) + 0.5 sin(πδ/2)

πδ(δ + 0.5)(δ − 0.5)

]

(29)

By substitution of (29) into (22), the following expression

is obtained

δ̂−δ ≈Re

{

je−jφ−j π2 δ [πδ(δ+0.5)(δ − 0.5)]

AN [sin(πδ/2)−2δcos (πδ/2)]

·
[

(1−j)(0.5−δ)Z0.5+(1+j)(0.5+δ)Z−0.5−2jδZ0
]

}

(30)

So the MSE of the estimate of δ can be expressed as

E

[

(

δ̂ − δ

)2
]

=
1

A2N 2
·

[

πδ(δ + 0.5)(δ − 0.5)

sin(πδ/2) − 2δcos (πδ/2)

]2

·E
(

B2
)

(31)

where

B = Re
{

je−jφ−j π2 δ
[

(1 − j)(0.5 − δ)Z0.5

+(1 + j)(0.5 + δ)Z−0.5 − 2jδZ0
]

}

(32)

B can be expressed as

B = Re
{

je−j π2 δ
[

(1 − j)(0.5 − δ)Z ′
0.5

+(1 + j)(0.5 + δ)Z ′
−0.5 − 2jδZ ′

0

]

}

(33)

where Z ′
0.5 = e−jφZ0.5, Z

′
−0.5 = e−jφZ−0.5, Z

′
0 = e−jφZ0.

Let Z ′
0 = U0 + jV0,Z

′
0.5 = U0.5 + jV0.5 and Z ′

−0.5 =

U−0.5 + jV−0.5. Then (33) can be expressed as

B = [(0.5 − δ) (U0.5 + V0.5) + (0.5 + δ) (U−0.5 − V−0.5)

+ 2δV0] sin(πδ/2) − [(δ − 0.5) (U0.5 − V0.5)

+ (0.5 + δ) (U−0.5 + V−0.5) − 2δU0] cos(πδ/2) (34)

As the intervals between the spectral lines X0, X0.5 and

X−0.5 used by the proposed estimator are smaller than 1f

which is the frequency resolution of N -point FFT, the noise

on different spectral lines are correlated. In order to com-

pute E
(

B2
)

, the correlation coefficients between X0, X0.5 and

X−0.5 are derived in the Appendix.

Using (34), (57), E
(

Uf1Uf2
)

= E
(

Uf2Uf1
)

, E
(

Vf1Vf2
)

=

E
(

Vf2Vf1
)

, and E
(

Uf1Vf2
)

= −E
(

Uf2Vf1
)

, the following

expression is obtained

E
(

B2
)

≈
(

8δ2 + 1
)

E
(

U2
0

)

− 8δ2E (U0U0.5)

+ (4δ2 − 1)E (U0.5V−0.5) + 8δ2E (U0V0.5) (35)

Zero-padding is performed before the 2N -point FFT

of the sinusoid sampled data. Therefore, the frequency

interval between X0 and X0.5 is −0.25/T , the frequency

interval between X0 and X−0.5 is 0.25/T , and the fre-

quency interval between X0.5 and X−0.5 is 0.5/T . According

to (55) and (60), the following expressions are obtained

E (U0U0.5) ≈ Nσ 2/π (36)

E (U0V0.5) ≈ −Nσ 2/π (37)

E (U0.5V−0.5) ≈ −Nσ 2/π (38)

By substitution of (36)∼(38) into (35), (35) can be

expressed as

E
(

B2
)

≈
(

8δ2 + 1
) Nσ 2

2
−

(

12δ2 + 1
) Nσ 2

π
(39)

By substitution of (39) into (31), the following expression

is obtained

E

[

(

δ̂ − δ

)2
]

≈
π2

(

4δ2 + 0.5
)

− π
(

12δ2 + 1
)

4N · SNR

·

[

δ (δ + 0.5) (δ − 0.5)

δcos (πδ/2) − 0.5sin (πδ/2)

]2

(40)

When δ = 0 and δ = ±0.5, the numerator and the

denominator of the above formula are all zero. The limit of

the above formula can be calculated to obtain the values of

E
[

(δ̂ − δ)2
]

when δ = 0 and δ = ±0.5. Therefore, the MSE

of the estimate of δ can be expressed as

E

[

(

δ̂ − δ

)2
]

≈



































π2
(

4δ2 + 0.5
)

− π
(

12δ2 + 1
)

4N · SNR

·

[

δ (δ + 0.5) (δ − 0.5)

δcos (πδ/2) − 0.5sin (πδ/2)

]2

, δ 6= 0, ±0.5

π (π − 2)/
[

8 (4 − π)2 N · SNR
]

, δ = 0

π (3π − 8)/
[

4 (π − 2)2 N · SNR
]

, δ = ±0.5

(41)

IV. EXPERIMENTAL RESULTS

Computer simulations were performed to verify the perfor-

mance of the algorithm presented above and the MSE cal-

culation formula. The parameters used in the experiments of

this section are as follows: A = 1, f0 = (N
/

4 + δ)fs/N , for

example, fs = 512kHz, N = 512, then f = (128 + δ)kHz =

127.5 ∼ 128.5kHz, and the initial phase ϕ is uniformly

distributed between 0 and 2π .TheCRLBofmean square error

(MSE) is [1]:

CRLB =
3f 2s

2π2N (N 2 − 1) · SNR
(42)

Fig.1 shows the simulated RMSE of the proposed

algorithm, Fang algorithm [8], RCTSL algorithm [9],

AM algorithm [10], Djukanovic algorithm 1 [13] and

Djukanovic algorithm 2 [14]. The presented algorithm, Fang

algorithm and RCTSL algorithm are based on zero-padding

and 2N -point FFT. AM algorithm, Djukanovic algorithm 1

and Djukanovic algorithm 2 are without zero-padding and
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FIGURE 1. Simulated RMSE versus δ (N = 512, SNR = 0 dB).

TABLE 2. Numerical complexity of different algorithms.

based on N -point FFT. We chose N = 512 and SNR = 0dB.

δ is the residual frequency when 2N -point FFT is performed.

It can be seen that when δ varies from −0.5 to 0.5, the RMSE

of the presented algorithm in the first iteration increases with

the increase of |δ|. When |δ| approaches zero, the RMSE

of the presented algorithm approaches its minimum and is

pretty close to CRLB. In the second iteration, the RMSE of

the presented algorithm is pretty close to CRLB in the whole

value range of δ and is lower than the RMSE of other methods

(except for the case when |δ| is very close to 0.5). When |δ|

is close to 0.5, the RMSE of RCTSL algorithm and Fang

algorithm are relatively large (except for the algorithms in

the first iteration). The reason is that under this circumstance,

the amplitude of one neighbor of the maximum FFT spectrum

line is close to its minimum, and is vulnerable to the noise.

The analytical and simulated RMSE of the presented algo-

rithm are shown in Fig.2 for SNR = 10dB. And the values of

N are 256 and 32 separately. In the first iteration, the theoret-

ical RMSE is obtained according to (41). It can be seen that

the theoretical calculation results are in good agreement with

FIGURE 2. Analytical and simulated RMSE of the proposed algorithm
(SNR = 10 dB): (a) N = 256 and (b) N = 32.

FIGURE 3. Simulated RMSE of Candan algorithm, AM algorithm, Fang
algorithm and the proposed algorithm versus SNR (N = 16).

the simulation results. The RMSE of the presented algorithm

increases as |δ| increases in the first iteration. When |δ|

approaches zero, the RMSE of the presented algorithm is

pretty close to CRLB.

Fig.3 and Fig.4 present the RMSE versus SNR of the pro-

posed algorithm, Candan algorithm [6], AM algorithm [10],

Fang algorithm [8], RCTSL algorithm [9], Djukanovic
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FIGURE 4. Simulated RMSE of RCTSL algorithm, Djukanovic algorithm 1,
Djukanovic algorithm 2 and the proposed algorithm versus SNR (N = 16).

algorithm 1 [13] and Djukanovic algorithm 2 [14] for

N = 16. δ obeys uniform distribution from −0.5 to 0.5. It

can be seen that the SNR threshold of the presented algo-

rithm is lower than that of Candan algorithm, Djukanovic

algorithm 1, Djukanovic algorithm 2 and AM algorithm, and

is identical to that of RCTSL algorithm and Fang algorithm.

It can also be seen that the RMSE of the presented algorithm

is lower than the RMSE of the other algorithms. The RMSE

of Candan algorithm is obviously higher than that of the other

algorithms.

TABLE 2 shows the numerical complexity of different

algorithms. It can be seen that the presented algorithm in

the second iteration has a bit higher computational complex-

ity than that of Fang algorithm and RCTSL algorithm which

are also based on 2N -point FFT. Some additional computa-

tional effort is needed for the presented algorithm to achieve

more accurate results and lower SNR threshold.

V. CONCLUSION

An accurate sinusoidal frequency estimation algorithm based

on interpolation of FFT and DTFT is proposed in this paper.

Zero-padding is performed before the FFT of the sinusoid

sampled data. The fine estimate is obtained by employing

the maximum FFT spectrum line and two DTFT sample

values of the sinusoid located on the left and right side of

themaximumFFT spectrum line. The correlation coefficients

between the Fourier Transform of the noises on two arbi-

trarily spaced spectrum lines are derived. With these corre-

lation coefficients, the MSE calculation formula is derived

in additive white noise. The results of theoretical analysis

and simulation show that the proposed estimator has lower

RMSE than the competing FFT interpolation based estima-

tors. The SNR threshold of the presented algorithm is lower

than that of Candan algorithm,AMalgorithm andDjukanovic

algorithms. Although some additional computational effort is

required to perform 2N -point FFT and calculate the DTFT

sample values, the presented algorithm is more accurate and

its SNR threshold is lower.

APPENDIX

The correlation coefficients between the Fourier Transform

of the noises on two arbitrarily spaced spectrum lines.

According to the DTFT definition, the DTFT of z(n) at the

location f is

Zf =

N−1
∑

n=0

z(n)e−j2π fTn/N (43)

Let Z ′
f = e−jφZf , the following expression is obtained

Z ′
f =

N−1
∑

n=0

z′(n)e−j2π fTn/N (44)

where

z′(n) = e−jφz(n) (45)

z′(n) can be expressed as

z′(n) = z′r (n) + jz′i(n) (46)

z′r (n) is the real part of z
′(n), and z′i(n) is the imaginary part

of z′(n). Obviously z′(n) has the same property with z(n). The

following expressions are obtained

E
(

z′r (n)
)

= E
(

z′i(n)
)

= E
(

z′(n)
)

= 0 (47)

var
(

z′r (n)
)

= var
(

z′i(n)
)

=
σ 2

2
(48)

E
(

z′i(n) · z′i(m)
)

= E
(

z′r (n) · z′r (m)
)

=







1

2
σ 2, n=m

0, n 6=m
(49)

E
(

z′r (n) · z′i(m)
)

= 0 (50)

Using Uf and Vf to represent the real part and the imagi-

nary part of Z ′
f , the following expressions are obtained

Uf =

N−1
∑

n=0

[

z′r (n)cos (2π fTn/N ) + z′i(n)sin (2π fTn/N )
]

(51)

Vf =

N−1
∑

n=0

[

−z′r (n)sin (2π fTn/N ) + z′i(n)cos (2π fTn/N )
]

(52)

The autocorrelation function of Uf at the location f1 and f2
which are near m1f is

E
(

Uf1Uf2
)

= E

{

N−1
∑

n=0

[

z′r (n)cos (2π f1Tn/N ) + z′i(n)sin (2π f1Tn/N )
]

·

N−1
∑

m=0

[

z′r (m)cos (2π f2Tm/N ) + z′i(m)sin (2π f2Tm/N )
]

}

(53)
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By substitution of (49) and (50) into (53), the following

expression is obtained

E
(

Uf1Uf2
)

=
σ 2

2

N−1
∑

n=0

[cos (2π (f1 − f2)Tn/N )]

=
σ 2 · sin (π (f1 − f2)T )

2 sin (π (f1 − f2)T/N )
· cos

[

πT (f1−f2)

(

1−
1

N

)]

(54)

When N is large, the following expression is obtained

E
(

Uf1Uf2
)

≈
Nσ 2 sin (2π (f1 − f2)T )

4π (f1 − f2)T
(55)

After similar derivation, the autocorrelation function

of Vf is

E
(

Vf1Vf2
)

= E

{

N−1
∑

n=0

[

−z′r (n)sin

(

2π f1Tn

N

)

+ z′i(n)cos

(

2π f1Tn

N

)]

·

N−1
∑

m=0

[

−z′r (m)sin

(

2π f2Tm

N

)

+ z′i(m)cos

(

2π f2Tm

N

)]

}

=
σ 2

2

N−1
∑

n=0

[

cos

(

2π f1Tn

N

)

cos

(

2π f2Tn

N

)

+ sin

(

2π f1Tn

N

)

sin

(

2π f2Tn

N

)]

(56)

Formula (56) is the same with the first line of (54).

Therefore, the following expression is obtained

E
(

Vf1Vf2
)

= E
(

Uf1Uf2
)

(57)

The cross correlation function between Uf and Vf is

E
(

Uf1Vf2
)

=E

{

N−1
∑

n=0

[

z′r (n)cos (2π f1Tn/N ) + z′i(n)sin (2π f1Tn/N )
]

·

N−1
∑

m=0

[

−z′r (m)sin (2π f2Tm/N )+z′i(m)cos (2π f2Tm/N )
]

}

(58)

By substitution of (49) and (50) into (58), the following

expression is obtained

E
(

Uf1Vf2
)

=
σ 2

2

N−1
∑

n=0

[

sin

(

2π f1Tn

N

)

cos

(

2π f2Tn

N

)

− cos

(

2π f1Tn

N

)

sin

(

2π f2Tn

N

)]

=
σ 2

2

N−1
∑

n=0

[sin (2π (f1 − f2)Tn/N )]

=
σ 2

2
·

sin (π (f1 − f2)T )

sin (π (f1 − f2)T/N )
sin

[

πT (f1 − f2)

×

(

1 −
1

N

)]

(59)

When N is large, the following expression is obtained

E
(

Uf1Vf2
)

≈
Nσ 2 sin2 (π (f1 − f2)T )

2π (f1 − f2)T
(60)
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