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Figure 1. Accurate geo-registration of ground based Multi-view Stereo (MVS) models. Left: an MVS model from geo-located aerial

images. Middle: the ground model is successfully geo-registered using the proposed method. Landmark: Castel Sant’Angelo. Right: an

overhead view of the Roman landmarks that have been geo-registered, as part of our large scale evaluation.

Abstract—We address the problem of geo-registering
ground-based multi-view stereo models by ground-to-aerial
image matching. The main contribution is a fully automated
geo-registration pipeline with a novel viewpoint-dependent
matching method that handles ground to aerial viewpoint
variation. We conduct large-scale experiments which consist
of many popular outdoor landmarks in Rome. The proposed
approach demonstrates a high success rate for the task, and
dramatically outperforms state-of-the-art techniques, yielding
geo-registration at pixel-level accuracy.
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I. INTRODUCTION

In the past several years, 3D reconstruction from Internet

photo collections has shown impressive improvements in

both scalability and accuracy [3][7][16][21][22][23]. As

these Internet photos are mostly taken from the ground, the

reconstructed multi-view stereo (MVS) models are highly

detailed, but are often disconnected due to the lack of photo

coverage in less popular areas. At the same time, these

ground-level models are usually not accurately geo-located

in a global coordinate system, making it difficult for them

to support applications such as digital mapping and au-

tonomous navigation. In contrast, commercial products like

Google Earth, Apple’s 3D Maps, and Bing maps use geo-

located aerial imagery for more uniform 3D reconstruction.

The aerial 3D models are complete but much less detailed

than the ground-level models. A natural question to ask is:

(a) (b) (c)

Figure 2. A typical scenario for the ground-to-aerial image registration
problem. (a) An aerial image shows part of the city of Rome. The red
rectangle highlights the Sant’Andrea della Valle. Even for human vision, it
is difficult to find the target geometry from the aerial view. (b) A close-up
view of (a). (c) A ground image of Sant’Andrea della Valle.

can we achieve the best of both worlds by using the aerial

and ground imagery together in 3D reconstructions?

However, it is difficult to directly match ground and

aerial images together, due to the large differences in their

camera viewpoints and imaging conditions. Figure 2 illus-

trates the challenges. First, in the case of aerial images,

the scene is observed from much greater distances and at

very different angles than in the case of ground images.

Typically, landmarks roughly corresponds to 400 × 400
pixels in high resolution aerial images. Second, depending

on the direction of the sunlight, certain facades appear very

dark in the aerial images, making standard feature detection

and matching difficult. In addition, most previous wide-

baseline feature-matching methods rely on dominant planar
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Figure 3. Warping the ground-level image into target view using depth
maps and corresponding camera poses.

structures [19][29], but the actual 3D geometry can be more

complicated, an assumption that fails for many landmarks

(e.g., Figure 1).

In this paper, we address the problem of registering

ground-level models to aerial imagery. To this end, we

introduce a new viewpoint-dependent matching technique

to establish pixel accurate feature correspondences between

aerial and ground imagery. Our approach helps mitigate

the problems caused by the large discrepancies in viewing

angles and image resolutions that have frustrated prior

efforts. As a result, we can now achieve pixel-level accu-

racy in geo-registration (within a few centimeters in many

cases). This is a significant improvement over the ∼ 5.5-

meter accuracy attainable using GPS or text labels in prior

approaches [17][32].

Our contributions are: 1) a novel viewpoint-dependent

matching method that handles large viewpoint changes;

2) a fully automated geo-registration pipeline for matching

ground-level photos to aerial imagery; and 3) a large-

scale geo-registration evaluation which consists of the most

popular outdoor landmarks in Rome, demonstrating an ap-

proximately 70% success rate with the proposed system.

Aligning ground-based models enables adding dramatically

more details to aerial reconstructions.

II. RELATED WORK

Ground-to-aerial image matching for geo-registration is

difficult, and standard feature matching techniques often

fail (Figure 4a), necessitating manual intervention [6][24].

Very few approaches have demonstrated fully automatic

matching and reconstruction of aerial and ground imagery.

Shan et al. [21] obtain best results to date using SIFT feature

matching [18]. However, their experiments were limited to

two landmarks, the Colosseum in Rome and San Marco

Square in Venice, which appear relatively large even in the

aerial views. In particular, they employ imagery from low-

altitude helicopters and use overlook views from the tall

towers (i.e., semi-aerial views) to bridge the gap between

aerial and ground viewpoints. Unfortunately, such semi-

aerial views are not available for most landmarks. The

proposed method in this paper works for a much broader

range of landmarks and does not rely on semi-aerial views.

(a) (b) (c)

Figure 4. Two-view matching of ground and aerial images. (a) Matching
the whole aerial photo with the ground image produces mostly useless
feature pairs. (b) Matching an automatically cropped and sharpened aerial
photo with the ground image also fails. (c) More reliable feature correspon-
dence is obtained by matching the cropped aerial photo with the synthesized
target view from the ground image.

Coarse geo-registration of ground-level models is possible

using photo meta-data. GPS and text labels are commonly

used to estimate rough geographic location. For more accu-

rate registration, early attempts focused on matching aerial

image edges (or map edges) to 2D projections of ground

models (projection along the “up” vector) [9][14][32]. How-

ever, reliable matching by these methods requires multiple

facades (or multiple map edges) in the ground-level models,

which is not always the case. Furthermore, their altitude

estimation is often less accurate. Recently, researchers have

looked into using other sources of geo-location proxies, for

example, matching ground images to geo-located Google

Street View photos [8][27], or looking for GPS tagged

images with similar appearance [11][15], matching to geo-

located ground-level 3D points [17]. Nevertheless, it is

difficult for these methods to achieve high precision; for

example, the average error is about 20 meters in [32], and

5.5 meters in [17]. In this paper, we establish feature matches

between aerial and ground imagery for geo-registration with

pixel-level (centimeter) accuracy.

Invariant features (e.g., SIFT) are typically used to tackle

viewpoint changes. Beyond the invariance to scale changes,

there exists a rich body of work on affine or perspec-

tive invariance for improved robustness to large viewpoint

changes [25][19][29][30][4]. These techniques usually as-

sume dominant planar geometry for simulating different

views with a homography or affine transformation, and as

a result, their performance suffers when the scene geometry

is complex or has many foreground occluders. Furthermore,

the viewing angle variation between the aerial and ground



imagery is so dramatic (45◦) that it usually falls outside

the operating range of most image matching methods. Our

experiments with state-of-the-art methods ([19] and [29])

show that they are insufficient for our aerial to ground

registration task.

An alternative to image matching is direct 3D model

alignment using 3D feature points [5][13][31][20]. These

approaches assume meshes with similar resolutions and

with a substantial amount of overlap. Unfortunately, aerial

models are much coarser than ground models (meter versus

centimeter resolution), and it is difficult to extract accurate

mesh features for matching. Furthermore, the aerial and

ground models usually do not overlap enough. Geometry

that is visible in aerial views, e.g., rooftops, rarely appears

in ground images, and vice versa. Therefore, it is difficult

to achieve pixel-level accuracy via 3D feature based tech-

niques.

III. ALGORITHM OVERVIEW

Given ground-level MVS reconstructions, our goal is to

accurately and automatically align these MVS models to the

aerial images, which have been geo-referenced already. The

following is an overview of the proposed algorithm.

We first obtain an approximate geo-referenced ground-

based MVS model by performing GPS-based geo-

registration using the EXIF tags of ground images. The

ground-level images are collected from Flickr [1], of which

roughly 10% have GPS tags [7]. As many of the GPS tags

are inaccurate (due to poor reception, user tagging, etc.), the

RANSAC process typically can locate the 3D models only

within a 20 meter range [32].

Based on the estimated geo-location of the ground models,

we retrieve oblique aerial views from Google Maps [2].1 The

oblique images are captured from 4 different directions, east,

south, west, and north. Our method finds feature matches

between the ground and aerial images to geolocate the

ground models to pixel-level accuracy.

Section IV proposes a new viewpoint-dependent matching

method, which effectively deals with the large viewpoint

differences between the ground-level and the aerial images.

Section V presents our aerial view-selection algorithm,

which leads to efficient and robust matching. The final 3D

transformation is recovered by applying RANSAC to the

feature matches. In our experiments, 41 out of 59 outdoor

landmarks in Rome were successfully registered, a 70%
success rate.

IV. VIEWPOINT-DEPENDENT FEATURE MATCHING

We consider the problem of finding accurate feature

matches between two sets of images with large viewpoint

changes. In ground-to-aerial matching, we have accurate

1Note that we don’t need aerial 3D geometry for geo-registering the
ground models.

geo-reference information for aerial images, while the lo-

cation of the ground MVS reconstructions can be recovered

only approximately from GPS tags.

SIFT is sufficient for small viewpoint changes, as the

local transformations are close to similarity transforms. For

larger viewpoint changes, affine invariance can be achieved

on planar structures [19]. When accurate, dense 3D recon-

structions of both models are available, improved invariance

can be achieved with viewpoint-invariant patches extracted

from synthesized local orthogonal views [29]. Unfortunately,

the ground-to-aerial registration problem has (i) drastic

viewpoint changes, (ii) very complicated geometry, and

(iii) sparse and noisy reconstructions from aerial imagery.

Therefore, none of the above techniques are applicable.

Instead of seeking invariant feature detections, we propose

to match view-dependent features by exploiting approxi-

mate alignment information and underlying 3D geometry.

Consider matching a ground MVS model (source) and an

aerial image (target). We assume that dense depth maps

exist for the source images, and that approximate alignment

information is available, from which we can synthesize the

source images rendered from the target viewpoint. Standard

small-baseline features can then be applied to match the

synthesized views with the target image. Note this is funda-

mentally different from VIP matching [29], which needs to

synthesize invariant views for both source and target images.

In fact, the proposed matching method only requires the

dense 3D geometry of the source imagery.

For the target view synthesis, we compute MVS recon-

structions of the source imagery and create dense depth

maps with a bilateral filter-based interpolation process as

described in [12]. The depth maps are first computed by

back-projecting visible MVS points to each view, and then

interpolated with a bilateral filter to fill in possible holes

(window radius is 10 pixels and the regularization parameter

is 0.16). We then further smooth the depth maps with a

Gaussian filter of size 11 to reduce warping artifacts.

Given the recovered depth maps, we are able to synthesize

the target view for each source (ground level) image by

depth-based warping . After that, we use SIFT to match with

the aerial views. See Fig. 4(c) for an example. Experiments

show that the viewpoint-dependent feature matching works

well for the large viewpoint and scale changes in the aerial

and ground matching, where direct matching will typically

fail.

A key advantage of our viewpoint-dependent feature

matching over [29] is the ability to handle large scale

changes and exploit the approximate alignment information.

By warping the ground level images into the aerial views,

and matching at the resolution of the aerial views, our

algorithm naturally ignores the small 3D structures that are

invisible in the aerial views. In fact, we found that the

failures of [29] in our problem are often due to feature

matching at the wrong scales.
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Figure 5. Image sharpening brings up the contrast level of aerial views
in shadow, improving the feature matching. Note that the aerial crop we
show in Figure 4 (b,c) is after sharpening.

V. AERIAL VIEW SELECTION AND MATCHING

The initial alignment for the ground models is obtained

by using a GPS tag based RANSAC, which typically has an

accuracy of around 20 meters. This precision allows us to

automatically select the proper aerial views for matching.

First, given an approximately aligned ground model, we

identify the aerial images that contain the model in their

viewports. Specifically, for each of the four aerial oblique

viewing directions, we select the aerial image, whose center

is the closest to the center of the ground model on the image.

Second, each ground model usually corresponds to a small

fraction of an aerial image, due to the large scale changes.

For the purpose of efficiency, our system automatically crops

the aerial images to narrow down the search space (Figure

4b). Specifically, based on the 3D bounding box of the

ground model, we extract the sub-images that cover the

desired region of interest by projecting the bounding box into

the aerial views. In our implementation, we use 5 pre-defined

crop sizes: 401× 401, 601× 601, 801× 801, 1001× 1001,

and 1201 × 1201. To account for the error in the initial

registration, we choose one crop size that is approximately

twice the size of the region of interest.

Third, we apply contrast adjustment to deal with land-

marks in shadow. The aerial images are all taken on sunny

days in Rome, Italy. Therefore, north-facing facades are

always in shadow, resulting in low contrast aerial views. The

contrast mismatch has a significant effect in SIFT matching.

To address it, we apply an unsharp mask to enhance these

north facing views. That is, Is = (1+a)I−aI∗g, where Is is

(a) (b)

Figure 6. Applying the estimated similarity transform to the ground model.
(a) The aerial MVS model. (b) The transformed ground model on top of
the aerial model. Note that accurate geo-registration has been achieved.

the sharpened image, I is the original cropped aerial image,

g is a 7 × 7 Gaussian filter with standard deviation σ = 1,

∗ is the convolution operator, and a is the sharpening ratio

(0.25 in our implementation). The aerial view enhancement

produces better two-view matching (Figure 5), leading to

more accurate geo-registration.

Feature matches between the ground and aerial images

are then converted into a list of 3D point pairs, de-

noted {(P a
i , P

g

i )}. P a
i is one (feature) point in the aerial

view, back-projected into 3D according to the underlying

aerial geometry. P
g

i is the matched ground point, which

is back-projected based on the interpolated depth map.

The ground-to-air alignment is sought by finding the op-

timal 3D similarity transformation between the two sets of

3D points. The error to be minimized can be written as∑
i ‖P

a
i − (sRP

g

i +T)‖
2
, where s is the scale factor, R

is the rotation matrix, and T is the translation vector. The

closed form solution for the similarity transform is given

by [26]. For robustness to outliers, we use a RANSAC

process to find the transformation with the largest number

of inliers. We set the distance threshold to 5 centimeters.

To account for possible low inlier ratios, we empirically

let the RANSAC process take 100, 000 iterations, where

each iteration randomly picks 3 pairs of points. This would

guarantee a success probability of 0.999996 even if the inlier

ratio is 5%. Finally, the estimated similarity transform is

applied to the ground model for geo-registration (Figure 6).

VI. EVALUATION

The proposed system is evaluated on popular landmarks

in the city of Rome. We downloaded ground images from

Flickr, and ran a standard 3D reconstruction pipeline (Visu-

alSFM [28] followed by PMVS [10]). After removing indoor

scenes and small models of less than 20 images, we keep

59 datasets for the geo-registration experiment. The number

of images in each dataset varies from 28 (Santa Croce in

Gerusalemme) to 5000 (Colosseum). 12 of the 59 datasets
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Figure 9. Comparing against the VIP matching in [29]. Landmark: Santa Maria in Trastevere.

Aerial MVS points Result from [Wu et al. 2008] Our result

Aerial view                     Ground image

Figure 7. Comparing against the VIP matching in [29]. For better
visualization, we manually place red and green lines to highlight the
bridge beams in aerial and ground models, respectively. Note that the
geo-registration from the proposed method is more accurate as the bridge
beams from the aerial and ground model overlap. Landmark: Ponte Vittorio
Emanuele II.

have more than 1000 images. As the geo-registration target,

we collected 31, 891 aerial images that cover the entire city

of Rome. Most of the computation time is spent in the

pre-processing steps computing SfM [28] and MVS [10].

In particular, it takes about a day for each of the biggest

datasets with a distributed reconstruction system. The geo-

registration process takes less than 20 minutes on a single

machine with 8 threads.

The proposed method successfully registers 41 out of the

59 landmarks in Rome, which gives a 69.5% success rate.

Qualitative results can be found in Figure 7, 8, 9, and 10,

which demonstrate the accuracy of the proposed registration

method. Our method shows clear improvements over the

initial GPS-based geo-registration.

Our view-dependent feature matching approach is crit-

ical to handling large viewpoint and scale changes. For

comparison, we also run the geo-registration pipeline using

standard SIFT [18], ASIFT [19] and VIP matching [29]. As

expected, SIFT and ASIFT are not capable of handling the

drastic viewpoint changes (See Fig. 8). One may suspect

that a possible reason of the failure is the ratio-test. We

experimented with this hypothesis by disabling the ratio-

test. It indeed increases the number of putative feature

matches between the ground and aerial views. However, the

feature matches become much noisier. In the end, disabling

the ratio-test does not increase the number of successfully

registered landmarks. VIP matching works reasonably well

for a few datasets where the scene geometry is relatively

simple, but fails in most cases. One of the successful

examples of VIP matching is shown in Figure 7, where

the ground MVS model of the bridge has been registered

to the aerial model. However, the registration error from

VIP matching is significantly larger. Two failure examples

are shown in Figure 8 and 9. VIP detection and matching

relies heavily on correctly parsing local scene geometries,

e.g., the plane detection process. The performance varies

depending on various thresholds which need to be tuned



Figure 10. More results on matching the aerial view to the ground image. Left: the point cloud from aerial MVS models. Right: our geo-registered
models. Please zoom into the original resolution for best visual quality.

for each landmark. Moreover, the matching tends to get

confused by the large number of small 3D features in the

ground-level reconstruction.

We tried to conduct quantitative evaluations of the geo-

registration accuracy, but it is not clear how to define a good

metric. One option is to define a recall score by setting a

distance threshold and measuring the percentage of ground

MVS points that have aerial reconstructions within the

threshold. However, due to the large difference in resolution

and coverage between the aerial and ground models, this

metric does not necessarily favor the better geo-registration

result. For example, a ground model of the frontal facade of a

church may be mis-matched to an incorrect planar region in

the aerial model, and produce a comparable or higher recall

score. We hope to develop a better metric for the problem

in future work.

The proposed approach does fail for some landmarks.

Figure 11 shows such an example, where the building

is under construction in the aerial model, but not in the

ground model. When the aerial and ground models are not

consistent, the proposed method is not able to find enough

feature matches. Another cause of failure is due to noisy

ground reconstructions. Since our viewpoint-dependent fea-

ture matching relies on the ground geometry for warping, it

is vulnerable to noisy ground reconstructions, which result

in severely distorted synthesized views.
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Figure 8. Comparing against the baseline method and the VIP matching
in [29]. Landmark: Theatre of Marcellus.

Failure case 1: inconsistent aerial/ground appearance

Failure case 2: noisy ground MVS reconstruction

Figure 11. Failure cases. The proposed method fails when (i) the
aerial/ground geometry is not consistent, and (ii) the ground geometry is
noisy.

VII. CONCLUSION

This paper presents a fully automatic system to geo-

register ground MVS reconstructions. The system is capable

of handling drastic viewpoint variations by adopting a novel

view-dependent feature matching approach. We conducted a

large scale experiment using 59 popular outdoor landmarks

in Rome. Our results are significantly better than existing

techniques.

Our approach does have some limitations. It relies on

the quality of ground MVS reconstructions, and assumes

consistent appearance in both aerial and ground imagery

(Figure 11). The registration accuracy degrades at the pres-

ence of severe occlusions. Although the ultimate goal is

to create high-resolution city-scale 3D models, currently

we are only able to achieve this desired resolution at city

landmarks where dense ground images are available. One

topic of future work is to incorporate another source of

ground-level imagery such as Google Street View images.

Finally, the proposed approach simply estimates a similarity

transformation between the aerial and ground models. Slight

mis-alignments are observed in some of the datasets, which

could be reduced by global bundle adjustment on all the

ground and aerial imagery, incorporating the ground-to-

aerial feature matches obtained by the proposed algorithm.

ACKNOWLEDGMENTS

We thank Google Seattle Lightfield team for helpful

discussion and support. This work was done when Qi Shan

interned at Google.



REFERENCES

[1] Flickr. http://www.flickr.com. 3
[2] Google maps. http://maps.google.com/. 3
[3] S. Agarwal, Y. Furukawa, N. Snavely, B. Curless, S. M. Seitz,

and R. Szeliski. Building rome in a day. Communications of
the ACM, 54(14):105–112, October 2011. 1

[4] M. Bansal, K. Daniilidis, and H. Sawhney. Ultra-wide
baseline facade matching for geo-localization. ECCV 2012.
Workshops and Demonstrations, Lecture Notes in Computer
Science, 7583:175–186, 2012. 2

[5] P. J. Besl and N. D. McKay. Method for registration of 3-D
shapes. TPAMI, 14(2):239 – 256, 1992. 3

[6] P. Cho, N. Snavely, and R. Anderson. 3D exploitation of large
urban photo archives. In SPIE Defense, Security, and Sensing,
pages 769714–769714. International Society for Optics and
Photonics, 2010. 2

[7] J.-M. Frahm, P. Georgel, D. Gallup, T. Johnson, R. Raguram,
C. Wu, Y.-H. Jen, E. Dunn, B. Clipp, S. Lazebnik, and
M. Pollefeys. Building rome on a cloudless day. In ECCV,
2010. 1, 3

[8] J.-M. Frahm, J. Heinly, E. Zheng, E. Dunn, P. Fite-Georgel,
and M. Pollefeys. Geo-registered 3D models from crowd-
sourced image collections. Geo-spatial Information Science,
16(1):55–60, 2013. 2

[9] C. Frueh and A. Zakhor. Constructing 3D city models by
merging ground-based and airborne views. In CVPR, 2003.
2

[10] Y. Furukawa and J. Ponce. Accurate, dense, and robust multi-
view stereopsis. TPAMI, 32(8):1362–1376, 2010. 4, 5

[11] J. Hays and A. A. Efros. IM2GPS: estimating geographic
information from a single image. In CVPR, 2008. 2

[12] K. He, J. Sun, and X. Tang. Guided image filtering. In ECCV,
2010. 3

[13] A. Irschara, C. Zach, J.-M. Frahm, and H. Bischof. From
structure-from-motion point clouds to fast location recogni-
tion. In CVPR, 2009. 3

[14] R. S. Kaminsky, N. Snavely, S. M. Seitz, and R. Szeliski.
Alignment of 3D point clouds to overhead images. In Second
IEEE Workshop on Internet Vision, 2009. 2

[15] J. Knopp, J. Sivic, and T. Pajdla. Avoiding confusing features
in place recognition. In ECCV, 2010. 2

[16] A. Kushal, B. Self, Y. Furukawa, D. Gallup, C. Hernandez,
B. Curless, and S. Seitz. Photo tours. In 3DImPVT, 2012. 1

[17] Y. Li, N. Snavely, D. Huttenlocher, and P. Fua. Worldwide
pose estimation using 3D point clouds. In ECCV, 2012. 2

[18] D. Lowe. Distinctive image features from scale-invariant
keypoints. In IJCV, volume 20, pages 91–110, 2003. 2, 5

[19] J.-M. Morel and G. Yu. Asift: A new framework for fully
affine invariant image comparison. SIAM Journal on Imaging
Sciences, 2(2), 2009. 2, 3, 5

[20] R. B. Rusu, N. Blodow, and M. Beetz. Fast point feature
histograms (fpfh) for 3D registration. In ICRA, pages 3212–
3217, 2009. 3

[21] Q. Shan, R. Adams, B. Curless, Y. Furukawa, and S. M. Seitz.
The visual Turing test for scene reconstruction. In 3DV, 2013.
1, 2

[22] Q. Shan, B. Curless, Y. Furukawa, C. Hernandez, and S. M.
Seitz. Occluding contours for multi-view stereo. In CVPR,
2014. 1

[23] N. Snavely, S. M. Seitz, and R. Szeliski. Photo tourism:
Exploring image collections in 3D. In SIGGRAPH, 2006. 1

[24] K. Tuite, N. Snavely, D.-y. Hsiao, N. Tabing, and Z. Popovic.
Photocity: training experts at large-scale image acquisition
through a competitive game. In CHI, 2011. 2

[25] T. Tuytelaars and K. Mikolajczyk. Local invariant feature

detectors: a survey. Foundations and Trends R© in Computer
Graphics and Vision, 3(3):177–280, 2008. 2

[26] S. Umeyama. Least-squares estimation of transformation
parameters between two point patterns. TPAMI, 13(4):376–
380, 1991. 4

[27] C.-P. Wang, K. Wilson, and N. Snavely. Accurate georegis-
tration of point clouds using geographic data. In 3DV, pages
33–40, 2013. 2

[28] C. Wu. Towards linear-time incremental structure from
motion. In 3DV, 2013. http://ccwu.me/vsfm. 4, 5

[29] C. Wu, B. Clipp, X. Li, J.-M. Frahm, and M. Pollefeys. 3D
model matching with viewpoint-invariant patches (vip). In
CVPR, 2008. 2, 3, 5, 7

[30] C. Wu, F. Fraundorfer, J.-M. Frahm, and M. Pollefeys. 3D
model search and pose estimation from single images using
vip features. In CVPR Workshops, pages 1–8, 2008. 2

[31] A. Zaharescu, E. Boyer, K. Varanasi, and R. Horaud. Surface
feature detection and description with applications to mesh
matching. In CVPR, 2009. 3

[32] A. Zamir and M. Shah. Image geo-localization based on
multiple nearest neighbor feature matching using generalized
graphs. TPAMI, 36(8):1546–1558. 2, 3

http://www.flickr.com
http://maps.google.com/
http://ccwu.me/vsfm

