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Global machine learning force fields (MLFFs), that have the capacity to capture collective many-
atom interactions in molecular systems, currently only scale up to a few dozen atoms due a consid-
erable growth of the model complexity with system size. For larger molecules, locality assumptions
are typically introduced, with the consequence that non-local interactions are poorly or not at
all described, even if those interactions are contained within the reference ab initio data. Here,
we approach this challenge and develop an exact iterative parameter-free approach to train global
symmetric gradient domain machine learning (sGDML) force fields for systems with up to several
hundred atoms, without resorting to any localization of atomic interactions or other potentially
uncontrolled approximations. This means that all atomic degrees of freedom remain fully correlated
in the global sGDML FF, allowing the accurate description of complex molecules and materials that
present phenomena with far-reaching characteristic correlation lengths. We assess the accuracy and
efficiency of our MLFFs on a newly developed MD22 benchmark dataset containing molecules from
42 to 370 atoms. The robustness of our approach is demonstrated in nanosecond long path-integral
molecular dynamics simulations for the supramolecular complexes in the MD22 dataset.

I. INTRODUCTION

Modern machine learning force fields (MLFFs) bridge
the accuracy gap between highly efficient, but exceed-
ingly approximate classical force fields (FF) and pro-
hibitively expensive high-level ab initio methods [1–3].
This optimism is based on the universal nature of ML
models, which gives them virtually unrestricted descrip-
tive power compared to the statically parametrized in-
teractions in classical mechanistic FFs. Traditional ML
approaches strive towards general assumptions about the
problem at hand, such as continuity and differentiabil-
ity, when constructing models. In principle, any phys-
ical property of interest captured in a dataset can be
parametrized this way, including collective interactions
that are too intricate to extract from the many-body
wavefunction. As such, MLFFs can give unprecedented
insights into quantum many-body mechanisms [1]. Al-
beit, the exceptional expressive power of global MLFFs
goes along with a stark increase in parametric complex-
ity [4–6] over classical FFs.

As a trade-off, many ML models reintroduce some of
the classical mechanistic restrictions on the allowed inter-
actions between atoms. It is unclear to which extent this
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departure from unbiased ML models compromises their
advantages over classical FFs. In particular, localization
assumptions are often made to allow a reduction of de-
grees of freedom across large structures. For example,
message-passing neural networks only allow mean-field
exchanges between local atomic neighborhoods, which
leads to information loss over long distances [7]. This
causes a truncation of long-range interactions, which in
local models are assumed to have a rather small contribu-
tion to the overall dynamics of the system. Nonetheless,
it has been shown that long range effects can play a sig-
nificant role [8–12], limiting the predictive power of local
models in nanoscale and mesoscale systems [13, 14]. In
fact, several recent MLFF models [8, 9, 15–20] introduce
empirical correction terms for specific long-ranged effects
(e.g. electrostatics), yet long-range electron correlation
effects remain poorly characterized. The number of avail-
able MLFF approaches augmented with physical interac-
tion models indicates that we are observing an emerging
field which has not yet settled on a universal solution.

In contrast, global models [21–26] are able to include
all interaction scales, but they face the challenge of hav-
ing to couple at least a quadratic set of atom-atom in-
teractions (see Fig. 1). Such scaling behavior provides a
hard computational constraint and has therefore slowed
the development of global models in recent years. Cur-
rent global models are thus restricted to system sizes of
only a few dozen atoms, even though accurate ab ini-
tio reference data are available for much bigger systems.
Here, we develop a combined closed-form and iterative
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approach to train global MLFF kernel models for large
molecules. Our spectral analysis of these models (see
Fig. 3) demonstrates that the number of effective de-
grees of freedom in large molecules is substantially re-
duced compared to N2 and can be captured using a low
dimensional representation [27, 28]. Using this insight,
our large-scale framework lowers the memory and compu-
tational time requirements of the model simultaneously.
In a two step procedure, the effective degrees of freedom
are solved in closed-form, before iteratively converging
the remaining fluctuations to the exact solution for the
full problem.

Our focus is on ML models based on Gaussian Pro-
cesses (GPs), since they posses several unique properties
such as linearity and loss-function convexity that can be
exploited in pursuit of our goal. We demonstrate the ef-
fectiveness of our solution on the symmetric gradient do-
main machine learning (sGDML) FF [22, 23]. It allows
us to reliably reconstruct sGDML FFs for significantly
larger molecules and materials than previously possi-
ble [29]. Our new training scheme can handle systems
that contain several hundreds of atoms, all of which are
fully coupled within the model. We demonstrate that this
parametric flexibility is indeed leveraged to let all atoms
participate in generating the energy and force predic-
tions. Our development allows us to study supramolec-
ular complexes, nanostructures, as well as four major
classes of biomolecular systems in stable nanosecond-long
molecular dynamics (MD) simulations. All of these sys-
tems present phenomena with far-reaching characteristic
correlation lengths. We offer these datasets as a bench-
mark (called MD22) that presents new challenges with
respect to system size (42 to 370 atoms), flexibility and
degree of non-locality. As such, MD22 can be regarded
as the next generation of the now well-established MD17
dataset [22].

II. LARGE-SCALE SGDML ALGORITHM

A data efficient reconstruction of FFs with strong gen-
eralization properties requires models that implement the
appropriate prior knowledge to compensate for finite ref-
erence dataset sizes. Quantum chemical interactions are
highly complex and can thus not be fully specified even by
massive datasets. We therefore exploit that many com-
plex interactions can be summarized in terms of simple
constraints derived from conservation laws that are far
more effective. GPs provide a particularly elegant way of
incorporating such constraints, since they are closed with
respect to linear transformations such as integral opera-
tors or partial differential equations. A combination of
linear constraints can be written as a new instance of a
GP. This principle is used by the symmetric gradient do-
main machine learning (sGDML) approach to construct
models that implement all important invariance proper-
ties of MLFFs [22]. One of its key characteristics is the
use of a kernel k (x,x′) = ∇xkE (x,x′)∇>x′ that mod-

FIG. 1. Current global MLFFs only scale to system sizes of
a few dozen atoms, restricted by the computational challenge
of having to couple a quadratic amount of atom-atom interac-
tions. However, accurate ab initio reference data are available
for much bigger systems (light blue area). This work scales
global models with ab initio accuracy to hundreds of atoms,
as is demonstrated on examples from four major classes of
biomolecules and supramolecules.

els the force field fF as a transformation of an unknown
potential energy surface fE such that

fF = −∇fE ∼ GP
[
−∇µE(x),∇xkE (x,x′)∇>x′

]
. (1)

Here, µE : Rd → R and kE : Rd × Rd → R are the re-
spective prior mean and prior covariance functions that
define the latent energy-based GP. The training on force
examples is motivated by the fact that they are available
analytically from electronic structure calculations via the
Hellmann–Feynman theorem, with only moderate com-
putational overhead atop energy measurements. Force
samples constitute a more efficient way to generate refer-
ence data, which sGDML is able to take advantage of [30].
Despite their non-parametric nature, sGDML FFs gener-
ally use around one order of magnitude fewer parameters
than deep neural network architectures with comparable
accuracy, making them computationally less expensive to
evaluate (see Appendix D).

GPs can be solved in closed form, because their convex
loss function yields a linear system when its derivative is
set to zero [31]. The resulting system α = (K + λI)−1y
is symmetric positive-definite by definition of the ker-
nel function, which allows a solution via Cholesky de-
composition [32, 33] (see Appendix E). While this ap-
proach is efficient and numerically stable, it does not
scale to large matrix sizes due to its quadratic mem-
ory cost. In search for a solution, a variety of approx-
imation techniques have emerged [34–41], all drawing on
the same insight that kernel matrices often have a com-
paratively small numerical rank (i.e. a rapidly decaying
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FIG. 2. The convergence rate of iterative GP training algorithms is inversely proportional to the condition number of the kernel
matrix Kλ, which is generally large for strongly correlated many-body systems. Using a preconditioner P, the original linear
system is reformulated into an equivalent one P−1Kλα = P−1y that is numerically easier to solve. Approximate statistical
leverage scores in combination with the Nyström approximation are used to construct a memory efficient and easily invertible
representation of P.

eigenvalue spectrum; see Fig. 3) that can be exploited
to formulate a lower-dimensional problem. However, this
is only the case with noisy training data, which causes
many degrees of freedom of the kernel matrix to be-
come dispensable. Ab initio reference calculations are
essentially noise-free, giving rise to kernel matrices that
can not be compressed without compromising the ac-
curacy of the predictor. [42]. Therefore, continued ef-
forts are being made towards enabling exact large-scale
GP inference via numerical gradient-based optimization
schemes as opposed to analytical matrix decomposition
approaches [43–47]. Those techniques exploit that the

kernel matrix f̂(x) only appears as a matrix-vector prod-

uct in the gradient ∇αL(f̂(x),y) of the loss function

L
(
f̂(x),y

)
=
(
f̂(x)− y

)2
+ λ‖f̂‖2

= y>y − (2y> + α>K + λα>)Kα,
(2)

which can be evaluated on-the-fly without ever storing
K. Using a gradient-descent scheme, the parameters are
then updated until convergence to the exact solution (or
as close as necessary) using iterates of the form

αt = αt−1 − γ [(K + λI)αt−1 − y]︸ ︷︷ ︸
∇αL(f̂(x),y)

. (3)

Here, the hyper-parameter γ determines the step size
(learning rate) with which the minimum of the loss func-
tion is approached. In practice, the convergence of this
algorithm is severely impeded in regions with large differ-
ences in curvature, causing the iterates to jump back and

forth across narrow valleys, which slows down progress in
some directions on the loss surface (see Fig. 2).

The conjugate gradient (CG) descent algorithm [48–
50] avoids this behavior by exploiting the special topog-
raphy of GP loss surfaces to make optimal choices of step
sizes γt and descent directions pt. It expresses the solu-
tion α =

∑m
t=1 γtpt in a basis of m mutually conjugate

vectors with respect to Kλ = K + λI, such that for any
pair p>i Kλpj = 0. Instead of simply following the nega-

tive gradient rt = ∇αL(f̂(x),y) as in Eq. 3, each gradi-
ent step is projected away from all previous minimization
directions:

pt = rt −
∑
i<t

p>i Kλrt
p>i Kλpi

pi. (4)

Furthermore, rather than fixing the learning rate heuris-
tically, the convexity of the learning problem allows an
optimal choice at each iteration step:

γt =
〈pt, rt〉
〈pt,pt〉Kλ

. (5)

Put together, the iterates αt+1 = αt − γtpt look very
similar to Eq. 3. In contrast to basic gradient-descent
schemes, this algorithm is parameter-free, foregoing a la-
borious parameter search. Most importantly, the CG
algorithm can be reformulated in a memory efficient way
that avoids storing all previous search directions and
residual vectors that appear in Eq. 4, using the mu-
tual orthogonality of all ri and pi. For Kλ with fast-
decaying eigenvalue spectra (as is almost always the case,
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FIG. 3. Eigenvalue spectrum of the regularized sGDML ker-
nel matrix Kλ (malonaldehyde, σ = 12, λ = 10−10) before
and after preconditioning P−1Kλ with an increasing number
of inducing points k (2.5%, 5% and 7.5% of the total num-
ber of training points m). Note, that regularization lifts the
null-space of the original kernel matrix to λ. Since the same
regularization is applied to the preconditioner, the spectrum
of P−1Kλ is thus bounded from below by 1. The dominant
part of the spectrum is increasingly attenuated by the pre-
conditioner, reducing the condition number of the matrix and
thus accelerating convergence of the CG algorithm.

see Marchenko–Pastur distribution [51]), the CG expan-
sion can typically be truncated early (i.e. at t < m) to
reach super-linear convergence in practice [50].

One important caveat of the CG algorithm is however
its numerical robustness. The number of required itera-
tion steps until convergence m ∼ O(κ) is proportional to
the condition number κ = λmax/λmin (the ratio between
largest and smallest eigenvalue) of Kλ, which is notori-
ously bad for correlation matrices with a characteristic
steep spectral drop-off. A direct application of this it-
erative scheme will therefore lead to impracticably slow
convergence or even divergence due to numerical errors
(see Figs. 3 and 4) [52, 53]. The standard way of deal-
ing with ill-conditioned problems is to reformulate the
original linear system to an equivalent one, for which the
iterative solver converges faster. Using a non-singular
preconditioning matrix P, we can write

α = (P−1Kλ)−1P−1y, (6)

to make the convergence depend on the condition num-
ber of P−1Kλ rather than Kλ. To continue to satisfy
the symmetric and positive definiteness assumptions of
the CG algorithm, we require that P−1 = QQ> exits,
although the algorithm can be formulated in a way that
does not require an explicit factorization.

In order for any preconditioner to be practical, the cost
of solving P−1Kλ must be low [46]. This requirement
rules out optimal rank-k approximations obtained from
the dominant k-dimensional eigenspace of K, as such con-
structions incur cubic computational cost O(m3) [54].
Even algorithms that only compute the leading eigen-

values and eigenvectors are not significantly more effi-
cient, except when k � m. Here, we use the Nyström
method [34] as an alternative, in order to compute a low-
cost approximation to that relevant eigenspace. Accord-
ingly, the original kernel matrix is approximated at a cost
of only O(k2m) from a subset of k of columns as

K ≈ K̂ = KmkK
−1
kkK>mk. (7)

The Woodbury matrix identity [54] is then used to effi-

ciently invert P = K̂ + λI in parts:

P−1 = λ−1
[
I−Kmk

(
λKkk + K>mkKmk

)−1
K>mk

]
.

(8)
There are many strategies to select the column subspace,
the most straightforward of which is simple random sam-
pling [34, 55]. Here, we chose a more effective, yet still
computationally economical approach based on approxi-
mate statistical leverage scores [56–60] (see Appendix F).

Overall, the accuracy of the approximation K̂ is pri-
marily determined by its dimension k and so is the cost
of inverting and applying P, with runtime and mem-
ory complexities of O(mk2) and O(mk), respectively. A
stronger preconditioner will accelerate convergence, al-
beit at increased cost per iteration (see Fig. 4). Note,
that the performance and effectiveness of the outlined
method crucially depends on a careful numerical imple-
mentation, as explained in Appendix G.

III. ASSESSMENT OF LARGE-SCALE
MOLECULAR FORCE FIELDS

a. Convergence properties To begin assessing the ef-
fectiveness of our approach, we investigate the role of the
preconditioner configuration on the convergence behav-
ior of the CG solver. In particular, we are interested in
assessing the impact of the preconditioner strength on
the overall training cost. A larger number of inducing
points increases the time and memory requirements to
construct P−1, but also facilitates convergence in fewer
steps. The purpose of this test is to examine how ef-
fectively the critical memory restrictions of closed-form
solvers can be lifted in practice. The type of chemical
system represented by the training dataset is largely ir-
relevant for this experiment, as the convergence behavior
is mainly determined by the quickly decaying spectrum of
the kernel matrix [27], which is characteristic for strongly
interacting many-body systems (see Fig. 3).

We have representatively sampled 1k points from the
malonaldehyde trajectory in the MD17 dataset [22],
which were trained with increasing preconditioning
strength ranging from 2.5% to 100%. For each config-
uration, the runtime and memory usage of the solver
are measured (including the construction of the precon-
ditioner). Our analysis (see Fig. 4) shows that the CG
solver converges with consistent reliability when more
than around 2.5% of the columns are used to construct
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the preconditioner. In this configuration, the memory
footprint is very low, but the runtime exceeds that of the
closed-form solver. However, if more than 10% are used,
the memory and runtime complexity are both lower
with the iterative training approach. Due to the cubic
scaling in the construction of P−1, the marginal benefit
of increasing the preconditioner strength eventually
diminishes and the runtime starts increasing again,
along with the memory complexity. This means that
smaller preconditioners are not only cheaper to construct
and store, but also actually perform better overall (see
Fig. 4).

b. Scalability Although our solver enables signifi-
cantly larger training datasets than before (see Ap-
pendix C), we focus on the more practical example of
scaling up system size. After all, the cost generating
massive reference datasets overbears any speed up that a
ML model could provide. At large scales, atomic interac-
tions become potentially more complex, as they involve
a broader spectrum of length-scales. It is this scenario,
in which the combined scalabilty and data efficiency of a
ML model is really needed.

To put the iterative sGDML solver to the ultimate test,
we have generated a new set of MD trajectories (MD22)
that cover systems of up to several hundred atoms. MD22
includes examples of four major classes of biomolecules
and supramolecules, ranging from a small peptide with
42 atoms, all the way up to a double-walled nanotube
with 370 atoms (see Table SII). The trajectories were

FIG. 4. Number of iterations required to train a sGDML
model for malonaldehyde (sampled at 500 K, 1k training
points, σ = 12, target residual error below 10−4) as a function
of preconditioner strength (number of inducing points). The
iterative solver allows a trade-off between computational time
and memory complexity. While the time to construct the pre-
conditioner (Eq. 8) scales cubically, the increase in memory
demand is linear in k. Using all training points for precon-
ditioning (P−1 = K−1

λ ) gives the analytic solution (Cholesky
decomposition) in one step. A quickly converging iterative
solver can however reduce training time and memory demand
at the same time (light blue region).

sampled at temperatures between 400 K and 500 K at
a resolution of 1 fs, with corresponding potential energy
and atomic forces calculated at the PBE+MBD [61, 62]
level of theory. Compared to the well-established MD17
benchmark [22], the standard deviations of the potential
energies are significantly larger, varying between ∼ 8–
77 kcal mol−1 (MD17: ∼ 2–6 kcal mol−1). The stan-
dard deviations of the forces are however close, between
∼ 21–28 kcal mol−1 Å−1 (MD17: ∼ 20–30 kcal mol−1).
We set the training dataset size for each of the sys-
tems, such that root mean squared test error for pre-
dicting atomic forces is around 1 kcal mol−1 A−1. For
some systems like the buckyball catcher (148 atoms) or
the double-walled nanotube (370 atoms), this error is al-
ready achieved with small training set sizes of only a
few hundred points. Other systems, e.g. DHA (docosa-
hexaenoic acid) (56 atoms), stachyose (87 atoms) or the
Ac-Ala3-NHMe peptide (42 atoms) require several thou-
sands of training points for the same force prediction ac-
curacy. The corresponding energy mean absolute errors
(MAEs) range between 0.39 kcal mol−1 (Ac-Ala3-NHMe)
and 4.01 kcal mol−1 (double-walled nanotube), which is in
line with our previous results on MD17 [22] when normal-
ized per atom. The (independent) random errors made
for each atomic contributions to the overall energy pre-
diction approximately propagate as the square root of
sum of squares, which causes the energy error to scale
with system size [63]. This scaling behavior is confirmed
when comparing the energy MAE per atom, which is con-
sistently around 0.01 kcal mol−1 for most datasets in our
study. We observe, that the complexity of the learning
task is neither correlated with the number of atoms, nor
the simulation temperature of the reference trajectory.
Rather, the difficulty to reconstruct a force field is deter-
mined by the complexity of the interactions within the
system (see Table I).

c. Representation of non-local interactions To in-
vestigate whether the trained sGDML models provide
chemically meaningful predictions, we apply sGDML to
a donor-bridge-acceptor type molecule consisting of two
phenyl rings connected by an E -ethylene moiety forming
a conjugated π-system (bridge) (see Section B for de-
tails on this dataset). The phenyl rings are substituted
in para-position with an electron-donating dimethy-
lamine group (donor) and an electron-withdrawing nitro
group (acceptor), respectively. When the phenyl rings
are coplanar, electrons are delocalized over the whole
molecule and can freely “flow” from donor to acceptor.
However, when the two phenyl rings are rotated against
each other, the conjugation of the π-orbitals is broken
and the favorable interaction between donor and accep-
tor is lost, increasing the potential energy of the molecule.
A chemically meaningful model should predict that this
energy change is delocalized over the whole π-system (as
opposed to explaining it by local changes in the vicinity
of the center of the rotation). To get a qualitative un-
derstanding of how these interactions are handled within
the sGDML model, we investigate how individual atoms
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TABLE I. sGDML prediction performance on large-scale datasets. All (test) errors are in kcal mol−1 (Å−1) per atom (energy)
or component (forces). The training set sizes were chosen such that the root-mean-square error (RMSE) of the force prediction
is around 1 kcal mol−1 Å−1. We also provide the corresponding mean absolute errors (MAEs). ‖G‖ denotes the cardinality of
the leveraged permutation group for each respective dataset (see [23, 30, 64] for details).

Type # atoms ‖G‖ # train. % data MAE RMSE

Energy Forces Energy Forces

Proteins

Ac-Ala3-NHMe Tetrapeptide 42 18 6k 7% 0.0093 0.79 0.012 1.21

Lipids

DHA (docosahexaenoic acid) Fatty acid 56 6 8k 12% 0.023 0.75 0.030 1.17

Carbohydrates

Stachyose Tetrasaccharide 87 1 8k 29% 0.046 0.68 0.052 1.07

Nucleic acids

AT-AT DNA base pairs 60 36 3k 15% 0.012 0.69 0.015 1.12

AT-AT-CG-CG DNA base pairs 118 96 2k 20% 0.012 0.70 0.015 1.22

Supramolecules

Buckyball catcher 148 48 600 10% 0.0079 0.68 0.0099 1.02

Double-walled nanotube 370 28 800 16% 0.0108 0.52 0.0135 0.97

contribute towards the prediction. Being a linear combi-
nation of pairwise correlations between atoms, a partial
evaluation of the model reveals the atomic contributions
to each prediction (see Fig. 5). We observe that all atoms
in the system participate in generating the prediction
with sGDML, which would not be possible with a model
that partitions the energy into localized atomic contribu-
tions. Figure 5 demonstrates that a sGDML model learns
to delocalize changes in energy upon ring rotation across
the whole molecule, which is in accordance with chemical
intuition. Note that, starting from the global minimum
structure of this system, rotating by π does not return
to the starting position (despite the apparent symmetry
of the molecule), because of a slight asymmetry about
the central C=C bond (see overlay of structures in Fig-
ure 5). Thus, a full rotation is necessary to return to the
starting point, explaining the somewhat counter-intuitive
rotational energy profile.

IV. MOLECULAR DYNAMICS

One of the biggest advantages of employing MLFFs
is that they can enable accurate large-scale simulations.
Here, we test our sGDML FFs by running nanosecond-
long classical MD and path integral MD (PIMD) simu-
lations for the double-walled carbon nanotube saturated
with hydrogen atoms at its edges. All simulations were
run at a constant temperature of 300 K with a Langevin
thermostat and a time-step of 0.2 fs. The number of

beads of the PIMD simulations was set to 16.

To confirm the reliability of any MLFF, it is first and
foremost essential to assess its capability to yield stable
(PI)MD simulations. In this regard, Fig. S2 shows the

FIG. 5. Energy contributions as predicted by the sGDML FF
for a donor-bridge-acceptor type molecule (4-dimethylamino-
4’-nitrostilbene). The energy profile for a full rotation around
the single bond between the acceptor and the ethylene moiety
is shown. When the conjugation of the π-system is broken
upon rotating the phenyl rings by 90◦ against each other, the
sGDML model predicts that the energy change is delocalized
across the whole molecule.
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cumulative potential-energy (Vstep = 1
Nstep

∑Nstep
k=1 Vk;

where Nstep is the number of completed time steps, and
Vk is the potential-energy at the kth step) along both MD
and PIMD simulations. After thermalization (roughly
500 ps for MDs and 100 ps for PIMDs), the simulations
reach equilibrium. Next, we compare the difference in

FIG. 6. Instantaneous root-mean squared deviation (RMSD
in Ångström; transparent lines in the background) and angle
of the relative rotation (Φ in degrees) between both nanotubes
as a function of simulation time (in ps). The RMSDs were
computed with respect to the initial configurations used for
the simulations.

geometry fluctuations between MD and PIMD simula-
tions in Fig. 6, measured by root-mean-squared devia-
tions (RMSDs) from the initial geometry. The RMSDs
of the PIMD present a series of peaks that are higher than
those observed in the classical MD simulation. The first
of such peaks appears at ∼60 ps and then there is one
every 100 ps (the highest one corresponding to a RMSD
greater than 3.0 Å). The origin of these RMSD fluctu-
ations is the relative angle of rotation (Φ) of the inner
nanotube with respect to the outer one (see Fig. 6). The
outer and inner nanotubes have a 7- and 4-fold axis of ro-
tation (the axis parallel to the nanotubes), respectively,
meaning that we have the same configuration every ∼13◦.
However, RMSDs are dependent on atom indices and un-
coupled rotations of the nanotubes lead to a different ar-
rangement of the atoms with respect to each other. This
causes the increments observed in RMSDs along the sim-
ulations since no other degrees of freedom fluctuate as
much as the angle Φ. Indeed, we observe a strong cor-
relation between the RMSD variations and the evolution
of the angle Φ in a scale of 360◦ (a full rotation). The
differences in the values of Φ between the MD and PIMD
simulations suggest that a coupling of nuclear quantum
effects (NQEs) and long-range interactions (resembling
existing studies on the stability of different aspirin crys-
tal polymorphs [65]) eases the rotation of one of the nan-
otubes with respect to the other. The distribution of

values of Φ further confirms that NQEs smoothen the
rotational profile of the nanotubes. While in the PIMD
values of Φ from 40◦ to 80◦ are equally sampled, in the
MD one can observe two pronounced peaks at around
60◦ and 80◦. It is important to note that the rather
large time-scale (100 ps) between each of these rotations
indicates that this motion corresponds to low-frequency
vibrational modes.

As a final demonstration of the capability of sGDML
MLFF models for providing insights into large systems,
we computed the molecular vibrational spectra of the
buckyball catcher and the double-walled nanotube from
both MD and PIMD simulations (see Fig. S3). These
spectra correspond to velocity auto-correlation func-
tions. The spectra feature peaks corresponding to =C-H
stretching (at around 3000 cm−1) and bending (close to
1000 cm−1) modes, as well as those that correlate to
C=C vibrations at around 500 and 1500 cm−1 account-
ing for expansions and contractions of the buckyball, the
“hands” of the catcher and the nanotubes (for instance,
see Refs. [66, 67] for a discussion of the vibrational spec-
tra of the buckyball).

Although MD and PIMD simulations provide similar
spectra, the inclusion of NQEs yields more accurate fre-
quencies. Namely, nuclear quantum delocalization leads
to a shift of the =C-H stretching mode, which puts the
peak closer to 3000 cm−1. This value is in agreement to
that of other aromatic and π-π interacting systems. For
instance, with experimental and theoretical values of the
fundamental C-H stretching modes of benzene and the
benzene dimer (mainly the ν13(B1u) mode) [68]. Hence,
PIMD simulations capture some of the anharmonic be-
havior of the systems and correct the overestimated value
of ≈ 3100 cm−1 in the classical MD. Differently to =C-H
stretching, the parts of the spectra corresponding to
“long-range” vibrations (i.e., low-frequency modes) are,
in general, consistent among MD and PIMD. This agree-
ment aligns with the fact that both the buckyball catcher
and the double-walled nanotube are relatively symmetric
systems and that the differences between configuration
spaces sampled by MD and PIMD simulations are mostly
of local nature. Therefore, even though NQEs promote
a low-frequency mode, such as the relative rotation be-
tween the nanotubes, these modes are smoothed out in
the low-frequency part of the vibrational spectrum.

V. CONCLUSION

Kernel-based FFs are known to be sample efficient, but
believed to be limited in their ability to scale well with
training set or system size. A key reason is the common
use of direct solvers, which factorize the kernel matrix
in order to solve the associated optimization problem to
train the model. While this approach is numerically sta-
ble, it quickly incurs a prohibitive memory and runtime
complexity. This dilemma can be evaded using itera-
tive solvers, which essentially allow kernel-based models
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to be trained similar to neural networks. However, the
straightforward application of iterative solvers is difficult
when large kernel matrices are involved, due to their no-
toriously poor numerical conditioning.

In this work, we propose an iterative scheme that en-
ables the robust application of sGDML to significantly
larger systems (both, in terms of training set and sys-
tem size) without introducing any approximations to the
original model. This is achieved with a numerical pre-
conditioning scheme which drastically reduces the condi-
tioning number of the learning problem, enabling rapid
convergence of a CG iteration. With this advance, we are
now able to apply our kernel-based model to large-scale
learning tasks that have previously only been accessible
to neural networks, while carrying over the sample effi-
ciency and accuracy of sGDML. We attribute the latter
to the model’s unique ability to represent global inter-
actions on equal footing with local interactions, as a se-
ries of numerical experiments demonstrate. Now, molec-
ular systems that exhibit phenomena with far-reaching
characteristic correlation lengths can be studied in long-
timescale MD simulations.

Breakthroughs in MLFF development are often driven
by the creation of benchmark datasets that offer ever
evolving challenges. Early quantum chemistry datasets
such as QM7 [21], MD17 [22], the valence electron densi-
ties for small organic molecules in Ref. [69], ISO17 [70],
SN2 [18], or SchNOrb [71, 72], focused on defining use-
ful inference problems and opportunities in quantum
chemistry, whereas later benchmarks (e.g. QM7-X [73])
steered the field towards developing more robust transfer-
able models. The MD22 benchmark dataset developed in
this work now offers new challenges for atomistic models
with regard to molecular size and flexiblity that could
further advance research on novel MLFF architectures
similarly to previous datasets of quantum-mechanical cal-
culations.

Our technical development allows future cross-
fertilization between both MLFF development ap-
proaches: Now, kernel-based MLFFs can capitalize on
the massive parallelism available on GPUs and the soft-
ware infrastructure that enabled scalability of deep neu-
ral networks. On the other hand, modeling principles
from kernel methods inspire the development of new ar-
chitectures such as transformers using self-attention [74,

75] and pave the way out of overly restrictive localization
assumptions. The exclusive use of on-the-fly model evalu-
ations by iterative solvers also represents a paradigm shift
in the way kernel-based MLFFs are typically trained,
which opens up new avenues for further developments.
We have recently shown, how this makes them amenable
to strong differential equation constraints via algorithmic
differentiation techniques to simplify descriptor develop-
ment and further improve data efficiency [76]. With the
ability to reconstruct MLFFs for larger systems, the need
for better management of the growing set of molecular
features arises. To this end, we have recently proposed
a novel descriptor pruning scheme to contract trained
models and make them easier to evaluate [77]. One could
also envision a systematic construction of local and non-
local fragments (by generalizing from non-interacting to
interacting amons [78]) that would enhance the scalabil-
ity and transferability of global MLFFs. Future research
will furthermore explore our significantly better scaling
behavior across a broad range of application fields in the
physical sciences.
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Supplementary Information

Appendix A: MD22 dataset properties

TABLE SI. Computational details of the MD22 datasets. All calculation were performed using the FHI-aims [79] electronic
structure software, in combination with i-PI [80] for the MD simulations. The potential energy and atomic force labels were
calculated at the PBE+MBD [61, 62] level of theory. The keywords light and tight denote different basis set options in FHI-
aims. All trajectories were sampled at a resolution of 1 fs. Coeff. refers to the friction coefficient used for the global Langevin
thermostat (in fs) or the effective mass for the Nosé-Hoover thermostat (in cm−1), respectively.

Dataset Temp. [K] Level of theory Thermostat Coeff.

Ac-Ala3-NHMe 500 PBE+MBD / tight Global Langevin 2

DHA (Docosahexaenoic acid) 500 PBE+MBD / tight Nosé-Hoover 1700

Stachyose 500 PBE+MBD / tight Nosé-Hoover 1700

DNA base pair (AT-AT) 500 PBE+MBD / tight Global Langevin 2

DNA base pair (AT-AT-CG-CG) 500 PBE+MBD / tight Global Langevin 2

Buckyball catcher 400 PBE+MBD / light Nosé-Hoover 1700

Double-walled nanotube 400 PBE+MBD / light Nosé-Hoover 1700

TABLE SII. Properties of the MD22 datasets. Energies are in kcal mol−1 A−1, forces in kcal mol−1 A−1.

Dataset Formula Size Energies Forces

Range Variance Range Variance

Ac-Ala3-NHMe C12H22N4O4 85,109 102.19 67.30 437.99 678.02

DHA (Docosahexaenoic acid) C22H32O2 69,753 75.71 91.31 420.07 673.99

Stachyose C24H42O21 27,272 106.15 189.33 426.08 655.55

DNA base pair (AT-AT) C20H22N14O4 20,001 139.29 120.09 444.01 779.81

DNA base pair (AT-AT-CG-CG) C38H42N30O8 10,153 243.50 246.64 407.55 768.13

Buckyball catcher C120H28 6,102 378.08 576.85 287.77 450.12

Double-walled nanotube C326H44 5,032 674.50 5950.68 315.39 546.30

Appendix B: Donor-bridge-acceptor dataset

The reference data for the donor-bridge-acceptor example was generated by normal mode sampling [81] at 300 K
with random rotations applied to individual bonds. Energies and forces were calculated using the semi-empirical
GFN2-xTB method [82]. The energy profile in Fig. 5 shows a rotation around a single bond, with all other bond
distances and angles fixed at their equilibrium values.

Appendix C: Scaling to larger training dataset sizes

We have also investigated the scaling behavior of sGDML to larger training datasets, in addition to larger system
sizes. Until now, kernel-based MLFFs only scaled to around 1k training points on the MD17 dataset, while a training
set size of 50k has emerged as popular choice for models based on neural networks [1]. Most neural network archi-
tectures are not fully converged at 1k, requiring more training data to achieve competitive generalization errors [26],
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although more data efficient neural-network-based FFs are starting to appear [75, 83, 84]. With our proposed numeri-
cal training approach, large-scale problems now become accessible to kernel-based models, making a direct comparison
of kernel-based and neural-network-based potentials possible on a wide range of training dataset sizes.

For this purpose, we have trained (s)GDML models for all molecules in MD17 with dataset sizes of 1k and 50k using
a preconditioner based on 75 inducing points in each case. For the largest molecule (aspirin) at 50k, the iterative
solver only uses 0.15 per mil of the memory compared to a closed-form solver, allowing an increase of the learning
problem size by two orders of magnitude on the same hardware. All models have been converged to a training error
of 10−4 kcal mol−1 A−1, which was reached between ∼ 800 (benzene) and ∼ 2700 (ethanol) iteration steps. The test
results are shown in Table SIII.

We remark that such massive training set sizes are infeasible for any practical FF reconstruction task, as the
computational cost of generating the reference dataset overbears any speed up that the ML model can provide.
Rather, the key performance metric of any ML potential is its training data efficiency, i.e. how quickly a certain test
performance can be reached. The only purpose of this exercise is to demonstrate the stability of our iterative solver
for large-scale problems.

TABLE SIII. sGDML prediction performance on the extended MD17 datasets [22, 23] for 50k training points. All mean absolute
errors (MAE) test errors are in kcal mol−1 (Å−1). Energy errors are given for the complete structure, whereas force errors are
per component.

Dataset # atoms MAE

Energy Forces

50k

Benzene2017 12 0.069 0.140

Uracil 12 0.103 0.027

Naphthalene 18 0.114 0.029

Aspirin 21 0.122 0.047

Salicylic acid 16 0.105 0.039

Malonaldehyde 9 0.074 0.083

Ethanol 9 0.050 0.058

Toluene 15 0.092 0.033

Paracetamol 20 0.113 0.051

Azobenzene 24 0.137 0.066

Appendix D: Parametric complexity of the models

In contrast to neural network architectures, sGDML FFs are based on non-parametric GP models. The parameter
set of non-parametric models is not fixed, but adapts to the complexity and amount of available training data. This
evokes concerns about the evaluation speed of large-scale sGDML models. In practice, the parametric complexity of
sGDML FFs is however around one order of magnitude lower than that of neural-network-based FFs with comparable
accuracy.

Table 1 in Ref. [75] shows, that the parameter set sizes range from 500k (NewtonNet) to 3M (SpookyNet, NequIP)
for neural-network-based FFs trained on the MD17 datasets using 1k training points. Table 2 in Ref. [85] shows
parameter set sizes ranging from 120k (SchNet), 1M (NequIP) to 12M (ForceNet) for 10k training points on the
same datasets. In comparison, the largest sGDML model (for MD17-aspirin, 21 atoms) only uses 63k parameters
for 1k training points and 630k parameters for 10k training points. Moreover, sGDML models are linear in their
parameters and therefore trivial to parallelize. In contrast, deep neural network architectures have a hierarchical
structure, which is computationally more expensive to evaluate, even when the number of parameters is similar.
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Appendix E: Cholesky decomposition

Due to the symmetric positive-definite properties of the kernel function, the system α = (K +λI)−1y can be solved
using a Cholesky decomposition into a product of lower triangular factors L ∈ Rm×m [32, 33],

α = (K + λI)−1y = (LL>)−1y, (S1)

and subsequent forward and backward substitution.

Appendix F: Approximate λ-ridge leverage scores

We use the Nyström method to project the (symmetric and positive semidefinite) kernel matrix K onto a subset of
its columns, to obtain a memory efficient and easily invertible approximation of Kλ as preconditioner for the learning
problem. The choice of inducing columns determines the quality of the approximation, i.e. how well the eigenvalue
spectrum of the original kernel matrix is represented. Here, we use an extended notion of leverage score that is tailored
to the context of GPs to determine a good set of inducing points. These so called statistical leverage scores depend
on a regularization parameter λ that diminishes the importance of small eigendirections [86, 87]:

τi(λ) = [K(K + λI)−1]ii. (S1)

Note, that τi(λ) is the i-th diagonal entry of the matrix product. The exact computation of τi(λ) is however not
practical as it requires inverting K + λI, which is as expensive as solving the original learning problem [88]. Instead,
approximate λ-ridge leverage scores are obtained based on another Nyström approximation using simple uniform
column sampling. With BB> = KmkK

−1
kkK>mk, we have

τ̃i(λ) = b>i
(
B>B + λI

)−1
bi, (S2)

as approximate measure for the importance of each column i. Here, bi is the i-th row of the Cholesky factor B. The
inducing columns for our preconditioner are then sampled according to this leverage score distribution. It has been
shown that this construction approximates Kλ with constant probability within a small relative error in comparison
to the best rank-k approximation via eigenvalue decomposition [89, 90], but at significantly lower computational cost.

Appendix G: Implementation details

The performance and effectiveness of our solver crucially depends on a careful implementation, as it involves
operations that are highly susceptible to numerical error. Here, we give an overview of the most important practical
considerations in our reference implementation.

a. Memory requirement At every iteration, the preconditioned CG algorithm computes two matrix products:
Kλαt (see Eq. 3) and another one involving P−1. To avoid storing the m×m kernel matrix Kλ, we use the NumPy
LinearOperator interface to perform matrix-vector multiplications on-the-fly. This reduces the memory complexity
of Kαt to O(m) as only the resulting vector needs to be stored. P−1 is relatively expensive to construct and therefore
retained in memory, albeit in factorized form at a smaller memory cost of only O(mk).

b. Preconditioner construction A straightforward evaluation of the Woodbury matrix identity in Eq. 8 is known
to be numerically unstable [59]. To construct P−1, we have to take a computational detour. First, the Cholesky
decomposition of the symmetric positive definite sub-matrix Kkk = LkkL

>
kk (Eq. 7) is generated to define K̄mk =

KmkL
−>
kk [57]. Using another Cholesky step λI + K̄>mkK̄mk = DkkD

>
kk, we then construct

P−1 = λ−1
[
I− K̄mkD

−>
kk D−1kk K̄>mk

]
. (S1)

However, evaluating the product K̄>mkK̄mk is not advisable, because it squares the condition number of the term,
which can introduce rounding errors that diminish the effectiveness of the preconditioner. We therefore perform a
numerically more robust indirect Cholesky decomposition of the inverse in Eq. 8 via thin QR factorization [56–60]: K̄mk

√
λI

 = Q

 D>kk

0

 (S2)
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This decomposition can be computed efficiently without storing Q, albeit at a slightly higher cost than a direct
Cholesky decomposition. Throughout these calculations, the memory complexity remains constant at O(mk). P−1

is then applied to vectors via the NumPy LinearOperator interface without expanding the product.

c. Initial guess α0 We use α0 = 0 as initial guess, because a non-zero initialisation can adversely affect
convergence of Krylov subspace methods (see Ref. [91], chapter 5.8.15).

d. CG solver restarts With perfect arithmetic, the CG algorithm guarantees monotonically improving approxi-
mations of αt. However, the series of optimization steps may eventually become non-orthogonal after many iterations,
due to the accumulation of rounding errors. This can slow down or even completely stall convergence in practice [92].
We monitor the average progress of the solver towards minimizing the residual within a rolling time window and
break the cycle by restarting the CG algorithm using the latest αt as initial guess, if necessary. Slow progress towards
the solution can also be a consequence of insufficient preconditioner performance. Our implementation dynamically
increases the number of inducing columns to adjust the strength of the preconditioner before every restart.

FIG. S1. Instantaneous root-mean squared deviation (RMSD; in Ångström) as a function of simulation time (in ps) and
distributions of RMSDs for the MD and PIMD simulations of the buckyball catcher and the double-walled nanotube.
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FIG. S2. The cumulative potential-energy (in kcal mol−1) as a function of simulation time (in ps) for the buckyball catcher
and the double-walled nanotube, along classical MD and PIMD simulations obtained with sGDML FFs. The simulations were
carried out until the cumulative energy remained approximately constant. The classical MD plots contain zoomed-in sections
spanning a simulation time equivalent to the length of the PIMD trajectories.
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FIG. S3. Molecular spectra of the double-walled nanotube and the buckyball catcher, as obtained from the velocity autocor-
relation function for MD and PIMD simulations. For the sake of consistency, the MD trajectories have been cropped to the
same length for this plot. The final length was determined by the total number of steps in the PIMD simulations and does not
affect their convergence.
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