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Abstract—Over the past few years, advanced driver-assistance
systems (ADASs) have become a key element in the research
and development of intelligent transportation systems (ITSs) and
particularly of intelligent vehicles. Many of these systems require
accurate global localization information, which has been tradition-
ally performed by the Global Positioning System (GPS), despite its
well-known failings, particularly in urban environments. Different
solutions have been attempted to bridge the gaps of GPS position-
ing errors, but they usually require additional expensive sensors.
Vision-based algorithms have proved to be capable of tracking the
position of a vehicle over long distances using only a sequence of
images as input and with no prior knowledge of the environment.
This paper describes a full solution to the estimation of the global
position of a vehicle in a digital road map by means of visual
information alone. Our solution is based on a stereo platform
used to estimate the motion trajectory of the ego vehicle and a
map-matching algorithm, which will correct the cumulative errors
of the vision-based motion information and estimate the global
position of the vehicle in a digital road map. We demonstrate our
system in large-scale urban experiments reaching high accuracy in
the estimation of the global position and allowing for longer GPS
blackouts due to both the high accuracy of our visual odometry
estimation and the correction of the cumulative error of the map–
matching algorithm. Typically, challenging situations in urban
environments such as nonstatic objects or illumination exceeding
the dynamic range of the cameras are shown and discussed.

Index Terms—Digital maps, geographical information sys-
tems, intelligent transportation systems (ITSs), intelligent vehicles,
visual odometry.

I. INTRODUCTION

OVER the past few years, advanced driver assistance sys-
tems (ADASs) have become a key element in the research

and development of intelligent transportation systems (ITS) and
particularly of intelligent vehicles. ADASs are becoming in-
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creasingly more common in modern vehicles, and new sensors
come now as standard to improve safety and aid in navigation.
These systems usually require precise knowledge of the vehi-
cle’s position and orientation, or even its global localization. In
addition, research in the field of vehicle-to-vehicle and vehicle-
to-infrastructure cooperation for traffic management is now a
hot topic in the ITS field. Moreover, many applications require
information about not only the local motion of the vehicle but
its position in a global map for advance warning of approaching
hazards, such as intersections and pedestrian crossings [1] as
well. Traditionally, this location information has being pro-
vided by Global Positioning System (GPS), despite its well-
known limitations, particularly in urban environments (signal
blockage, severe multipath, etc.). Different solutions have been
proposed to bridge the gap of GPS position errors, but they
usually require additional expensive sensors; their drift rapidly
increase with time, and frequent calibration is required [2].

Over the past few years, vision-based systems have proved
to be capable of locally tracking the position of a vehicle over
long distances using only the images as inputs and with no
prior knowledge of the environment [3]. Although results are
encouraging, there are still some problems to be resolved. First,
in dynamic untextured outdoor environments feature points are
hard to find and track, resulting in an increase in the number
of outliers. Featureless solutions have been proposed based
on textures [4] or whole image alignment and near-planarity
assumptions [5]. These methods yield good results but have
problems with the planar world assumption and with heavy
shading from other vehicles or objects surrounding the road
due to its usually narrow field of view [5], [6]. They are also
limited in the speed of the vehicle due to the camera position,
usually facing downward and close to the ground, which will
demand high frame rates for high vehicle speeds. Second,
the nature of the measurements in vision systems produces
higher inaccuracies in the depth direction of the camera [7].
This leads to errors estimating the lengths traveled or the
pitch and roll angles, depending on the camera setup and the
motion model [8]. Different solutions have been proposed to
cope with this problem, being the most common to change
the camera configuration to increase the optical flow in the
images [6], [9], to estimate the different components of the
motion separately using different sets of points and algorithms
[8], [9], and to model the uncertainty in the measurements and
incorporate it in the optimization problem [10], [11]. Changing
the camera’s configuration and estimating separately the motion
usually come together and deliver good results at the cost of
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increasing the complexity of the setup and not allowing for
an easy integration of systems. On the other hand, models of
the uncertainty are approximations and, thus, only valid under
some constraints [12], [13]. Third, a real-world problem that is
usually overseen is the disturbances introduced by illumination
changes and nonstationary objects. While downward facing
systems are more sensitive to illumination changes, nonstation-
ary objects are one of the main challenges for the rest of them
[14], [15]. Most of the systems do not deal with this problem
or just trust that it will be filtered by a large-enough number of
inliers and a good outlier rejection scheme. Finally, a common
problem of odometry systems is the drift in the estimation over
long distances, which is inherent to the nature of the infor-
mation available. Visual odometry produces locally accurate
and smooth estimates that inevitably drift over time due to the
lack of a global reference, which would allow removal of the
small cumulative errors made in the successive estimations.
The straightforward solution is to fuse this information with
a second sensor, providing coarse but absolute position esti-
mations. This way, visual odometry can deliver smooth and
locally accurate position estimations, whereas a second sensor
will offer coarse but absolute estimations. Examples of this
solution have been given using GPS [3], [5], IMUS [16], [17],
and GYROS [18].

In this paper, we show that accurate global localization is
possible, using a stereo video stream to produce an estimated
trajectory that is accurate and robust to illumination changes
and nonstationary objects. The motion trajectory of the vehicle
is estimated using weighted nonlinear least squares (WNLS)
optimization and a Gaussian multivariate model to estimate
the uncertainties in the measurements [19]–[21]. The outlier
removal is performed by a RANSAC algorithm, based on
Mahalanobis distance to better deal with the nature of the input
data. In a further step, the local motion information is matched
to a digital map providing global positioning and removing
the cumulative error. Fusing the locally accurate trajectory
information from the visual odometry with a digital road map,
we are able to accurately estimate the global position of the
vehicle for very long GPS outages, and using map features, the
drift errors are corrected. We provide examples of trajectory
estimations and map fusion in long urban environments with
real traffic and discuss the key issues for further improvement.
The main contribution of this work is the demonstration of a
full localization solution in real complex environments in the
presence of nonstationary objects, under extreme illumination
conditions, and for distances on the order of kilometers. This is
achieved due to the use of a simplified and calibrated motion
model that rejects nonfeasible motions for the vehicle and of
features strong to perspective and illumination changes and
the fusion with a digital map, which corrects the drift errors
inherent to odometry systems.

The remainder of this paper is organized as follows:
Section II briefly surveys vision-based egomotion systems. An
overall description of the visual odometry system is presented
in Section III. The integration and correction of the visual
odometry information using GPS and a digital map is described
in Section IV. The experimental setup and extensive examples
of the system performance are provided in Sections V and VI.

Finally, conclusions and discussion for further improvement
can be found in Section VII.

II. RELATED WORK

Early attempts to recover the motion of a camera or cameras
using only a video stream came from the robotic community
more than two decades ago [22]. The first visual odometry
systems were successfully used by the NASA rovers to sup-
port their wheel odometry information since early 2004 [23].
However, probably, the first convincing stereo visual odometry
system not linked to robotics was presented by [24]. Although
monocular systems present good results [25], they still require
high-quality features to robustly perform [5] and are more prone
to errors [26]. As our work is focused on global localization
in complex urban environments, the use of a stereo system is
highly recommended to mitigate the disturbances from low-
textured environments, nonstationary objects, and changes in
illumination.

The idea of estimating displacements from two 3-D frames
using stereo vision was previously used in [17], [27], and
[28]. A common factor of these works is the use of robust
estimation and outlier rejection using RANdom SAmple Con-
sensus (RANSAC) [29]. In most previous research on visual
odometry, features are used for establishing correspondences
between consecutive frames in a video sequence. Some of
the most common choices are the Harris corner detector [30]
and the Kanade–Lucas–Tomasi feature tracker [31]. In [32], a
new feature extractor was specifically developed for the image
registration problem in visual odometry systems, improving
both stability and accuracy of previous feature extractors. In this
paper, Lowe’s Scale-Invariant Feature Transform (SIFT) [33]
was used to cope with the changing illumination and clutter of
urban environments at the cost of a higher computational load.
At each frame, SIFT features are extracted and matched, and
epipolar constraints are applied to reduce the number of bad
matches [21].

In [17], a so-called firewall mechanism is implemented to
reset the system to remove cumulative error. Another common
approach to maintain consistency in long sequences of images
is to introduce a local bundle adjustment [16], [25]. Although
these systems increase the final accuracy in the position es-
timation, their results are similar to those not using bundle
adjustment (about 5% accuracy for [16] and errors on the order
of meters for [25]). In the last years, some systems have tried to
reduce the drift using some sort of previously known map. The
use of previous knowledge of the environment to reduce the
drift has been explored in [34], where a map with a simplified
3-D model of the buildings is matched to the measurements
along with the camera’s pose in a final global bundle adjust-
ment. In [35], Napier et al. used overhead satellite images to
reduce the drift of a stereo visual odometry system. In our
approach, the topological information provided by a digital
map is matched to the motion trajectory of the vehicle, and
map features are used to reset the drift of the visual odometry
as global localization in the map is performed. To do so, a
probabilistic map-matching algorithm constrained to the road
matches the vehicle trajectory to global positions in the map.
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Fig. 1. Camera coordinate system.

This idea is based on a previous work where GPS and dead
reckoning were fused in a similar approach [2].

III. VISUAL ODOMETRY

The problem of estimating the trajectory followed by a mov-
ing vehicle can be seen as a continuous optimization problem.
The movement between consecutive frames can be uniquely
described by a rotation matrix R and a translation vector T that
characterize the motion of the scene being observed. The use of
nonlinear methods becomes necessary since the rotation matrix
is not linear and has to be orthonormal. In addition, the un-
certainty in the 3-D position of a reconstructed feature heavily
depends on its location. In [36], Aitken showed that, when a
weighted sum of squared residuals is minimized, the estimation
is the Best Linear Unbiased Estimator (BLUE) if each weight
is equal to the reciprocal of the variance of the measurement. In
our case, we have used a RANSAC-based WNLS algorithm to
minimize the reprojection error. A Gaussian multivariate model
of the uncertainty in the 3-D reconstruction of the features
is used as weights for the WNLS. In this section, a brief
explanation of our visual odometry system is presented. For
further details, see [21].

A. Motion Model

In the typical driving scenario, the road forms a planar
structure, and the motion of the car can be modeled with three
predominant parameters, i.e., forward translation, pitch, and
yaw. With this simplification, the motions allowed are reduced,
and the estimation is faster and more robust. However, in this
model, we assume a coordinate frame in which the ground plane
is parallel to the XZ plane of our camera coordinate system
and that the optical axis is parallel to the Z-axis (see Fig. 1).
This is not true and requires the points to be rectified prior to
computing the ego-motion [37].

To estimate the pitch and yaw of the camera’s rig with
respect to the ideal position, an offline calibration procedure
is performed. First, the ego-motion for a video showing a
long straight motion on a flat road is estimated by solving the
equations only for forward translation and yaw. If the rig has
some rotation around the y-axis, the motion model will try to
compensate this rotation by bending the trajectory around the

y-axis. We will adjust the yaw value accordingly and repeat
until no drift with respect to the straight trajectory is found. We
will repeat the experiment for a flat road and the pitch angle.

This calibration values for the pitch and the yaw are then
used for the calibration of the cameras. Prior to the ego-motion
estimation, the 3-D position of the points will be corrected ac-
cording to these values to comply with the simplified pitch, yaw,
and forward translation model. This approximation, along with
the RANSAC outlier rejection step, allows the system to cope
with moving objects such as pedestrians or other cars. On the
one hand, RANSAC will reject every minimal solution, as long
as the number of stationary points being tracked is higher than
the outliers (pedestrians or other moving cars). On the other
hand, the 2-D approximation adds some information about the
car dynamics to the model, rejecting solutions incompatible
with the car dynamics and speeding up the algorithm.

B. Optimization

At each frame, SIFT features are extracted from each of
the four images (stereo pair at time 0 and stereo pair at time
1) and stereo matched among the stereo pairs. The resulting
matches for the stereo pairs are then matched again among
them. Only the features finding a matching pair in the three
matching processes will be used for the computation of the
ego-motion. As the matching of SIFT features does not rely on
epipolar geometry, epipolar constraints are applied to reduce
the number of bad matches. (For further details, see [21].)

In our optimization problem, the reprojection error of
the tracked features will be minimized using a weighted
scheme, i.e.,

Ei(x) = wi · (fi(x) − bi)
2 , i = x, y, z (1)

where i indicates coordinates x, y, or z; Ei : R
6
→ R is the

reprojection error; wi are the weights; fi : R
6
→ R is the coor-

dinate i reprojection of a 3-D point for the estimated solution
x = [θxθyθztxtytz]; and bi is the measured 3-D i coordinate
at t1. Error functions Ei(x) are minimized with regard to x

using N pairs of 3-D points, given a value of x, by means of
an iterative process. The minimum value of Ei(x) occurs when
the gradient is zero, i.e.,

∂Ei(x)

∂x
= 2wi · (fi(x) − bi) ·

∂ (fi(x) − bi)

∂x
= 0. (2)

At each iteration, the model is linearized by approximation
to a first-order Taylor’s series expansion about x as given by

∂Ei(x)

∂x
≈ 2wi (fi(x) + ▽fi(x)∂x − bi)

∂fi(x)

∂x
= 0 (3)

where ▽fi(x) = (∂fi/∂x1, . . . , ∂fi/∂x6)
t is the gradient of fi

calculated at point x, neglecting high-order terms. Rearranging
(3), the normal equations are obtained, which, written in matrix
notation, are given by

(JT
WJ)δx = J

T
WC (4)
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where W3×3 is the weights matrix, J3×6 is the Jacobian
matrix, and

C3×1 =





bx

by

bz



 −





fx(x)
fy(x)
fz(x)



 . (5)

The system is iteratively solved using

δx = (JT
WJ)−1

J
T
WC (6)

and N pairs of 3-D points until an absolute minimum
error is found or a maximum number of iterations is
reached.

The covariance estimate of the pose is approximated from the
Jacobian J of the error function as

Σx = (Jt
WJ)−1. (7)

IV. ASSISTANCE TO A GLOBAL POSIITONING SYSTEM

USING A DIGITAL MAP

Traditionally, GPS and dead reckoning has been used as input
to map-matching algorithms; however, the conventional inte-
gration does not correct the position using the map information
after relocation. Given the cumulative nature of errors in visual
odometry estimations, the drift will keep increasing without
bounding. Moreover, the complex nature of the urban environ-
ment and the numerous nonstatic objects (other cars, pedestri-
ans, etc.) will make the map-matching process unreliable and
eventually lose the vehicle position. If accurate localization is
needed for long periods of GPS outage, additional information
available in the digital map has to be used to correct the vehicle
position and reset the cumulative errors from visual odometry.
Otherwise, small misestimations due to poor quality of the input
images (rain, glares, etc.) or nonstatic objects can quickly lead
to mislocalizations.

In our approach, we propose a probabilistic map-matching
algorithm constrained to the road, which uses map features
to control the errors of the visual odometry by feeding back
corrections from the map-matching process. This calibration
process looks for sharp turns and roundabouts in the digital map
and correct the vehicle position by removing the cumulative
error of the visual odometry whenever the vehicle is localized
in such map features. Every time the map-matching algorithm
correctly matches the vehicle position at one of these map
features, the vehicle position and heading are corrected using
digital map information about orientation and the length of the
stretch that the vehicle is traveling.

A. Integration of Visual Odometry and GPS

The visual odometry motion information is filtered and
down-sampled to one position per second to emulate the sam-
pling rate of the GPS. This way, the user will not notice
the difference between the GPS and the visual odometry. The
position of the vehicle is represented as a distance from a map
node and an orientation with respect to the segment between
the two nodes that the car is on. The car position is forced to be
in the segment between nodes, which is usually known as lock

Fig. 2. Integration of the GPS and visual odometry measures.

on road on commercial GPS. As long as the vehicle moves,
its position in the map is updated according to the input from
the visual odometry system. The signal from each GPS satellite
has a level of precision that depends on the relative geometry of
the satellites. The quality of the position delivered by the GPS
is estimated using the horizontal dilution of position (HDOP).
When visible GPS satellites are close together in the sky, the
geometry is said to be weak, and the dilution of position (DOP)
value is high; when far apart, the geometry is strong, and the
DOP value is low.

In our system, when the HDOP is greater than 10, which has
been traditionally interpreted as moderate quality, the signal is
considered to be not reliable, and the position in the map is
computed using the visual odometry information (see Fig. 2).

B. Map Matching

Map-matching algorithms use inputs generated from posi-
tioning technologies and supplement this with data from a high-
resolution spatial road network map to provide an enhanced
positioning output. The general purpose of a map-matching
algorithm is to identify the correct road segment on which
the vehicle is traveling and to determine the vehicle location
on that segment [38], [39]. Map matching not only enables
the physical location of the vehicle to be identified but also
improves the positioning accuracy if good spatial road network
data are available [40].

1) Identification of the Actual Link: The most complex ele-
ment of any map-matching algorithm is to identify the actual
link among the candidate links [38]. In our map-matching
algorithm, three basic assumptions are made.

1) The vehicle travels on the road most of the time.
2) The vehicle cannot jump from one place to another one

with no connection.
3) The vehicle has to follow certain road rules.
First, the initial road segment in which the vehicle is traveling

is estimated through an initialization process; when the GPS
position is lost, an elliptical confidence region is computed
using the visual odometry uncertainty and the last reliable
GPS position. The confidence region is projected onto the
map, and the road segments that are within the confidence
region are taken as candidate regions (see Fig. 3). For sim-
plicity, the elliptical confidence region is approximated to a
rectangular one.

If the confidence region contains more than one candidate
segment, the heading over the last 5 s is computed and com-
pared with the segment orientation. If there is only one candi-
date left after the heading check, that is the initial road segment.
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Fig. 3. (Red) Elliptical confidence region and (blue) candidate segments over
the converted OpenStreetMap’s map of Alcalá de Henares.

Fig. 4. Implemented curve-to-curve map-matching algorithm. The black
points represent the nodes in the map, the thick lines are the road segments,
and the dashed line is the estimated trajectory at the interjection exit. In shaded
blue and red, the area from the trajectory curve to each one of the intersections
exists. The road segment with the smaller area to the trajectory curve will be
chosen.

If not, the distance from the motion trajectory to the segment is
computed as follows.

1) Compute the starting point using the point-to-curve
algorithm [41] for the last GPS position.

2) Compare the estimated run distance to the distance left
on the starting point segment. If it is greater than the
distance left, discard the starting point segment, and go to
step 3. Otherwise, the starting point segment is the initial
segment.

3) Compute the distance from the motion trajectory esti-
mation to the candidate segments by computing the area
under the motion estimation trajectory to a stretch of each
one of the candidate segments. This stretch will have the
same length as the motion trajectory estimation for all the
candidate segments (see Fig. 4) [41].

4) Select the segment closer to the curve as the initial
segment.

2) Tracking of the Vehicle Position in the Map: After setting
the initial position of the vehicle in the map, subsequent motion
estimations from the visual odometry are matched in the map,
following a different approach. First, the vehicle velocity, head-
ing, and position uncertainty are used to estimate if the vehicle
is turning or driving through a junction. If so, the identification
of the actual link is started. Otherwise, a simple tracking of the

Fig. 5. Map-matching flow diagram.

vehicle position in the map is performed (see Fig. 5). The steps
of this process are given here.

1) The heading of the vehicle and the current road segment
orientation are continuously compared. If their difference
is higher than 20◦, a turning maneuver could have started
so that the uncertainty in the position of the vehicle
[see (7)] is incremented by 20%. Whenever the uncer-
tainty region enters a road juncture, the speed and ori-
entation of the vehicle are used to estimate if the car
is turning. If so, the identification of the actual link is
started; otherwise, it is continued.

2) Using the vehicle heading and velocity, check the posi-
tion predicted by the visual odometry and the estimated
position in the map after map matching. Whenever the
map matching finds the vehicle position on a distinctive
map feature (sharp turn, > 50◦ or roundabout), correct the
vehicle position with the position in the map (correction);
otherwise, just update with the new position.

This localization process is repeated until the GPS HDOP is
less than 10; then, the GPS position will be used again.

V. EXPERIMENTAL SETUP

The system described was evaluated against data obtained
during an experiment where a Citröen C4 was driven over
7 km through an urban setting in Alcalá de Henares, Spain. A
stereo vision platform based on Basler scA640 74-fm cameras
was installed in the prototype vehicle. The stereo sequences
were recorded using an external trigger signal for synchro-
nization at 30 frame/s with a resolution of 640 × 480 pixels
in grayscale. All sequences correspond to real traffic condi-
tions in urban environments and speeds up to 50 km/h, with
nonstationary vehicles and pedestrians. The vehicle has an on-
board computer housing the image-processing system, an RTK-
DGPS, and a low-cost GPS connected via USB (see Fig. 6).
A specifically developed software captures the synchronized
camera images and the RTK-GPS, GPS, and BusCAN infor-
mation from the car. All this information is embedded into the
640 × 480 grayscale images in an overhead, along with
the capture timestamp and the camera parameters (shutter,
gain, exposure, etc.) for each image. The RTK-GPS receives
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Fig. 6. (Top left) Stereo cameras. (Top right) RTK-GPS. (Bottom) Experi-
mental vehicle.

Fig. 7. Flow diagram of the acquisition system.

differential corrections at 5 Hz from a base station through the
Internet (see Fig. 7). Although corrections are sent at 5 Hz, the
rover only computes the correction parameters at 1 Hz; there-
fore, we can consider that the RTK-GPS corrects at 1 Hz but
delivers position information at 5 Hz. The low-cost GPS works
at 1 Hz. The stereo sensor uses a baseline of approximately
300 mm and a focal length of 4.2 mm and is calibrated in
an offline process. The trajectory ground truth is based on the
position delivered by the RTK-DGPS, which has a measured
maximum deviation in x- and y-axis of 5 and 5.6 mm, respec-
tively, with standard deviations of 0.0036 and 0.0041 mm [7].

The digital maps can be downloaded at running time using
OpenStreetMaps (OSM) [42] servers or can be downloaded of-
fline and stored into a hard drive to be accessed on running time.
Once the GPS signal is lost, the last reliable position is used to
load an area of the OSM map surrounding that position. The
map information is parsed and converted to Northing-Easting
coordinates. All the conversions from and to WGS-84 latitude,
longitude, and ellipsoid height to and from Universal Space
Rectangular XYZ coordinates have been performed using the
equations provided in [43]. This way, the motion information
delivered by the visual odometry system in meters can be di-
rectly translated to the map, and our new position is estimated.
Finally, our new position is converted back to longitude/latitude

and sent to a Java interface (Travelling Salesman [44]), which
will represent our trajectory in the map.

Although much research has been performed in the area
of visual odometry, there is no general way of performance
assessment. In robotics and SLAM, a typical measure of the
performance is the loop closure distance [9], [37], [45], which
is computed as the distance to the starting point in a closed
trajectory. The loop closure distance has the advantage that
it does not require an external ground truth. It is strict with
orientation errors and allows for correction when revisiting
positions. On the other hand, scale errors might pass unnoticed,
and small angular errors can accumulate, leading to very high
loop closure distances. For this reason, the percentage of error
in the distance traveled is also commonly used as an indication
of the accuracy in the estimation of the translation [3], [18],
but it requires a ground truth. When measuring the accuracy of
the estimation of the rotation angles, the sensor used as ground
truth is what usually determines the kind of performance
measurement. Some works simply overlay the trajectory on a
digital map and compare the estimated and manually annotated
trajectory [25]. This method lacks quantitative measurement
of the quality of the estimated trajectory. When using GPS
devices, most of the works compare the trajectories in a bird’s
eye plot combined with the percentage of error in the distance
traveled [3], [5], [18], [25]. With this method, small errors in
the estimation of the angle can lead to big drifts, and the exact
position and nature (impulsive, cumulative) of the error remains
unnoticed. To overcome this, the works using inertial sensors
(accelerometers, gyroscopes, and PHINS) usually plot the an-
gular velocity against the estimated velocity [5]. This gives a
good insight of the quality of the instantaneous estimation but
masks the cumulative errors.

In this paper, we have tried to assess the quality of the
system, giving both qualitative and quantitative measurements.
For this reason, we will present overlaid trajectories of the
estimated trajectory and the GPS-based trajectory, along with
the percentage of error in the distance traveled, loop closure
error, and root-mean-square error (RMSE) in positioning. To
assess the correction capacity of the map-matching algorithm,
the RMSE in positioning after the map matching has been used.
The system limits has been tested, and examples of failure
modes are also provided.

VI. RESULTS

A. Visual Odometry

The results of the visual odometry system alone are summa-
rized in Table I, along with ground truth data from the GPS.
The quality of the distance estimation is measured with the
error in the distance traveled computed by the GPS and the
visual odometry (columns 1 and 2), whereas the quality of
the shape and angles of the trajectory are measured by the
overlaid trajectories in Fig. 8 and the RMSE in positioning in
Table I. The RMSE in positioning has been computed as the
root-mean-square difference of the GPS position and the visual
odometry position. The RMSE after map matching is computed
using the corrected map-matching position, instead of the visual
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TABLE I
GROUND TRUTH AND ESTIMATED LENGTHS USING VO ALONE

odometry position. The overall accuracy in the trajectory esti-
mation is very high, specially taking into account that they were
recorded under real traffic conditions with many nonstationary
vehicles crossing the scene and strong glaring and shadows and
tunnels. The mean error in the distance traveled is 1.48% for
more than 7 km and almost 30 min of videos. To our knowledge,
this is the best accuracy for such long and complex experiments
under extreme illumination conditions and nonstationary ob-
jects. The complexity of the environment can be seen in the
RMSE, where most of the errors can be explained by nonsta-
tionary objects occluding most of the image. In videos 3 and
13, three buses cross perpendicularly to the vehicle trajectory,
occluding about 90% of the image and leading to badly wrong
rotation estimations [see Fig. 9(b)]. In video 14, two cars slowly
cross in front of the vehicle as handling a roundabout leading
to a bad estimation in the exit angle from the roundabout. In
videos 2, 6, and 17, the shadow casted by buildings make the
images textureless, and very few and far features are available,
increasing the error in the estimation [see Fig. 9(a)]. In videos
5 and 18, a tunnel is traversed, where very few features can
be extracted and where the error in the estimation increases
[see Fig. 9(c)].

In Fig. 8(a), the VO results, RTK-GPS, and GPS ground truth
for a loop closure of 1.1 km are shown. In this case, the input
video images are of poor quality as a result of glares on the
windscreen and dazzling of the cameras. Several cars and one
pedestrian crossed with the test vehicle while driving. Still, the
system was able to correctly reconstruct the trajectory with an
error in the loop closure of 0.2%. In Fig. 8(d), an example of
error in the estimation caused by nonstationary objects (two
cars and a bus) creates errors in the estimated exit angle of
a roundabout, and the estimation drifts away from the real
position. Still, the error in the estimated length (1.25%) proves
that the errors are glitches. In the next section, this drift will be
corrected using the map-matching algorithm. In Fig. 9, some
frames of the failure modes are shown. Results show that the
visual odometry is robust to illumination changes with good

results in underexposed and overexposed images. In these situ-
ations, the system is able to track very few features (5–10) and
is more prone to errors. The small number of features available
makes the motion estimations more noisy but is usually correct
due to the restrictions introduced in the motion model and to
the outlier rejection of RANSAC. On the other hand, the only
defense against nonstatic points is the motion model and the
assumption that most of the tracked points are static. Although
this is enough for most of the situations, there are some cases,
as shown in Fig. 9(b), where most of the points in the image are
nonstatic and the only chance of avoiding a bad estimation is
that the motion model of the system do not fit the motion of the
nonstationary objects.

Results for very complex scenarios have been presented,
including nonstationary cars, pedestrians, overexposed and
underexposed images, and tunnels. However, the cumulative
nature of the errors in visual odometry systems makes necessary
a correction if global localization for longer runs wants to be
achieved.

B. Visual Odometry and Map Matching

As we have shown in the previous section, the cumulative
nature of errors in visual odometry and the numerous nonstatic
objects of urban environments makes the trajectory estimations
nonreliable for long runs. Here, we present the results of the
proposed map-matching algorithm using the visual odometry
motion trajectory estimation as input and corrected using the
digital map features. In Table I, the quantitative results of
the drift correction using the digital map features are pre-
sented in column RMSE After MM. The RMSE in position-
ing after the map matching is reduced when the estimation
in the visual odometry step drifts. There is still a residual
error after the map matching due to the lock-on-road feature,
which forces the vehicle to move along a straight line between
map nodes, but this error is bounded and does not increase
in time.
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Fig. 8. Examples of 2-D estimated trajectories (blue circles, GPS; black diamonds, RTK-GPS; red line, VO). Upper row: Examples over 2 km with an accuracy
of about 1%. Lower row: Example of failure mode due to illumination exceeding the dynamic range of the cameras and nonstationary objects. (a) Video 00: Closed
loop, 1.1 km. (b) Video 5: Tunnel, 644 m. (c) Video 15: Urban, 402 m. (d) Video 14: Tunnel, 1.1 km.

Fig. 9. Examples of frames where the system fails to get accurate estimations.
(a) Example of underexposed image (Video 17, frame 879). (b) Example of
nonstationary object failure (Video 13, frame 2377). (c) Example of tunnel
(Video 5, frame 1331).

In Figs. 10 and 11, the global localization for two experi-
ments of more than 1 km is shown as presented to the user.
The map-matching algorithm output (latitude and longitude
positions) is fed to the Java interface to OSM, i.e., Travelling
Salesman [44], which performs the map rendering and tra-
jectory representation. Information about the current position
of the vehicle is presented in a navigatorlike interface in real
time with information about the quality of the GPS signal, the
number of satellites, speed, and altitude.

Comparing Fig. 8(d) and 10(b), it is shown that the
global position of the vehicle is tracked with no mistakes,
and the errors of the visual odometry are corrected by the

map-matching algorithm. The map-matching algorithm cor-
rectly estimates the exit for the roundabout where the visual
odometry previously drifted away. Other cars and buses that
are present on the video sequence that previously affected
the visual odometry do not affect the global localization
accuracy.

VII. CONCLUSION AND FUTURE WORK

A. Conclusions

We have described a new method for estimating the vehicle
global position in a network of roads by means of visual
odometry. To do so, a weighted nonlinear scheme, to represent
the input data nature, has been explained and exhaustively
tested. The resulting motion information has been used to get
the global position of the vehicle in a digital map. Both systems
have been used to compensate the GPS outages, performing
global localization of the vehicle when the GPS signal is
not available. The system has been implemented and tested
under real traffic conditions. We have provided examples of
the estimated vehicle trajectories and of the estimation of the
global position in a map. Results show that the system is
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Fig. 10. Examples of reconstructed trajectories and information shown to the user for Video 14. (a) Trajectory of the vehicle for Video 14 overimposed on
Google Maps. (b) Trajectory of the vehicle in blue and GPS information for Video 14, as shown to the user. The actual position of the vehicle is a green arrow.

Fig. 11. Examples of reconstructed trajectories and information shown to the user for Video 15. (a) Trajectory of the vehicle for Video 15 overimposed on
Google Maps. (b) Trajectory of the vehicle in blue and GPS information for Video 15, as shown to the user. The actual position of the vehicle is a green arrow.

capable of compensating the GPS outages and provides the
global position to the user. The cumulative error from the
visual odometry system is compensated using the topological
information of the map. This indicates that longer outages can
be corrected. The accuracy of the visual odometry estimation is
1.48% of the distance for more than 7 km and in very complex
scenarios with illumination changes exceeding the dynamic
range of the cameras and nonstationary objects. To our knowl-
edge, this accuracy has never been reached before under these
conditions. Moreover, a probabilistic map-matching algorithm
constrained to the road, which uses map features to control
the errors of the visual odometry by feeding back corrections
from the map-matching process, has been proposed and tested.
With this feature-based position correction, the RMSE error in
positioning remains bounded, allowing the tracking of the

global position of the vehicle for very GPS outages on the order
of tenths of kilometers.

B. Future Work

As part of our future work, we envision refining a method for
discriminating stationary points from those which are moving
in the scene [46]–[49]. Moving points can correspond to pedes-
trians or other vehicles. The ego-motion estimation will mainly
rely on stationary points. The system can benefit from other
vision-based applications currently under development and re-
finement in our laboratory, such as pedestrian detection [50],
[51] and adaptive cruise control (based on vehicle detection)
[52]–[54]. The output of these systems can guide the search for
stationary points in the 3-D scene. In addition, longer runs of
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tens or hundreds of kilometers have to be performed to estimate
the correcting capability of the map fusion. Nighttime exper-
iments have been performed, and we are currently analyzing
the results and limits of the system. As part of future works,
we intend to publish those results, along with adverse weather
conditions.
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