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ABSTRACT Automatic gastric cancer segmentation is a challenging problem in digital pathology image

analysis. Accurate segmentation of gastric cancer regions can efficiently facilitate clinical diagnosis and

pathological research. Technically, this problem suffers from various sizes, vague boundaries, and the non-

rigid characters of cancerous regions. For addressing these challenges, we use a deep learning based method

and integrate several customized modules. Structurally, we replace the basic form of convolution with

deformable and Atrous convolutions in specific layers, for adapting to the non-rigid characters and larger

receptive field.We take advantage of the Atrous Spatial Pyramid Pooling module and encoder-decoder based

semantic-level embedding networks for multi-scale segmentation. In addition, we propose a lightweight

decoder to fuse the contexture information, and utilize the dense upsampling convolution for boundary

refinement at the end of the decoder. Experimentally, sufficient comparative experiments are enforced

on our own gastric cancer segmentation dataset, which is delicately annotated to pixel-level by medical

specialists. The quantitative comparisons against several prior methods demonstrate the superiority of our

approach. We achieve 91.60% for pixel-level accuracy and 82.65% for mean Intersection over Union.

INDEX TERMS Digital pathology image analysis, deformable convolution, dense upsampling convolution,

gastric cancer segmentation, multi-scale embedding.

I. INTRODUCTION

Gastric cancer is one of the most lethal cancers in the world.

In 2018, gastric cancer is responsible for over 1,000,000 new

cases and an estimated 783,000 deaths. This quantitative

analysis makes it the fifth most frequently diagnosed cancer

and the third leading cause of cancer death [1]. Clinical

pathological analysis makes sense for diagnosis of this cancer

and brings the most significant information on the focus

of infection. Diagnosing gastric cancer is hard and time-

consuming due to image high resolution [1]. In addition,

on account of the different diagnostic criteria of different clin-

icians, an accurate and timely diagnosis becomes luxurious
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for patients. With repeated diagnoses, the golden time for the

treatment might be missed. Therefore, an automatically accu-

rate segmentation method for gastric cancer is indispensable.

With the rapid development of deep learning in digital

pathology image analysis, research about pathological seg-

mentation methods has attracted much attention in recent

years. Through the creation of datasets [2] and the imple-

mentation of algorithms. Years of efforts have launched

research into application fields ranging from cell-level to

tissue-level [3], [4]. Aïcha and Ghassan [4] have proposed

topology aware fully convolutional networks for histology

gland segmentation, in which they have considered high-level

shape priors and designed a topology-aware loss for training.

Bi et al. [5] have provided stacked fully convolutional net-

works for cell segmentation of rectal cancer. Zhang et al. [6]
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have designed a framework of adversarial networks for tissue

segmentation utilizing unannotated images. In order to opti-

mally use the limited data, Yang et al. [7] have used a deep

active learning framework for biomedical image segmen-

tation, including pathological tissues. In relevant research,

image-patch based deep learning methods [8]–[10] also have

been applied for segmentation or identification on patholog-

ical images. In [8], Wang and Khosla have used overlapping

image patches for detection of cancer metastasis. In [9],

Coudray and Moraria have applied image classification net-

works for classification andmutation prediction in Non-small

cell lung cancer histopathology images. Li et al. [10] have

provided a similar approach in gastric cancer identification.

However, there are still many challenges in pathological seg-

mentation task, such as the rarity of professional pathological

image datasets and the complexity of feature representation in

various images.Most previous research has focused on apply-

ing deep learning methods to solve pathological problems,

ignoring more detailed aspects on the images, such as various

sizes, vague boundaries and the non-rigid characters, which

are illustrated in Fig. 1. Other studies [11], [12] have also been

proposed to address these problems. In [11], Ronneberger

and Fischer have proposed an encoder-decoder architecture

with skip-connections to embed feature maps from different

semantic levels. In [12], a similar method has been used on

patch based histological segmentation. Though these meth-

ods have shown some advantages for multi-scale perception

and got better boundaries, their architectures might not be

specifically designed to these problems and the performance

might not be satisfactory in our task as shown in Figure. 7(c).

Motivated by the above observations, we have proposed

a holistic solution. Firstly, we created a gastric cancer seg-

mentation dataset. Then we have gained the annotations by

medical specialists two times per image for annotation and

refinement. For accurate segmentation, we have paid more

attention to adjusting the receptive field of networks. Recep-

tive field plays a decisive role in feature perception in the

field of semantic segmentation. There are two ways com-

monly employed on changing the receptive field, enlarging

the rectangle receptive field [13] and deforming the kernels

of operations [14]–[16]. For enlarging, applying cascaded

convolutional layers and pooling layers [13] is a widely

accepted thought. Dilated convolution [17] is an alternative

choice which has been mostly used in recent years [18]–[20].

We have integrated the deep neural networks with dilated

convolution and deformable convolution as our basic skeleton

frame. We have utilized the ResNet [21], [22] based encoder-

decoder network, in which both encoder and decoder have

been finely designed. In order to learn the features of different

scales, we have proposed a multi-scale embedding strategy.

In this strategy, Atrous Spatial Pyramid Pooling module [23]

and encoder-decoder based semantic-level embedding net-

works [11], [24]–[27] have been integrated.

During the clinical diagnosis, a relatively distinct boundary

detection is important for disease staging. In previous meth-

ods, bilinear interpolation has been recognized as a widely

used technique for getting predictions with the same reso-

lution as input images [11], [20], [29]. However, bilinear

interpolation might not be suitable for nonlinear characters,

especially non-rigid characters in pathological regions. At the

end of our network, we have utilized the dense upsampling

convolution [28] for boundary refinement.

Our contributions can be summarized as:

1). We have created a clinical gastric cancer segmentation

dataset for our research, which has been delicately annotated

by medical specialists.

2). We have proposed multi-scale embedding networks for

segmenting cancerous regions of various sizes, in which we

have integrated Atrous Spatial Pyramid Pooling module and

encoder-decoder based semantic-level embedding networks.

3). We have applied the deformable convolutional mod-

ule for adapting to the non-rigid characters of pathological

images, and we have utilized the dense upsampling convolu-

tion for boundary refinement at the end of our architecture.

The rest of this paper is organized as follows.

Section 2 presents a brief description of the related meth-

ods. Section 3 describes the dataset we have created.

Section 4 introduces our proposed network architecture in

detail. Section 5 describes the experiments and the ablation

analyses. Section 6 is the conclusion of our work.

II. RELATED WORK

A. ADJUSTMENT OF RECEPTIVE FIELD

Deep Neural Networks. Deep neural networks have been

proved to be effective in object identification and semantic

segmentation [29], [30]. Deep networks have more capa-

bilities for feature representation. With repeated convolu-

tional operations and pooling layers, neural networks would

also obtain larger receptive fields. In recent years, nearly

all segmentation tasks for digital pathology image analysis

have chosen deep networks as baselines in their whole deep

learning architectures. In this work, we have selected two

widely employed models as our backbones, VGG19 [31] and

ResNetV2 [22].

Atrous Convolution. Atrous convolution has been firstly

implemented in a dyadic wavelet transform method [32],

which has been widely used in signal processing. In deep

networks, the resolution of the final feature maps will be sig-

nificantly reduced with the cascaded pooling layers and strid-

ing operations. This phenomenon is disadvantageous for our

segmentation task. Motivated by obtaining a wider range of

information under similar consumption, Yu and Koltun [17]

have used atrous convolution to replace these resolution-

reduced layers. They have proposed stacked atrous convo-

lutional layers with increasing rates of dilation. In [19],

a similar approach has been adopted for simultaneously

increasing receptive fields and preserving the resolution of

feature maps.

Deformable Convolution. As we can see in the dataset

images shown in Fig.1, cancerous regions are mostly non-

rigid. These regions usually have fluidic shapes with irregular
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FIGURE 1. Six pairs of image-label samples from our gastric cancer segmentation dataset. Regions with yellow covered are
cancerous. In these images, various sizes, vague boundaries, and non-rigid characters are shown clearly. Our dataset consists
of 500 pathological images with delicate annotations.

FIGURE 2. Three types of convolutional operations used in our network architecture. (a). Traditional convolution with
kernel size = 3. (b). Atrous convolution with dilation = 1. The receptive field becomes nearly twice of ordinary
convolution. (c). Deformable convolution. There are two branches in deformable convolution, the green branch is
responsible for learning the offsets of the kernel coordinates. The yellow branch implements the proper
convolutional operation.

boundaries, same as the regions of sky and lakes. There-

fore, the traditional rectangle convolution may be limited for

modeling unknown transformations or deformations, espe-

cially for boundaries [14]. The effective receptive field of

the network would also decrease in this situation. In previous

researches, super-pixel fusion [33] and region growing [34]

have been proved as two efficient methods in pathology

image segmentation or medical image analysis [35]–[37].

Meanwhile, these methods have been used to provide prior

information in deep networks.

With the development of deep learning, the strategies

of end-to-end learning and the thought of integration have

become mainstream [38]. To address the limitation of rectan-

gle convolution kernels, researchers have made some efforts

on internal perception mechanism. Spatial transform net-

works [15] and deformable part models [16] are two advanced

methods. In our approach, we have drawn on the experience

of deformable convolution [14], which has integrated the

deformable operation into convolutional layers. In Fig. 2,

we could find that both the convolutional parameters and

coordinate offsets could be learned in the networks, bringing

in the adaptive receptive field.

B. MULTI-SCALE EMBEDDING

Semantic-level Embedding Networks. Image semantic seg-

mentation is a synthetic task which demands contexture

features ranging from global perception to detail-attention.

Semantic-level embedding, or contexture feature fusion, has

been employed in plenty of networks with different purposes

and strategies. FCN [29] and deconvolution network [39]

have employed deconvolution to restore the resolution of

high-level features. SegNet [24] has used the indices of pool-

ing during the encoder process, and U-Net [11] has employed

skip connections from encoder to decoder layer-by-layer.
Atrous Spatial Pyramid Pooling. Pyramid structure is a

conventional technique in image processing [40]. With the

development of deep learning, spatial pyramid pooling mod-

ule has been firstly proposed in SPP-Net [41], aiming at

detecting objects of various sizes. PSPNet [42] has used a

similar strategy to serve the multi-scale feature extraction.

Atrous Spatial Pyramid Pooling is an advanced structure

based on atrous convolution and pyramid module. This mod-

ule has been employed in DeepLab series [20], [43] to cap-

ture more comprehensive context information. Till this day,

Atrous Spatial Pyramid Pooling has been one of the most
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efficient modules in semantic segmentation for multi-scale

embedding [43].

C. DENSE UPSAMPLING CONVOLUTION

Coming from super-resolution tasks [44], [45], dense upsam-

pling convolution is an approach of upsampling. In seman-

tic segmentation tasks, bilinear interpolation and transposed

convolution are two widely used techniques for final mask

upsampling. Compared with these two, dense upsampling

convolution has been proved to be a better replacement in

fine-detailed information recovery [28]. In addition, with

respect to the computational consumption, dense upsampling

convolution is a tradeoff between bilinear interpolation and

transposed convolution [28].

III. DATASET

We have sampled our pathological images from clinical data.

Under the 20 × optical magnification, we have obtained

500 pathological images with the resolution of 2048× 2048.

All the images have been cropped from whole pathological

slides of gastric areas, with typical cancerous regions. The

dataset has been delicately annotated by our cooperative

medical specialists twice per image. Firstly, pixel-level can-

cerous segmentation masks have been provided by a group

of experts. Then the annotated images have been finely

refined by the other group, with the agreement of group one.

Fig. 1 shows several examples of our dataset.

In our experiments, we have randomly divided the dataset

into a training set and a testing set. The training set has

been used to train the model parameters, and the testing

set has been used to verify the effect of models. We have

selected 350 images for training and 150 for testing. Before

the images have been fed into the networks, we have cropped

each 2048×2048 image of training set into four 1024×1024

patches. We have standardized the image-patches by sub-

tracting the average pixel value of the dataset and dividing

the standard deviation. In addition, basic image augmentation

such as rotation, shifting, and affine transformation have been

randomly used before each forward training procedure.

IV. METHOD

In this section, we briefly introduce the architecture of

the selected backbone [21] firstly. Then we describe the

integrated encoder with atrous convolution and deformable

convolution. Meanwhile, we review the encoder-decoder

architecture and discuss the semantic-level embedding strat-

egy. Finally, we recommend our proposed decoder module

and the motivation of dense upsampling. In the end, we intro-

duce our ultimate network and give a concrete illustration.

A. SELECTED BACKBONE RESNET-101.

In this paper, we have selected a widely used deep network

ResNet101 in our experiments. There are 5 stages with dif-

ferent output strides = {4, 8, 16, 32, 64} in the network,

which is implemented mainly by 4 blocks. These 4 blocks

are composed by several ‘‘bottleneck’’ resblocks [21] with

TABLE 1. Ablation analysis for pre-training.

TABLE 2. Ablation analysis for deformable convolution.

different numbers of {3, 4, 23, 3}. For easier implementation,

we have modified the places of downsampling convolutions

to the last resblock in each block. We have selected the first

four stages as the encoder in our segmentation network. In our

experiments, we have paid more attention to the architecture

of stage 3 and stage 4. For segmentation, we have used 16 as

our output stride of the encoder. In stage 4, we have employed

the dilated convolution with dilation = 2 (with kernel

size > 1) for preserving the resolution.

B. ENCODER WITH DEFORMABLE CONVOLUTION AND

ATROUS CONVOLUTION.

Deformable convolution integration. The deformable con-

volution consists of two parts, ordinary convolution, and the

deformable branch. The deformable branch achieves themain

step for deformation, which learns offsets of coordinates in

each convolutional kernel. In our final architecture, we have

applied the deformable convolution at the last few resblocks

in stage 3 (with kernel size > 1), as reported in Table. 2.

In this section, we utilize a 3 × 3 convolutional kernel to

describe the deformable process. Consider a grid G in (1) on

the previous feature maps X[i]. i is the coordinate (ih, iw) of
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the feature maps. h and w represent the two dimensions of

the feature maps. Gi is the region convolved by the kernel.

O is the 3 × 3 × 2 offsets of nine coordinates in G on the

specific location i, which is acquired by ordinary convolution

operation in the deformable branch, as the green operations

illustrated in Fig. 2(c).

G = {(−1, −1) , (−1, 0) , (−1, 1) ,

(0, −1) , (0, 0) , (0, 1) ,

(1, −1) , (1, 0) , (1, 1)} (1)

I = {(ih, iw), (ih, iw), (ih, iw),

(ih, iw), (ih, iw), (ih, iw)

×(ih, iw), (ih, iw), (ih, iw)} (2)

Gi = G+ I (3)

Newi = Gi + O (4)

Then the new locations of the nine pixels are Newi for

coordinate Gi. Conv is the function of ordinary convolution,

and ki is the nine learnable weights of 3×3 kernels. We could

obtain new values X [Newi] of the new locations by bilinear

interpolation on the overlapping pixels. Then we could get

the value of the corresponding pixel Y [i] in the final output

Y referring to (5). The illustration of deformable operation is

shown in Fig. 2(c).

Y [i] = Conv(X [Newi], ki) (5)

In our experiments, we have first discussed the effec-

tiveness of non-rigid feature perception on ResNet based

U-net, to find a better-integrated strategy in the backbone.

We have compared the applications on stage 1, 2, and 3 with

output strides = 4, 8, and 16 respectively. To avoid mem-

ory workflow, we have selected 2 or 3 resblocks at the

end of each block for deformable integration (with kernel

size > 1). Then, based on the backbone with the best per-

formance, we have applied the same integrated strategy to

complicated frameworks in DeepLabV3 and DeepLabV3+.

In our final architecture, we have applied the deformable

convolution on the penultimate block (block 3) of the encoder

for output stride = 16.

Atrous convolution integration. Atrous convolution, or

dilated convolution, is a powerful and widely used operation

in semantic segmentation. This operation can change the field

of view explicitly while maintaining the effective receptive

field of pre-trained deep classification framework to generate

dense prediction mask.

Identical to the description of deformable convolution

above, atrous convolution could also be defined as:

Y [i] = Conv(X [Newi], ki) (6)

In this situation, the new locations of the nine pixels are

calculated by:

Newi = Gi + R (7)

R = {(−r, −r) , (−r, o) , (−r, r) ,

(0, −r) , (0, 0) , (0, r) ,

(r, −r) , (r, 0) , (r, r)} (8)

In Equation (8), r is the dilation ratio of atrous convolution.

In this way, we could find that though the motivations are

different, atrous convolution is a special case of deformable

convolution with fixed offsets as illustrated in Fig. 2(b).

Meanwhile, we could comprehend atrous convolution as con-

volving the input X with upsampled filters. These filters are

constructed by inserting r−1 zeros between each pixel in the

convolutional kernel.

In our architecture, we have applied this operation to take

place of the traditional convolution (with kernel size = 3) in

the last resblocks of block 3 and block 4 with dilation = 2.

These two operations have been employed to remove the

downsampling convolutional operation. In block 4, other con-

volutional operations with kernel size = 3 have also inte-

grated the dilated strategy for preserving the receptive field.

Atrous Spatial Pyramid Pooling. At the last of our used

encoder module (after stage 4), there has been an effi-

cient context module, called Atrous Spatial Pyramid Pooling

module [20], [23], [39]. This module captures multi-scale

information by applying global average pooling and atrous

convolution with different dilation ratios parallelly, achieving

impressive accuracy with considerable computational costs.

As the frameworks based on atrous convolution and ASPP

module have proved their success, we have implemented an

encoder with ASPP, using atrous convolution with different

dilation ratios = {1, 6, 12, 18} parallelly.

C. SEMANTIC-LEVEL EMBEDDING STRATEGY

Most encoder-decoder based frameworks [11], [26], [27]

have used the structures shown in Fig. 3(b). Frequently,

the encoder part is a deep network pre-trained on large-scale

classification datasets such as Imagenet [46]. With feature

maps of different semantic levels and resolutions, numerous

feature fusion strategies have been proposed gradually. The

decoder has fused these features to predict final segmentation

masks. Generally, the feature fusion process could be formu-

lated as:

yl = Fl(xl + Upsample(yl+1)) (9)

where yl is the fused feature of l − th level, and xl corre-

sponds to the same semantic-level feature generated by the

encoder. Fl is a non-linear transformation for decoding the

combined feature, which is usually a complex convolutional

module.

In contrast, we have fused features of different semantic

levels simultaneously and used a single-layer decoder to

generate prediction results as illustrated in Fig 3(c). Dif-

ferent from the fusion strategy layer by layer abovemen-

tioned, we have first concatenated the feature maps from

different semantic levels equally for sufficient utilization.

Then the decoder has merged the feature maps together by a

single-layer convolutional structure. More abstract and

higher-level information has been extracted through the

whole features. The effectiveness of this structure has been

proved by DeeplabV3+ [43] in the field of semantic seg-

mentation. In our tasks, this strategy has also achieved
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FIGURE 3. Different semantic-level embedding strategies. (a). Backbone based model without low-level feature fusion. (b). Encoder-decoder
model with a complex stratified decoder. (c). Our proposed strategy, which fuses low-level and high-level features directly and then decodes
those features with a lightweight decoder.

TABLE 3. Ablation analysis for semantic embedding.

better results compared with no-decoder architecture as

shown in Table. 3. Furthermore, we have designed an

advanced lightweight module for the decoder.

Our feature fusion strategy could be defined as:

yl =Fl(xl+Upsample(xl+1)+Upsample(xl+2) + . . .) (10)

In our networks, there are 3 different semantic levels of

feature maps which could be extracted from stage1, 2 and 3,

whose spatial resolutions are {1/4, 1/8, 1/16} of the input

size. We have also extracted feature maps before and after the

ASPP module, which are the same at the resolution but dif-

ferent at the semantic level. For reducing the channel number

of the lower-level features, we have used 1 × 1 convolution

to change the channel numbers to be the same as the final

features after ASPP.

We have selected several subsets of these features to gen-

erate prediction results, and used them to retrain the whole

system. In Section IV, we introduce these experiments in

detail. We have found that combining the encoded features

with output strides = 1/4, 1/8 and features after defor-

mation with output strides = 1/16 would produce better

performance.

FIGURE 4. Illustration of the design of dense upsampling convolution at
the end of the decoder. The feature maps are upsampled by 2.

D. PROPOSED DECODER AND DENSE UPSAMPLING

Proposed Decoder module. Over the previous methods,

the predictions of segmentation masks computed from a one-

layer decoder are usually obtained simply by bilinear upsam-

pling [29]. In DeepLabV3+, a more complicated decoder has

been proposed by adding some 3 × 3 convolutional layers,

as shown in Fig 4(a). As a consequence, this model has

achieved state-of-the-art performance in semantic segmen-

tation under the same backbone [43]. For verifying the effi-

ciency, we have tested this architecture on our gastric cancer

segmentation dataset. As a result, this method has performed

best in several existing advanced networks. We could see the

results in Table. 4.

In this paper, we have replaced the 3 × 3 kernels

with larger sizes n × n for gathering more information.
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FIGURE 5. Decoder structures. (a) The baseline decoder with 2 layers of 3 × 3 convolutions in DeepLabV3+. (b) Our
proposed decoder with two groups of separable convolution.

TABLE 4. Ablation analysis for decoder architecture.

Considering the cost in computation and inspired by [47],

we have used depthwise separable convolution to factorize

the n × n convolution into a combination of 1 × n + n × 1

and n×1+1×n convolutions. In our experiments, we could

find that this module has been both efficient and effective,

as shown in Table. 3.

In addition, we have proposed a residual connection

to refine boundary, since the robust and high-performance

encoder can encode high-semantic and precise prediction.

The restoration of boundary information can be modeled as a

residual branch [26].

Our decoder is shown in Fig. 4(b).

Dense Upsampling Convolution. Dense upsampling con-

volution module has been used in super-resolution [44], Low-

light image processing [48] and semantic segmentation [28]

for different purposes. The dense upsampling convolution

could decode features at the original resolution by embed-

ding upsampling operation in decoder channel groups. In the

description of [28], the combination of dense upsampling and

a single-layer convolution have shown superior capability as

a replacement of bilinear interpolation, since it is capable of

recovering fine-detailed information compared with common

upsampling operations. Furthermore, the suitable employ-

ment of this operation would also make up for the gridding

problem [28], which might be caused by atrous convolution.

Considering an input pathological image with resolution

H × W , the network would generate prediction logits with

dimension H ×W ×C , where C is the number of categories.

In general, the feature map before making predictions usually

has the resolution of h × w × c, where h = H/s, w = W/s,

s is the output stride, or downsample factor, of the feature

map, and c is the channel number usually greater than C . The

core operation of dense upsampling convolution is to generate

feature maps with the size of h × w × (s × s × c), and then

divide the whole feature map into equivalent s × s subsets

across the channel. At last, the final C prediction masks are

obtained by interleavedly reshaping of subsets with a soft-

max layer and an argmax layer following.

The operation of dense upsampling convolution is illus-

trated in Fig. 5. As we can see, the channel depth of the final

output feature map is mapped to spatial grids.

In our network architecture, the decoder part designed

for segmentation should be able to upsample feature intrin-

sically at the end of the network. Motivated by the above

observations, we have designed our whole decoder as the

combination of the proposed decoder module and dense

upsampling operation. Compared with bilinear interpolation

in [39], we have got more distinct boundaries shown in Fig. 7.

E. OVERALL FRAMEWORK

Our overall model is shown in Fig. 6. We have used pre-

trained ResNetV2 with atrous convolution, deformable con-

volution, and Atrous Spatial Pyramid Pooling module as our

encoder. Semantic-level feature maps with different down-

sampling rates have been extracted from different stages of

the encoder network. The lightweight decoder has fused the

multi-scale features and provided the low-resolution score

maps. Then we have used the dense upsampling convolution

to upsample the score maps for dense prediction. The details

can be referred to the illustration in Fig. 6.

V. EXPERIMENTS

A. IMPLEMENTATION DETAILS

Our proposed model has been built on Tensorflow [49]

framework. The backbone network has been the ResNetV2

101 model pre-trained on Imagenet. For adaptation to our

architecture, we have resized the input images to 512 x 512.

We have followed common dataset augmentation strategies

to train our model. We have randomly cropped each resized

image with scales in the interval [0.5, 1.0]. The pre-trained
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FIGURE 6. Overall framework of our approach. We have illustrated the whole architecture in three stages. First stage (above the
first light blue line): The ResNet based encoder integrated with specific convolution and multi-scale ASPP module. Second stage
(between the two light blue lines): The semantic embedding architecture and the lightweight decoder. Third stage
(under the second light blue line): The final dense upsampling operation.

context convolution operations all have included batch nor-

malization.

Though greater batch size has been proved to be effective

in semantic segmentation, we have chosen a fixed 8 batch

size for searching more efficient architectures. The limita-

tion of the power of computation has also been considered

simultaneously. For back propagation, we have selected the

cross-entropy loss function at each pixel over the categories

and used standard Stochastic Gradient Descent (SGD) with

weight decay 2e-4. Inspired by DeepLab [18], we have used

the ‘‘poly’’ learning rate policy. The learning rate has changed

along with the training steps by multiplying:

(1 −
iter

maxiter
)
power

(11)

in which iter represents the training steps and maxiter

represents the whole training iterations. we have set the

power = 0.9 and initial learning rate 1e-3. All the matrix

calculations have been implemented on 2 NVIDIA TITAN

X GPUs. The rest of the calculations have been processed by

1 Intel Core I7-6900k CPU with octa-core and 3.2GHz clock

speed. The size of the calculated memory is 64G.

B. EVALUATION INDICATORS

Our performance has been measured by accuracy and

mean intersection-over-union across the classes of cancerous

regions and normal regions.

Accuracy is the ratio of the number of correctly predicted

pixels and the total number of pixels. Mean Intersection-

over-Union is a standard indicator for semantic segmentation,

it calculates the ratio of the intersection and union of the

real values (ground truth) and the predicted values (predictive

segmentation).

C. ABLATION ANALYSIS

In the field of semantic segmentation, enough computing

power with larger batch size would be an effective way to

get better performance. In our experiments, we have run a

number of ablations to analyze our network under the same

computational resources and 8 batch size for finding the most

efficient architecture.

We have discussed the thought of transfer learning by using

themodels pre-trained on natural image dataset [50].We have

analyzed the effect of the deformable module and atrous-

based architectures. Also, we have discussed the strategies

of feature fusion. Then we have compared our proposed

decoder and the upsampling process with previous architec-

ture. Finally, quantitative comparisons against several prior

advanced methods have demonstrated the superiority of our

approach.

Pre-trained models.Our segmentation task on pathologi-

cal images is distinctly different from conventional semantic

segmentation tasks on natural images, though they could use

the same architecture. In previous studies, using pre-trained
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models on semantic segmentation subtasks has become the

mainstream, but there are still doubts whether pre-trained

models on Imagenet are beneficial for pathological segmenta-

tion [50], since the wide difference between data distributions

of these two datasets.

We have compared several progressive methods on our

dataset with and without pre-training. In conclusion, we have

found that with pre-trained models, all performances of the

methods have approximately increased at least by 4%. The

pre-training strategy is beneficial for our pathological task.

Detailed quantitative information is shown in Table. 1.

Deformable module.We have used the deformable module

to enhance the capability of learning pathological non-rigid

features. Referring to [14] and considering the limitation of

computational resources, we have applied this convolution on

limited layers at last of each block (with kernel size = 3).

For verifying the effectiveness of deformable convolu-

tion, we have implemented two groups of experiments on

ResNet basedU-net and our primitive ResNet based baselines

DeepLabV3 and DeepLabV3+.

In the experiments on U-net, we have experimented on

each block of the encoder with the same number of layers

in stage 1, 2 and 3. We have selected 2 or 3 resblocks at

the end of each block for deformable integration (with kernel

size > 1). The results are shown in Table. 2. We could find

that the deformation with larger output stride/stage and more

layers have performed better. Therefore, we have chosen the

deformation integrated encoder with the best performance to

replace the plain encoder in DeepLabV3 and DeepLabV3+.

We have compared these two models with and without

deformable convolution. We could find that deformable con-

volution has also shown better capability for pathological

feature learning. In our final architecture, we have integrated

the deformable module on the penultimate block for output

stride = 16, with the last 3 layers (with kernel size = 3) in

this block.

Semantic-level embedding strategies.We have extracted

the low semantic-level but high-resolution features with

downsample factor of 1/4 and 1/8 at last of block1 and

block2 respectively. We have also extracted features of the

final layer in block3 with downsample factor of 1/16 and

used the features before the Atrous Spatial Pyramid Pool-

ing module (after the atrous convolution), which have the

same resolution with downsample factor of 1/16 but different

semantic level. The feature map before ASPP is coarser and

without multi-scale information. For reducing the channel

number of the

lower-level features, we have used 1 × 1 convolution to

change the channel numbers to be the same as the final

features after ASPP.

All these feature fusion strategies have concatenated sub-

sets of the features abovementioned with the feature maps

after the multi-scale Atrous Spatial Pyramid Pooling module.

We have selected several subsets of these features to gen-

erate prediction results, and used them to retrain the whole

system. We have compared these different fusion structures

TABLE 5. Ablation analysis for dense upsampling convolution.

TABLE 6. Comparison wth previous methods.

in experiments. In Table. 3, we could clearly see that fusing

low semantic-level but high-resolution features with multi-

scale and high-semantic encoded feature could significantly

improve the performance. Finally, we have chosen the feature

fusion strategy of best performance. Also, it is a remarkable

fact that the second model fusing encoded features with out-

put strides = 1/4 is the deformable DeepLabV3+ in Table. 2.

Proposed decoder module. In this subsection, we have

compared our proposed decoder module shown in Fig. 4(b)

with the previous network DeepLabV3+ as shown in Fig.4(a)

and the no-decoder network DeepLabV3, using the same

bilinear interpolation at the end.

We have examined the effect of different decoder archi-

tectures with different types of separable convolution and

tested the connection of identity mapping.From Table. 3,

we could see that parallelly repeating 1 × 5 + 5 × 1 convo-

lution twice would generate the best predictive masks. Also,

the identity mapping, or residual refinement connection, has

improved the performance as well. The performances are

shown in Table. 4

Our final proposed decoder is the combination of the par-

allelly repeated 1 × 5 + 5 × 1 convolutions and residual

refinement connection.

Dense upsampling. For refinement of details, we have

replaced the bilinear interpolation with dense upsam-

pling convolution, as a result, we have got approximate

performance but better boundaries, as illustrated in Fig. 7.

The proposed method is the architecture abovementioned

which consists of deformable convolution, dilated convolu-

tion, ASPP module, and the semantic embedding strategy.
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FIGURE 7. Visualization and comparison of several representative results on our test dataset. (a) Pathological images.
(b) Ground truths of the images. (c) Predictions of ResNet based U-net. (d) Predictions of DeepLabV3+ with bilinear
upsampling. (e) Our proposed method with dense upsampling.

The performances have been shown in Table. 5. We could

find that integrating the dense upsample convolution at the

last of our proposed architecture has shown the superior

property.

Comparison with previous methods. Our ultimate pro-

posed method has been shown in Fig.6. The compar-

isons with previous advanced methods have been shown

in Table. 6. We could find that our method has shown the best

performance.

D. RESULTS AND DISCUSSION

Results.As shown in Fig. 7, we visualize some representative

segmentation results of our proposed model and other related

models. It is clear that our method has distinct advantages

over the contrastive models. Our method is more

sensitive to regions with different sizes and handles the

fine-grained features more carefully.

Limitations.Though our method has got satisfactory pre-

dictions, there are still some limitations. Firstly, our dataset
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is just enough for this research. All the images have been

sampled under the same optical magnification and staining

method. In clinical pathological image analysis, the diagnosis

will face more complicated situations. There is still a lot

of comprehensive work we need to do from experiments to

clinical. Second, due to our limited computational budget,

we have set the batch size= 8, whichmay not take full advan-

tage of batch normalization. We believe that our performance

will be better if the hardware is more powerful.

VI. CONCLUSION

In this paper, we have proposed a deep learning architec-

ture for gastric cancer segmentation which demonstrates the

advantage of jointly utilizing multi-scale modules and spe-

cific convolutional operations. The well-defined framework

can simultaneously learn the representations of regions with

different sizes and non-rigid characters. Extensive compar-

ative evaluations on our own dataset demonstrate that the

proposed method is more accurate and efficient. Meanwhile,

we need to do more both on datasets and algorithms for

promoting the fusion of deep learning technology and patho-

logical diagnosis.

REFERENCES

[1] F. Bray, J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre, and A. Jemal,

‘‘Global cancer statistics 2018: GLOBOCAN estimates of incidence and

mortality worldwide for 36 cancers in 185 countries,’’ Ca-Cancer J. Clin.,

vol. 68, no. 6, pp. 394–424, Nov./Dec. 2018.

[2] N. Kumar, R. Verma, S. Sharma, S. Bhargava, A. Vahadane, and

A. Sethi, ‘‘A dataset and a technique for generalized nuclear segmentation

for computational pathology,’’ IEEE Trans. Med. Imag., vol. 36, no. 7,

pp. 1550–1560, Jul. 2017.

[3] D. Baltissen, T. Wollmann, M. Gunkel, I. Chung, H. Erfle, K. Rippe, and

K. Rohr, ‘‘Comparison of segmentation methods for tissue microscopy

images of glioblastoma cells,’’ in Proc. IEEE Int. Symp. Biomed. Imag.,

Washington, DC, USA, Apr. 2018, pp. 396–399.

[4] A. BenTaieb and G. Hamarneh, ‘‘Topology aware fully convolutional net-

works for histology gland segmentation,’’ in Proc. Int. Conf. Med. Image

Comput. Comput.-Assist. Intervent., Oct. 2016, pp. 460–468.

[5] L. Bi, J. Kim, A. Kumar, M. Fulham, and D. Feng, ‘‘Stacked fully con-

volutional networks with multi-channel learning: Application to medical

image segmentation,’’ Vis Comput, vol. 33, nos. 6–8, pp. 1061–1071,

Jun. 2017.

[6] Y. Zhang, L. Yang, J. Chen,M. Fredericksen, D. P. Hughes, andD. Z. Chen,

‘‘Deep adversarial networks for biomedical image segmentation utilizing

unannotated images,’’ in Proc. Int. Conf. Med. Image Comput. Comput.-

Assist. Intervent., Sep. 2017, pp. 408–416.

[7] L. Yang, Y. Zhang, J. Chen, S. Zhang, and D. Z. Chen, ‘‘Suggestive anno-

tation: A deep active learning framework for biomedical image segmenta-

tion,’’ in Proc. Int. Conf. Med. Image Comput. Comput.-Assist. Intervent.,

Sep. 2017, pp. 399–407.

[8] D. Wang, A. Khosla, R. Gargeya, H. Irshad, and A. H. Beck, ‘‘Deep learn-

ing for identifying metastatic breast cancer,’’ 2016, arXiv:1606.05718.

[Online]. Available: https://arxiv.org/abs/1606.05718

[9] N. Coudray, P. S. Ocampo, T. Sakellaropoulos, N. Narula, M. Snuderl,

D. Fenyö, Andre, L.Moreira, N. Razavian, andA. Tsirigos, ‘‘Classification

and mutation prediction from non–small cell lung cancer histopathology

images using deep learning,’’ Nature Med., vol. 24, no. 10, pp. 1559–1567,

Sep. 2018.

[10] Y. Li, X. Li, X. Xie, and L. Shen, ‘‘Deep learning based gastric cancer

identification,’’ in Proc. Int. Symp. Biomed. Imag., Washington, DC, USA,

Apr. 2018, pp. 182–185.

[11] O. Ronneberger, P. Fischer, and T. Brox, ‘‘U-net: Convolutional networks

for biomedical image segmentation,’’ in Proc. Int. Conf. Med. Image

Comput. Comput.-Assist. Intervent., Oct. 2015, pp. 234–241.

[12] S. Mejbri, C. Franchet, I. A. Reshma, J. Mothe, P. Brousset, and E. Faure,

‘‘Deep analysis of cnn settings for new cancer whole-slide histological

images segmentation: The case of small training sets,’’ in Proc. 6th Int.

Conf. Bioimag., Feb. 2019, pp. 120–128.

[13] W. Luo, Y. Li, R. Urtasun, and R. Zemel, ‘‘Understanding the effective

receptive field in deep convolutional neural networks,’’ in Proc. Adv.

Neural Inf. Process. Syst., 2016, pp. 4898–4906.

[14] J. F. Dai, H. Qi, Y. Xiong, Y. Li, G. Zhang, H. Hu, and Y.Wei, ‘‘Deformable

Convolutional Networks,’’ in Proc. IEEE Conf. Comput. Vis. Pattern

Recognit., Jul. 2017, pp. 764–773.

[15] M. Jaderberg, K. Simonyan, A. Zisserman, and k. kavukcuoglu, ‘‘Spatial

transformer networks,’’ in Proc. Adv. Neural Inf. Process. Syst., 2016,

pp. 2017–2025.

[16] Y. Jeon and J. Kim, ‘‘Active convolution: Learning the shape of convolu-

tion for image classification,’’ in Proc. IEEE Conf. Comput. Vis. Pattern

Recognit., Jul. 2017, pp. 1846–1854.

[17] F. Yu and V. Koltun, ‘‘Multi-scale context aggregation by dilated

convolutions,’’ in Proc. Int. Conf. Learn. Represent, May 2016,

pp. 1–13

[18] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. Yuille,

‘‘DeepLab: Semantic image segmentation with deep convolutional nets,

atrous convolution, and fully connected CRFs,’’ in Proc. Int. Conf. Learn.

Represent, 2015, pp. 1–14.

[19] F. Yu, V. Koltun, and T. Funkhouser, ‘‘Dilated residual networks,’’ in Proc.

IEEE Conf. Comput. Vis. Pattern Recognit., Jul. 2017, pp. 636–644.

[20] L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam, ‘‘Rethinking atrous

convolution for semantic image segmentation,’’ 2017, arXiv:1706.05587.

[Online]. Available: https://arxiv.org/abs/1706.05587

[21] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for

image recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,

Jun. 2016 pp. 770–778.

[22] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Identity mappings in deep residual

networks,’’ in Proc. Eur. Conf. Comput. Vis., Oct. 2016, pp. 630–645.

[23] L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,

‘‘DeepLab: Semantic image segmentation with deep convolutional nets,

atrous convolution, and fully connected CRFs,’’ IEEE Trans. Pattern Anal.

Mach. Intell., vol. 40, no. 4, pp. 834–848, Apr. 2018.

[24] V. Badrinarayanan, A. Kendall, and R. Cipolla, ‘‘SegNet: A deep convolu-

tional encoder-decoder architecture for image segmentation,’’ IEEE Trans.

Pattern Anal. Mach. Intell., vol. 39, no. 12, pp. 2481–2495, Jan. 2017.

doi: 10.1109/TPAMI.2016.2644615.

[25] G. Lin, A. Milan, C. Milan, C. Shen, and I. Reid, ‘‘RefineNet:

Multi-path refinement networks for high-resolution semantic segmenta-

tion,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jul. 2017,

pp. 5168–5177.

[26] C. Peng, X. Zhang, G. Yu, G. Luo, and J. Sun, ‘‘Large kernel matters—

Improve semantic segmentation by global convolutional network,’’ inProc.

IEEE Conf. Comput. Vis. Pattern Recognit., Jul. 2017, pp. 1743–1751.

[27] G. Ghiasi and C. C. Fowlkes, ‘‘Laplacian pyramid reconstruction and

refinement for semantic segmentation,’’ in Proc. IEEE Conf. Comput. Vis.,

Oct. 2016, pp. 519–534.

[28] P. Q. Wang, P. F. Chen, Y. Yuan, D. Liu, Z. H. Huang, X. D. Hou, and

G. Cottrell, ‘‘Understanding convolution for semantic segmentation,’’ in

Proc. IEEE Winter Conf. Appl Comput. Vis., Mar. 2018, pp. 1451–1460.

[29] J. Long, E. Shelhamer, and T. Darrell, ‘‘Fully convolutional networks

for semantic segmentation,’’ in Proc. IEEE Conf. Comput. Vis. Pattern

Recognit., Jun. 2015, pp. 3431–3440.

[30] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun,

‘‘Overfeat: Integrated recognition, localization and detection using con-

volutional networks,’’ Feb. 2014, arXiv:1312.6229. [Online]. Available:

https://arxiv.org/abs/1312.6229

[31] K. Simonyan and A. Zisserman, ‘‘Very deep convolutional networks for

large-scale image recognition,’’ in Proc. Int. Conf. Learn. Represent,

Sep. 2014, pp. 1–14.

[32] M. Holschneider, R. Kronland-Martinet, J. Morlet, P. Tchamitchian,

‘‘A real-time algorithm for signal analysis with the help of the wavelet

transform,’’ in Proc. Wavelets, 1990, pp. 286–297.

[33] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Süsstrunk, ‘‘SLIC

superpixels compared to state-of-the-art superpixel methods,’’ IEEE Trans.

Pattern Anal. Mach. Intell., vol. 34, no. 11, pp. 2274–2282, Nov. 2012.

[34] H. Nazeran, F. Rice, W. Moran, and J. Skinner, ‘‘Biomedical image pro-

cessing in pathology: A review,’’ Australas Phys. Eng. Sci. Med., vol. 18,

no. 1, pp. 26–38, Mar. 1995.

75540 VOLUME 7, 2019



M. Sun et al.: Accurate Gastric Cancer Segmentation in Digital Pathology Images

[35] W. Qin, J. Wu, F. Han, Y. Yuan, W. Zhao, B. Ibragimov, J. Gu, and L. Xing,

‘‘Superpixel-based and boundary-sensitive convolutional neural network

for automated liver segmentation,’’Phys. Med. Biol., vol. 63, no. 9, p. 0950,

May 2018.

[36] N. S.M. Raja, S. L. Fernandes, N. Dey, S. C. Satapathy, and V. Rajinikanth,

‘‘Contrast enhanced medical MRI evaluation using Tsallis entropy and

region growing segmentation,’’ in Proc. J. Ambient Intell. Humanized

Comput., May 2018, pp. 1–12.

[37] S. Ji, B. Wei, Z. Yu, G. Yang, and Y. Yin, ‘‘A new multistage medical

segmentation method based on superpixel and fuzzy clustering,’’ Comput.

Math. Methods Med., vol. 2014, Mar. 2014, Art. no. 747549.

[38] B. Zhao, J. Feng, X. Wu, and S. Yan, ‘‘A survey on deep learning-

based fine-grained object classification and semantic segmentation,’’ Int.

J. Automat. Comput., vol. 14, no. 2, pp. 119–135, Apr. 2017.

[39] H. Noh, S. Hong, and B. Han, ‘‘Learning deconvolution network for

semantic segmentation,’’ in Proc. IEEE Int. Conf. Comput. Vis., May 2015,

pp. 1520–1528.

[40] E. H. Adelson, C. H. Anderson, J. R. Bergen, P. J. Burt, and J. M. Ogden,

‘‘Pyramid methods in image processing,’’ RCA Engineer, vol. 29, no. 6,

pp. 33–41, Nov. 1984.

[41] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Spatial pyramid pooling in

deep convolutional networks for visual recognition,’’ IEEE Trans. Pat-

tern Anal. Mach. Intell., vol. 37, no. 9, pp. 1904–1916, Sep. 2015.

doi: 10.1109/TPAMI.2015.2389824.

[42] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, ‘‘Pyramid scene parsing

network,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jul. 2017,

pp. 2881–2890.

[43] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam,

‘‘Encoder-decoder with atrous separable convolution for semantic

image segmentation,’’ 2018, arXiv:1802.02611. [Online]. Available:

https://arxiv.org/abs/1802.02611

[44] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, ‘‘Learning transferable

architectures for scalable image recognition,’’ inProc. IEEEConf. Comput.

Vis. Pattern Recognit., Jun. 2018, pp. 8697–8710.

[45] A.Aitken, C. Ledig, L. Theis, J. Caballero, Z.Wang, andW. Shi, ‘‘Checker-

board artifact free sub-pixel convolution: A note on sub-pixel convolu-

tion, resize convolution and convolution resize,’’ 2017, arXiv:1707.02937.

[Online]. Available: https://arxiv.org/abs/1707.02937

[46] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘ImageNet classification

with deep convolutional neural networks,’’ in Proc. Adv. Neural Inf. Pro-

cess. Syst., 2012, pp. 1097–1105.

[47] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, ‘‘Rethinking

the inception architecture for computer vision,’’ in Proc. IEEE Conf.

Comput. Vis. Pattern Recognit., Jun. 2016, pp. 2818–2826.

[48] C. Chen, Q. Chen, J. Xu, and V. Koltun, ‘‘Learning to see in the

dark,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2018,

pp. 3291–3300.

[49] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,

S. Ghemawat, G. Irving, M. Isard, and M. Kudlur, ‘‘Tensorflow: A system

for large-scale machine learning,’’ in Proc. 12th USENIX Symp. Operat-

ing Syst. Design Implement., Savannah, GA, USA, vol. 16, Nov. 2016,

pp. 265–283.

[50] S. Hoo-Chang, H. R. Roth, M. Gao, L. Lu, Z. Xu, I. Nogues, J. Yao,

D. Mollura, and R. M. Summers, ‘‘Deep convolutional neural networks

for computer-aided detection: CNN architectures, dataset characteris-

tics and transfer learning,’’ IEEE Trans. Med. Imag., vol. 35, no. 5,

pp. 1285–1298, May 2016. doi: 10.1109/TMI.2016.2528162.

MUYI SUN received the B.S. degree from the

School of Automation, Beijing University of Posts

and Telecommunications, Beijing, China, in 2015,

where he is currently pursuing the Ph.D. degree in

control science and engineering with the School

of Automation. His research interests include pat-

tern recognition, pathological image analysis, and

computer vision.

GUANHONG ZHANG is currently pursuing the

master’s degree in pattern recognition and intel-

ligent systems from the School of Automation,

Beijing University of Posts and Telecommuni-

cations, Beijing, China. His research interests

include machine learning, computer vision, neural

networks, and so on.

HAO DANG received the M.S. degree in pat-

tern recognition and intelligent systems from

the Henan University of Technology, Zhengzhou,

China, in 2016. He is currently pursuing the Ph.D.

degree in control science and engineering with

the School of Automation, Beijing University of

Posts and Telecommunications, Beijing, China.

His research interests include the pattern recog-

nition, intelligent systems, machine learning, and

so on.

XINGQUN QI is currently pursuing the master’s

degree in control science and engineering from

the School of Automation, Beijing University of

Posts and Telecommunications, Beijing, China.

His research interests include deep learning, com-

puter vision, and so on.

XIAOGUANG ZHOU received the M.S. degree

from the Department of Precision Instrument,

Tsinghua University, in 1984, and the Ph.D. degree

in engineering from the Tokyo University of Agri-

culture and Technology, Japan. He was a Visitor

Professor with the TokyoUniversity of Agriculture

and Technology, from 2001 to 2002, and a JSPS

Researcher with Tokyo University, from 2013 to

2014. He is currently a Professor, and a Doctoral

Supervisor with the School of Automation, Beijing

University of Posts and Telecommunications. He also serves as the Director

of the Engineering Research Center of Information Networks, Ministry of

Education. He is the author of over 10 books, over 100 articles, and over

16 inventions. His research interests include control theory and its application

in engineering, the Internet of Things and automated logistics systems,

and mechatronics technology. He is a permanent member of the Chinese

Association of Automation/Manufacturing Technology Committee and the

China Institute of Communications/Equipment Manufacturing Technical

Committee.

QING CHANG received the M.D. degree from

the Department of Clinical Medicine, Nantong

Medical College, in 2000, and the Ph.D. degree

in molecular cell biology from the University of

Tokyo, in 2013. He was a Postdoctoral Fellow

with the Shanghai Jiaotong University School of

Medicine, from 2013 to 2015. He is currently an

Associate Professor, and a Master Supervisor with

the Shanghai University of Medicine and Health

Sciences. He also serves as an Attending Doctor

and a Research Fellow of the Shanghai General Practice Medical Education

and Research Center, Jiading District Central Hospital Affiliated Shang-

hai University of Medicine and Health Sciences. He has published over

20 articles. His research interests include the usage and challenge of innovat-

ing technology in general practice medicine, such as sequencing, big-data,

and AI.

VOLUME 7, 2019 75541


	INTRODUCTION
	RELATED WORK
	ADJUSTMENT OF RECEPTIVE FIELD
	MULTI-SCALE EMBEDDING
	DENSE UPSAMPLING CONVOLUTION

	DATASET
	METHOD
	SELECTED BACKBONE RESNET-101.
	ENCODER WITH DEFORMABLE CONVOLUTION AND ATROUS CONVOLUTION.
	SEMANTIC-LEVEL EMBEDDING STRATEGY
	PROPOSED DECODER AND DENSE UPSAMPLING
	OVERALL FRAMEWORK

	EXPERIMENTS
	IMPLEMENTATION DETAILS
	EVALUATION INDICATORS
	ABLATION ANALYSIS
	RESULTS AND DISCUSSION

	CONCLUSION
	REFERENCES
	Biographies
	MUYI SUN
	GUANHONG ZHANG
	HAO DANG
	XINGQUN QI
	XIAOGUANG ZHOU
	QING CHANG


