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ABSTRACT RF-based gesture sensing and recognition has increasingly attracted intense academic and

industrial interest due to its various device-free applications in daily life, such as elder monitoring, mobile

games. State-of-the-art approaches achieved accurate gesture sensing by using fine-grained RF signatures

(such as CSI, Doppler effect) while could not achieve the same accuracy with coarse-grained RF signatures

such as received signal strength (RSS). This paper presents rRuler, a novel feature extraction method which

aims to get fine-grained human gesture features with coarse-grained RSS readings, which means rought ruler

could measure fine things. In order to further verify the performance of rRuler, we further propose rRuler-

HMM, a hiddenMarkovmodel (HMM) based human gesture sensing and prediction algorithmwhich utilizes

the features extracted by rRuler as input. We implemented rRuler and rRuler-HMM using TI Sensortag

platforms and off-the-shelf (CTOS) laptops in an indoor environment, extensively performance evaluations

show that rRuler and rRuler-HMM stand out for their low cost and high practicability, and the average

gesture sensing accuracy of rRuler-HMM can achieve 95.71% inNLoS scenario and 97.14% in LoS scenario,

respectively, which is similar to the performance that fine-grained RF signatures based approaches could

achieve.

INDEX TERMS Gesture sensing, coarse-grained RF signatures.

I. INTRODUCTION

RF signature based human gesture sensing and prediction is

the core technology that enables a wide variety of device-free

applications such as fitness tracking, elders monitoring,

smart homes and Human-Computer Interactions (HCI). Most

RF signature-based human gesture sensing solutions utilize

fine-grained RF signatures such as Doppler shifts [1]–[4]

channel state information (CSI) [5]–[21] to achieve accu-

rate human gesture sensing and recognition. However, these

solutions require specific hardwares, customized modifica-

tions or multiple antenna systems such as WiFi technologies

to fetch fine-grained RF signatures. For example, most of

the current solutions use WiFi NIC such Intel 5300 [22]

and Atheros Serious NICs (AR9580,AR9590 and etc..) [23]

to fetch fine-grained CSI. Therefore, the adoption of the
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fine-grained RF signature-based approaches are limited with

wireless devices and technologies.

In order to bring the human gesture sensing applications

to all kinds of Internet of Things (IoT) devices and tech-

nologies such as ZigBee, BLE, LoRa, NB-IoT and etc.,

researchers propose to use coarse-grained received signal

strength (RSS) to predict the human gestures [24]–[27]. It is

possible to widely used since RSS is pervasively available in

all kinds of wireless radios such as ZigBee, Bluetooth and

WiFi. However, the sensing and prediction accuracy is rela-

tively low with coarse-grained RSS, the comparisons of sens-

ing accuracy of state-of-the-art works both use fine-grained

and coarse-grained RF measurements are shown in Table 1.

In order further improve the accuracy of the human sensing

with coarse-grained RSS, this paper takes the first attempt to

explore the feasibilities to achieve accurate (with the accuracy

greater than 90%) human gesture sensing with coarse-grained

RSS which extracted from the off-the-shelf Sensortag with

ZigBee protocol, and our approach is easily to transplant in
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TABLE 1. Sensing accuracy of state-of-the-art works.

other communication systems with WiFi, BLE, LoRa and

NB-IoT protocols.

In order to achieve accurate human gesture sensing with

coarse-grained RSS, we compared RSS with CSI to inves-

tigate potential solutions to increase the sensing accuracy

with coarse grained RSS which pervasively available in all

kinds of wireless radios. The main differences between them

relies on four aspects: Compared with CSI i) the sampling

rate of RSS is relatively lower (the sampling rate of CSI is

2500Hz, and the sampling rate of RSS varies from 100Hz

to 2500Hz due to different IoT devices); ii) The resolution

of RSS is extremely low (i.e., the resolution of RSS is 1dB,

while the resolution of CSI is calculated in mW unit with

64 bit or 128 bit due to different NICs); iii) the number

of RSS samples with human gestures collected from IoT

devices are single dimension data, while the CSI samples are

multi-dimensions samples (e.g., AR9590 [23] has 3 antennas

and each antenna has 56 groups of sub-carriers with 20MHz

bandwidth. Therefore, its channel state information contains

56 matrices with 3 × 3 dimensions and each element in the

matrix has 128 bits); and iv) the multi-path fading details

carried by RSS and CSI are different, RSS only could reflect

the comprehensive multi-path fading while CSI could deduce

the details fading information from each signal propagation

path.

To narrow down the differences between coarse-grained

RSS and fine-grained CSI, we propose rRuler, a fine-grained

feature extraction method which can utilize coarse-grained

RSS to fetch fine-grained human gesture characteristics.

Specifically, we use sampling rate enhancement method

(Sample-H ), resolution enhancement method (Resolution-

H ) and gesture duration extraction method (gTime-ext)

respectively to narrow down the differences in sam-

pling rate, resolution and detailed multi-path components

between RSS and CSI. We also collect more samplings

to increase the size of training sets for further improv-

ing the fine-grained gesture extraction accuracy. In order

to verify the performance of rRuler and bring it to prac-

tical applications such as fitness tracking, health monitor-

ing, we further propose rRuler-HMM to evaluate the human

gesture sensing and prediction accuracy with coarse-grained

RF signatures. In summary, the contributions of paper are as

follows:

• To the best of our knowledge, this is the first

work that explores how to narrow down the differences

between coarse-grained RSS and fine-grained Channel State

Information (CSI) to extract fine-grained human gesture

features and achieve accurate human gesture sensing and

predictions.

• We have proposed and implemented rRuler,

a fine-grained human gesture feature extraction method

by narrowing down the differences between RSS and CSI

which contains five components: i) sampling rate enhance-

ment module Sample-H (Detailed in Section IV-B), ii)

resolution enhancement module Resolution-H (Detailed in

Section IV-C), iii) gesture duration extraction module gTime-

ext (Detailed in Section IV-D), iv) time-frequency anal-

ysis module (Detailed in Section IV-E) and v) k-means

based feature dimensionality reduction module (Detailed in

Section IV-F).

• We further proposed and implemented rRuler-HMM,

a rRuler based human gesture sensing and predictionmethod,

we analyzed how to mapping the features from rRuler to

the parameters of Hidden Markov Models, how to divide

the training sets and prediction set to optimize the param-

eters training and gesture sensing procedures (Detailed in

Section V).

• We have conducted extensive real-world experiments

with Sensortags in 802.15.4 mode, 7 different types of human

gestures have been collected and sensed in a indoor envi-

ronment. The average accuracy is approximately 95% for a

signal stream of RSS readings in none-line-of-sight (NLoS)

path. The RSS readings of each type of gestures are collected

from 10 different persons which also verified that our system

rRuler-HMM is robust to the same type of gestures with

different amplitudes.

• We have also extensively revealed the insights by ana-

lyzing the similarities (Hamming distances) of the features

among the same and different types of gestures, and also eval-

uated the factors (e.g. different up-sampling rate, different,

different number of k-means clusters) that can potentially

impact the human sensing accuracy. We also find that dif-

ferent channels does not have obvious impact to the human

gesture sensing accuracy while the human gestures occurred

in non-line-of-sight (NLoS) path do not have obvious impact

to data packet receptions among different communication

devices.

II. RELATED WORKS

Existing work on RF-based device-free human gesture

sensing approaches could be divided into four categories:
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Fine-grained RF signatures based, coarse-grained RF

signature-based, Radar-based and acoustic-based approaches.

A. FINE-GRAINED RF-SIGNATURE BASED APPROACHES

Fine-grained RF signatures used to sense human gestures

include doppler shifts, phase shifts and amplitude shifts of

the received signals. WiSee capturesWiFi OFDM signals and

measures the doppler shift of the signals which reflected by

different human gestures to distinguish a set of nine gestures

with an accuracy of 95% [1]. AllSee uses a specially designed

analog circuit to extract the amplitude shift of received sig-

nals to distinguish eight different gestures with an accuracy

of 97% [7].

In practical WiFi networks, phase shift and amplitude shift

of OFDM signals are measured by Channel State information

(CSI). Currently, CSI values are exposed in some special

commercial devices such as Intel 5300 [22] and Atheros seri-

ous network interface cards (NICs) [23]. Thus, CSI have been

used for human gesture sensing [6], [8], [9], [16], [17], [20],

[29], [31], [32], [35]–[39] and etc., Zhou et al. proposed to use

CSI to detect the presence of a person in an environment [35].

WiFall detects a single human gesture (falling) [6]. E-eye

senses a set of nine human gestures using CSI [9]. WiKey

and Wigest proposed to sense fine-grained gestures such

as keystroke or lip movement using CSI [29], [32]. CARM

modeled the relation ship between CSI and the speeds and

gestures when human moving [8]. QGesture measures the

distance and directions of the gestures using CSI [37]. Deep-

Breath using FMCW radio to separate different persons’

breathing when they are close to each other [20]. Duet esti-

mates users’ positions and identities with incomplete RF-data

in smart homes [40], CrossSense proposes a novel methods

for scaling up the RF-based sensing systems to new environ-

ment without re-trainings [16].

However, all these work are under an assumption that

we can record the fine-grained RF signatures for gesture

sensing. But in practical networks, the fine-grained Doppler

shift and channel state information (CSI) do not expose to

users, we need special hardwares or specific modifications of

the hardware drivers. This paper propose rRuler and rRuler-

HMM to sense the human gestures by coarse-grained RSS

which could record by off-the-shelf IoT devices, we evalu-

ate the performance and effectiveness of our approach with

ZigBee protocol in Sensortags.

B. COARSE-GRAINED RF-SIGNATURE BASED

APPROACHES

RSS is one of the most important coarse-grained

RF-signatures which could be monitored easily and exten-

sively in the propagation environment. Currently, the works

uses RSS to sense the human gestures and activities

includes [24], [25], [41], [42] and [27]. The sensing accuracy

of DFAR [25] is range from 50% to 80% with different clas-

sification algorithm. [24] could achieve a sensing accuracy

of 56% over 7 different gestures. Sigg et al. use software radio

to improve the granularity of RSSI values and consequently

improve the accuracy of gesture sensing and prediction

to 72% for 4 gestures [42]. Wigest [41] and Harmony [26]

achieves an accuracy of 87.5% and 88% by defining the ges-

ture family in advance. Aryokee uses Convolutional Neural

Networks (CNN) to extract different sources of gestures in

the same environment [20], EAR [27] uses uncontrollable

ambient RF signals in heterogeneous IoT devices to sensing

different daily activities.

However, the state-of-the-art works which use

coarse-grained RSS could not achieve accurate human ges-

ture sensing with the sets contains multiple gestures. rRuler

proposed in this paper aims to extract fine-grained features

with coarse-grained RSS; and rRuler-HMM predict the ges-

tures by utilizing the features extracted from rRuler which

could achieve an average sensing accuracy of 95.7%.

C. RADAR-BASED APPROACHES

Radar technology is also used to recognize the human ges-

tures [2], [20], [43]–[46]. WiTrack uses specially designed

FrequencyModulated CarrierWave (FMCW) signals to track

human movements behind the wall with a resolution of

approximately 20cm [43]. WiTrack2.0 could recognize the

presence of 5 persons in the indoor environment with the

accuracy of 11.7cm [44]. [47] uses backscatter to estimate the

position of a person in smart homes. [46] uses radar signals

for sleeping monitoring. Compared to the specially designed

radar signals, rRuler and rRuler-HMM use Sensortag to

extract RSS in ZigBee mode instead of making special hard-

ware and specific modification of hardware drivers.

D. ACOUSTICS-BASED APPROACHES

Acoustics-based approaches be used to sense human ges-

tures in recent works such as [38], [48], [49]. [48] proposes

an ultrasound-based finger tracking approaches to enable the

interface between human and AR/VR devices. [38] utilizes

Channel Impulse Response to recognize the minor finger

motions with 7 mm resolutions. HUG proposes a micro hand

gesture system using ultrasonic active sensing which could

achieve a recognition accuracy of 96.32%.

III. FEASIBILITIES AND POTENTIAL RESOLUTIONS

In order to analyze the feasibilities and potential resolu-

tions to achieve accurate human gesture sensing by utilizing

coarse-grained RSS, this section analyzed the similarities

and differences between coarse-grained RSS and fine-grained

channel state information (CSI) respectively. The similarities

verify that it is feasible to fetch and achieve more accu-

rate human gestures sensing in practical applications with

coarse-grained RSS, the differences reveal the insights why

coarse-grained RSS could not achieve the same performance

that fine-grained CSI can do in current works, which could

help us find potential resolutions by narrowing down the

differences between RSS and CSI.

A. SIMILARITIES

The similarities between RSS and CSI is that both of

them reflect the multi-path fadings in the typical indoor
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FIGURE 1. The principles of multi-path effect in indoor environments.

environment. The theory and principles of multi-path propa-

gation are shown as Figure 1, the transmitted signal arrives

at the receiving end through multiple paths, the different

signal components arrived from different paths produce dif-

ferent amplitude offsets, frequency offsets and phase offsets.

The example in Figure 1 assumes that there are three paths

between the sender and the receiver, they are the Line-of-

Sight path (Path 1, LoS path), the path reflected by the roof

(Path 2) and the path reflected by human gestures (Path 3).

Based on the example showed in Figure 1, we introduce

how RSS and CSI reflect multi-path fadings respectively.

1) HOW RSS REFLECTS THE MULTI-PATH FADINGS

the received signal is a superposition value of different arrival

components from multiple paths. Therefore, the received

energy could be calculated by Equation 1.

V=

N
∑

i=1

‖Vi‖e
−jθi (1)

where Vi and θ i represent the amplitude and phase of the

arrival signal components from the ith path respectively, N

represents the total number of the arrival signal components

from different paths. RSS reflects the integrated situation of

the multi-path effect, the relationship between RSS and the

received signal from multi-path components can be repre-

sented as Equation 2.

RSS = 10log2(‖V‖
2) (2)

where V represents all multi-path components arriving at the

receiver. The unit of RSS is dBm. In the absence of human

gestures, the fluctuated range of RSS in the static environment

is 12 dBm, while if there exists human gesture impacts on

RSS, the fluctuated range of RSS becomes to 520dBm, these

abnormal fluctuation carries the features of different human

gestures.

2) HOW CSI REFLECTS THE MULTI-PATH FADINGS

compared with RSS, CSI could deduce the detailed

multi-path information (The amplitude shift and phase shift

caused by each reflected path). The detailed response of

multi-path effect which could be analyzed by CSI is shown

as Figure 2. Where, the influence on the signal from propaga-

tion environment is defined as the channel impulse response

FIGURE 2. The detailed response effected by human gestures.
(a) Channel Impulse Response. (b) Amplitude-Frequency Response.
(c) Phase-frequency Response.

(See Figure 2(a)), the amplitude shift is shown as Figure 2(b),

and the phase shift is shown as Figure 2(c).

Figure 2 shows that the signal has different channel

impulse responses from different paths, and the same channel

impulse response will be differentiated for different frequen-

cies of the signal according to the frequency selective atten-

uation characteristics. Simultaneously, different frequencies

will also produce different phase attenuation. CSI is right

the measurement used to describe channel impulse response

which could deduce the amplitude fading and phase shift.

Therefore, assume that the frequency of the carrier is fk ,

the relationships between CSI and the amplitude and phase

of the received signal are calculated by Equation 3.

H (fk ) = ‖H (fk )‖ e
j sin( 6 H (fk )) (3)

Combined with the Equation 2, we can deduce that both V

and H (fk ) could describe multi-path propagation features in

indoor environments. Therefore, the human gesture features

should be attracted with coarse-grained RSS. In order to find

potential solutions to increase the RSS-based human gesture

sensing accuracy of RSS-based human gesture sensing and

prediction applications, we also analyze the main differ-

ences between coarse-grained RSS and fine-grained CSI in

Section III-B.

B. DIFFERENCES

The main significant differences between RSS and CSI rely

on three aspects: i) different sampling rate; ii) different

resolutions; and iii) different multi-path fading information

reflected by RSS and CSI. In this section, we analyze the

details of each difference between RSS and CSI, and pro-

pose the potential solutions based on these differences in

Section IV.

• Difference on sampling rate between RSS and CSI:

the sampling rate of RSS depends on the capabilities of

different devices and communication protocols. For example,

the sampling rate of ZigBee devices could reach 250Hz in a

normal communication, and could be up to 1000Hz by min-

imizing the packet length. While, the sampling rate of WiFi

devices could reach a maximum sampling rate of 2500Hz in

a normal communication process.
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TABLE 2. The number of samples collected from CSI in a normal
communication process.

Currently, CSI only can be read from a few network

interface cards such as Intel 5300 and Atheros series NICs,

which limits the adoption of CSI in all IoT devices. How-

ever, according to Shannon sampling theorem, RSS could

record all the details of the human gestures as long as the

sampling rate of RSS is twice fold of the gesture frequen-

cies. Therefore, it is possible to attract fine-grained gesture

features by up-sampling the RSS measurements (Detailed in

Section IV-B).

• Difference on resolutuon between RSS and CSI: the

differences on resolution between RSS and CSI are mainly

reflected in two aspects: i) different measurement units; and

ii) different number of the collected samples in a normal

communication process.

For the first aspect, RSS is measured in dBm and changes

in integers. Currently, the RSS resolution of Off-the-Shelf

RFID device, ZigBee device, BLE device and WiFi NIC is

1 dBm. While CSI is a complex number, the complex number

can deduce the amplitude and phase shifts of the received

signals in milliwatt (mV) as unit, therefore, a small change

of received amplitude could result in a larger fluctuation in

the time serious, which helps to sense the human gestures

moreaccurately. According to this feature, we propose to use

RSS to extract fine-grained energy information to improve the

accuracy of human gesture sensing applications (Detailed in

Section IV-C).

For the second aspect, the number of samples collected in

a normal communication process is different since the CSI

could measure the amplitude and phase shifts of the received

signal in each sub-carrier. Therefore, CSI obtains multiple

samples through one acquisition, the number of samples

currently available in NICs of Intel 5300, AR9590, AR9565,

AR9462, AR9380, AR9382 are shown in Table 2. In order

to narrow down this different, we increase the number of of

RSS samples by collecting multiple times. The experimental

results analyzed in SectionVI show that we can achieve an

acceptable sensing accuracy when we collect 80 samples for

one gesuture even though the number of samples is much

lower than the CSI could get in the existing works.

• Difference on the multi-path fading information

reflected by RSS and CSI According to the similarities

between RSS and CSI, RSS reflects the comprehensive sit-

uation of multi-path effect while CSI reflects the detailed

channel impulse response on different paths. In order to

compensate for the shortcomings of RSS, this paper propose

FIGURE 3. Feature extraction process of rRuler.

to add time dimension information to increase the resolution

of the human gesture features for more accurate sensing

(Detailed in Section IV-D).

IV. RRULER: FINE-GRAINED FEATURE EXTRACTION

FROM COARSE-GRAINED RSS

To narrow down the differences between RSS and CSI, this

section proposes rRuler, a new feature extraction method for

human gestures with coarse-grained RSS. We firstly intro-

duces the overview of rRuler and follows with the detail

design of each module of rRuler.

A. DESIGN OVERVIEW OF RRULER

According to the similarities and differences analysis of

RSS and CSI in Section III, this section presents rRuler :

a fine-grained human gesture feature extraction method

with coarse-grained RSS. rRuler consists of five parts: i)

sampling rate enhancement module (Sample-H), ii) resolu-

tion enhancement module (Resolution-H), iii) human ges-

ture duration extraction module (gTime-ext), iv) frequency

domain feature extraction module and v) k-means-based fea-

ture clustering module. The overview of rRuler is shown

in Figure 3.

As shown in Figure 3, Sample-H module, Resolution-H

module, and gTime-ext module belong to the data prepro-

cessing part of rRuler. The purpose of the preprocessing

part is to obtain fine-grained features for gestures from

the coarse-grained RSS readings. Time-frequency domain

analysis module is to extract the fixed frequency compo-

nents which does not change with different time series data;

k-means-based frequency domain feature clustering is to

reduce the dimensions of time-frequency analysis results,

which could further reduce the computational complexity of

the gesture sensing process. The functions of each module are

briefly described as follows:
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• Sample-Hmodule, the goal of this module is to improve

the sampling rate of RSS without changing the characteristics

of the original RSS time series measurements. The function

of this module is used to compensate for the information

loss that occurs during the time-frequency and k-means based

clustering processes. The output sequence of Sample-H mod-

ule is y[m]. The detailed design of the Sample-H module is

introduced in Section IV-B.

• Resolution-H module, the goal of this module is

to improve the resolution of the output sequence y[m] of

Sample-H module. This module converts the RSS value (in

decibels) into the received energy (mW) to improve the reso-

lution of the human gesture features. The output sequence of

Resolution-H is y[m]′. The detailed design of Resolution-H

module is introduced in Section IV-C.

• gTime-ext module, the goal of this module is to extract

the durations of different gestures according to the RSS time

series values, and integrated the duration information into the

original RSS time series to help differentiate different ges-

tures. The detailed design of gTime-ext module is introduced

in Section IV-D.

• Time-frequency analysis module, as far as we know,

the same gestures may introduce different RSS jitter changes

when we collect the time domain RSS readings multiple

times. However, the frequency domain features which rep-

resent the frequency of the same gestures are fixed. There-

fore, this module uses Short-time Fourier Transform (STFT)

method to extract the frequency domain features for accu-

rate gesture sensing. The output of this module is a

two-dimensional matrix EPδ,ω, where δ indicates the number

of time domain dimensions, while ω indicates the number

of frequency domain dimensions. The detailed design of this

module is introduced in Section IV-E.

• k-means based feature clustering module, the goal of

thismodule is to reduce the dimension of the two-dimensional

matrix into one-dimensional matrix again to overcome

the overfitting problem in gesture prediction and sens-

ing process. The output of this module is x[δ] which

is a time domain series with frequency domain fea-

tures. The detailed design of this module is introduced in

Section IV-F.

B. SAMPLE-H: RSS SAMPLING RATE ENHANCEMENT

APPROACH

According to differences between RSS and CSI, the sampling

rate of CSI is 2500Hz, while the sampling rate of ZigBee,

BLE and RFID is around 250Hz, and the maximum sampling

rate of them can be increased to 1000Hz by changing the

packet structure [26]. According to the Shannon formula,

the RSS time series is theoretically able to record all the

details of the gestures when RSS sampling frequencies is

twice-fold of human gestures frequencies. However, the time-

frequency analysis and k-means based feature extraction pro-

cedures may result in the loss of information,therefore, it is

essential to increase the sampling rate of RSS time series to

compensate for the data loss.

FIGURE 4. The structure of sampling rate enhancement module
(Sample-H).

FIGURE 5. An example describes the principle of Sample-H module.
(a) Original Signal. (b) Intermediate Signal. (c) Target Signal.

This section uses oversampling method to improve the

sampling rate of RSS time series. The oversampling method

could increase the resolution of the signal in time domain

without destroying the original signal characteristics.

Assuming that the RSS time series which contains the

human gestures collected by the network device is x[n].

We want to increase L-fold of the sampling rate compared

with the original RSS sequence. The oversampling method

mainly includes two steps: i) interpolation position acquisi-

tion; and ii) value calculation for each position. The structure

of this module is shown in Figure 4.

Where x[n] represents the input signal and L is the fold

which we want to up-sampled, w[m] represents the inter-

mediate signal with the interpolated position, y[m] is the

target signal with the intermediate value which is esti-

mated by the interpolation filter. Figure 5 shows an exam-

ple of the original signal x[n] (Figure 5(a)), the interme-

diate signal w[m] (Figure 5(b)), and the target signal y[m]

(Figure 5(c)).

Where, the calculation method of the locations and values

to be insert into the original signals is described in detail as

follows.

• Interpolation position design: we mark the position that

needs to be interpolated as 0, since the normal RSS readings

are negtive, 0 could distinguish the original signal and the

inserted data without ambiguity. Where the positions to be

interpolated are determined by Equation 4.

w[m] =

{

x(m/L) (m = nL)

0 (otherwise)
(4)

where n is the length of the original signal, m is the length

of the intermediate signal, L is the up-sampling fold and

m = nL.

• Interpolation filter design: after determining the interpo-

lation positions, we use the interpolation filter algorithm to

replace 0 to be interpolated value. The value is calculated by
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FIGURE 6. The comparison of RSS time series and received power time
series which contain the information of different gestures. (a) RSS
contains gesture ‘‘Run’’. (b) RSS contains gesture ‘‘Jump’’. (c) RSS contains
gesture ‘‘sit down’’.

Equation 5.

y[j+ nL]=

K
∑

k=0

x[n−k] · h[j+kL], j=0, 1, 2, . . . ,L − 1

(5)

where, h[∗] represents the channel impulse response, this

paper uses low-pass filter instead of h[∗], K is the value

variable k which makes h[j+ kL] to obtain non-zero value.

C. RESOLUTION-H: RSS RESOLUTION ENHANCEMENT

APPROACH

In order to extract fine-grained human gesture features from

the coarse-grained RSS time series, we collected RSS time

series samples of three gestures under the experimental setup

in Section VI-A, which are ‘‘Run’’, ‘‘Jump’’ and ‘‘sit down

(Sit)’’. There RSS time series are shown in Figure 6, the jitter

range of RSS is around 1dBm, which caused by two reasons:

i) caused by Human gestures; and ii) caused by other factors

in the environment.

Through the experience of [50], RSS jitter will change

in the range of 0 − 5dBm without any human gestures,

while the jitter changes caused by human gestures are around

5 − 20dBm. Therefore, the changes caused by different ges-

tures on RSS series are not that significant, Figure 6(a) and

Figure 6(b) are examples show that the RSS characteristics of

gesture ‘‘jump’’ and the ‘‘sit’’ are difficult to differentiate in

the unit of dBm.

In order to extract the fine-grained features of different ges-

tures, this section converts RSS into received energy which is

calculated by Equation 6.

Pr = 10
RSS
10 (6)

TABLE 3. Durations of different gestures.

Assuming that RSS resolution is 1 dBm, therefore, the res-

olution of received energy is deduced by Equation 7.

Pr1

Pr2
=

10
RSS1
10

10
RSS2
10

= 10
RSS1
10 −

RSS2
10 = 10

1
10 (7)

Equation 7 shows that when the differences in decibel are

1dBm, 2dBm, 3dBm, 4dBm, 5dBm, the ratio of the received

energies Pr1 : Pr2 is 10
1
10 ≈ 1.26, 10

2
10 ≈ 1.582, 10

3
10 ≈ 2,

10
4
10 ≈ 2.51, 10

5
10 ≈ 3.16. Therefore, when RSS produces a

smaller jitter, the change in the received energy will change

exponentially, which increases the resolutions of the RSS

jitters. Figure 6(a), Figure 6(b) and Figure 6(c) show the dif-

ferent received energy patterns of different gestures. The fea-

ture resolutions of different gestures showed in Figure 6(a),

Figure 6(b) and Figure 6(c) have been enhanced significantly,

where the ‘‘jump’’ and ‘‘sit’’ gestures could be differenti-

ated obviously. In summary, Resolution-H module has great

potential to improve the resolution of gesture features and

increase the accuracy of gesture sensing applications.

D. GESTURE DURATION EXTRACTION

RSS only reflects the comprehensive characteristics of

multi-path effects, these complex features are sometimes

affected by different propagation paths. For example, con-

structive multi-path effects increase the receiving intensity,

and the non-constructive multi-path effect will weaken the

receiving intensity. The CSI eliminates the effects of different

multi-path effects on the gestures by analyzing the change in

the received signal strength on each path. In order to compen-

sate for this, this section extracts the duration characteristics

of the gestures as a supplement to the original RSS sequence

to enhance the resolution of the gesture features.

The main basis for this section is from the observation

of the execution time of the different gesture samples. This

section summarizes the average time of the gesture set col-

lected in Section VI-A, and the average execution time of

each gesture is shown in Table 3.

In order to identify the durations of the gestures as an

additional feature, we first obtain the maximum length of

the RSS sequence contains different gestures information.

Secondly, we compare the length of each samples with the

maximum value, it does not need to change the compared

sample if its length is equal to the maximum value; while

we add 10 × lg(−64) in the tail of the compared sample if

its length is less than the maximum value which aim to make

the sample has the same length with maximum value, it is
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obviously that the length of the tail reflects the durations of

different gestures.

E. TIME-FREQUENCY ANALYSIS

As far as we know that, the time domain features varies

with different samples in the training and prediction

sets. To extract stable features, this section introduces

time-frequency analysis to extract the frequency components

of each gesture.

The reasons we have to extract the frequency components

of the gestures attribute to the disadvantages of the received

energy of the signal in time domain as follows:

• Time domain features of the same gesture extracted

from different samples show a large vibration since different

multi-path fading occurs when we conduct the same gesture

in different locations or with different amplitudes. Therefore,

it is difficult to recognize human gestures with time domain

features.

• The length of time domain RSS increases with the

upsampling folds in Sample-H module, which may result in

over-fitting of the human gesture sensing algorithm (rRuler-

HMM in Section V).

Due to the disadvantages of the time domain features,

this section introduces time-frequency analysis to extract fre-

quency domain features for accurate human gesture sensing

and prediction. We use Short-time Fourier Transform (STFT)

to extract the frequency domain features of gestures. Assume

that y[m]′ is the time series of the received signal contains ges-

ture i, the frequency components EP[n] for y[m]′ is calculated
by Equation 8.

STFT {Py[m′]}(δ, ω)⇔ X (δ, ω)=

∞
∑

n=−∞

y[m]′w[n− δ]e−jωn

(8)

where, w[n] is the window size for STFT. Figure 7 shows

the frequency domain features of the seven gestures which

collected in section VI-A.

F. K-MEANS BASED FEATURE CLUSTERING MODULE

The original RSS time series are changed from one-

dimensional time data to two-dimensional time-frequency

energy distribution data after time-frequency analysis. The

original energy sequence y[m]′ is divided into an energy

distribution matrix whose time dimension length is δ and

frequency dimension length is ω.

Assuming that the two-dimensional energy distribution

data is X (δ, ω) = {EX1, EX2, . . . , EXδ}, in which EXi(i =
1, 2, . . . , ω) is a vector. In order to reduce the computational

complexity of the human gesture sensing algorithm, this

section uses k-means to cluster all the gesture sets EXi. There-
fore, we convert any vector EXi into an integer which represents
k-means cluster numbers, as a sequence the two-dimensional

energy distribution matrix is reduced into one dimensional

data again.

FIGURE 7. Spectrograms of different gestures. (a) Fall Forward (FF).
(b) Fall Left (FL). (c) Fall Right (FR). (d) Jump (JM). (e) Walk Horizontally
(WH). (f) Walk Vertically (WV). (g) Run Vertically (RV).

The k-means based feature clustering process contains

three phases as follows:

• Initialization phase: select k vectors (EXi(i = 1, 2, . . . k))

as the initial centers of each clusters, and we mark the initial

centers as m
(1)
1 , . . . ,m1

k .

• Classification phase: for each EXi, we calculate which

clusters it should belongs to, and the calculation method is

shown in Equation 9.

S
(t)
i ={Xp

∣

∣

∣

∥

∥

∥
Xp − m

(t)
i

∥

∥

∥

2
≤

∥

∥

∥
Xp − m

(t)
j

∥

∥

∥
∀j, 1 ≤ j ≤ k} (9)

where t represents the the execution iterations of the k-

means based clustering algorithm, S
(t)
i represents the set of

the vectors which belongs to cluster i.

• Cluster centers updating phase: repeat the second phase

until the algorithm convergence or reach the requirements

set by users. The new center calculation method is shown in
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FIGURE 8. The centers of the k-means clusters.

Equation 10.

m
(t+1)
i =

1
∣

∣

∣
S
(t)
i

∣

∣

∣

∑

Xj∈S
(t)
i

Xj (10)

Figure 8 shows the results of the seven gestures in Figure 7,

which are divided into eight clusters. The figure shows the

centers of each clusters.

V. GESTURE CLASSIFICATION AND SENSING

In order to further verify the performance of rRuler and bring

it to practical applications, we propose rRuler-HMM, a Hid-

den Markov Model (HMM) based human gesture sensing

and prediction algorithm in this section and implement it in

Section VI. In this section we introduce: i) the overview of

the rRuler-HMM, ii) how to divide the training set and predic-

tion set of rRuler-HMM, iii) how to mapping the parameters

from real word data sets to HMM, and iv) how to training

the parameters of HMM and sensing the human gesture by

utilizing the trained HMM Model.

A. DESIGN OVERVIEW OF RRULER-HMM

The objective of rRuler-HMM is to predict the type of differ-

ent gestures, which take the output of rRuler as the training

and prediction sets. The structure of rRuler-HMM contains

two parts: i) parameter training part and ii) gesture prediction

part. The overview of rRuler-HMM is shown in Figure 9. The

functions of each part are as follows:

• Parameter training part is to use the initial

HMM parameters and the data from training sets to

calculate the HMM parameters iteratively according to

the requirements of the practical applications. In this

section, rRuler-HMM explores the classical Baum-Welch

for parameters training, the procedures are detailed in

Section V-D.2.

• Gesture prediction part is to predict gesture types

for the input time series by utilizing the model trained in

parameter training part. In this section we introduce classical

viterbi algorithm and maximum like-hood estimation method

to predict the type of different gestures, the procedures are

detailed in Section V-D.3.

B. THE DIVISION METHOD OF TRAINING SET AND

PREDICTION SET

According to the structure of Figure 9, this section divides

the data set collected in section VI-A into training set and

prediction set, where p is the proportion of the training set to

the overall data set. In addition, we introduce k folding cross

validation method for rRuler-HMM ‘s’ parameters training to

verify the stability of the model.

Assuming that the number of gestures to be predicted is m,

the overall data set is S, the sub-data set for each gesture i is

Si. Therefore, S =
[

S1 S2 · · · Sn
]T
. In order to construct the

training and prediction sets which meet the requirements of

k-fold cross-validation, the overall data set is divided into k

different parts according to different gesture types.

Assuming that the data set for each gesture is Si =
[

Si,1 Si,2 · · · Si,|Si|
]T
, where |Si| is the size of the data set of

gesture i. Therefore, if we divided the data set of each gesture

i into k equal parts with the size of |Si|
/

k , and the set (S(i,j))

of each part j for gesture i is divided by the regular defined in

Equation 11.

S(i,j) =

























S
j×
|Si|

k
−1

S
j×
|Si|

k
...

S
j−1×
|Si|

k
−2

























(11)

Therefore, the overall data set S could be expressed as

Equation 12.

S =











S(1,1)
S(1,2)

...

S(1,k)











∪











S(2,1)
S(2,2)

...

S(2,k)











∪ · · · ∪











S(m,1)

S(m,2)

...

S(m,k)











(12)

On the basis of Equation 12, the k-folding cross validation

training set Ts =
[

T1 T2 · · · Tk
]

and perdition set Ps =
[

P1 P2 · · · Pk
]

, are defined according to the following rules.

• For all gestures i(i = 1, 2, · · · ,m), select S(i,j) as part of
the training set if and only if j = α. Therefore, the prediction

set Pα is calculated by Equation 13.

Pα = ∃j=α∀i(i∈(1,2,···m))Si,j (13)

• For all gestures i(i = 1, 2, · · · ,m), if the prediction set

Pα has been selected, then the corresponding training set is

Tαis S − Pα .

In this section, the k-fold cross-validation method is

designed to verify the stability of the rRuler-HMM. All the

experimental results shown in Section VI in the remainder

of this paper are under the assumption of 10-fold cross-

validation.

C. HMM PARAMETERS MAPPING

This section introduces how to map the fine-grained fea-

tures extracted by rRuler to the parameters of rRuler-HMM.
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FIGURE 9. The overview of rRuler-HMM.

TABLE 4. Parameters mapping.

The parameters of HMM model are composed of five ele-

ments, including two states and three probability matrix,

which are hidden States hS and Observed sequence O; ini-

tial state probability matrix π , the implicit state transition

matrix TRAN_est , and the observation state transition matrix

EMIS_est , respectively. Therefore, the HMM Model is λ =
{TRAN_est,EMIS_est, π}. The mappings between HMM

parameters and fine-grained features extracted in Section IV

are shown in Table 4.

Suppose that hS = { hS1 hS2 · · · hSn }, n = |hS|.
The the dimension of TRAN_est is n × n. Arbitrary

element TRAN_esti,j of matrix TRAN_est represents the

probability of an implicit state hSj occurs under the assump-

tion that implicit state hSi has already occurred. Therefore,

TRAN_esti,j could be calculated by Equation 14.

TRAN_esti,j = P(hSj |hSi ) (14)

Assuming that O =
{

O1 O2 · · · O m

}

, m = |O|.
The dimension of EMIS_est is n × m. Arbitrary element

EMIS_esti,j of EMIS_est could be calculated by Equation 15.

EMIS_esti,j = P(Oi
∣

∣hSj ) (15)

where TRAN_est and EMIS_est were trained by training set,

which will be introduced in Section V-D.

D. HMM PARAMETERS TRAINING AND SENSING

This section introduces how to train the hidden state tran-

sition matrix TRAN_est , observation state transition matrix

EMIS_est and how to sense the human gestures by uti-

lizing the trained rRuler-HMM. We introduce initial value
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settings, training method and sensing method respectively in

the remaining of this section.

1) INITIALIZATION

The transition probabilities among the same hidden states are

theoretically larger than that among different hidden states

since human gestures have temporal locality features. There-

fore, we set the initial values as Equation 16.

TRAN_est(i,j) =

{

0.6(i = j)

0.4/(n− 1)(i 6= j)
(16)

where n is the number of hidden states.

The occurring probabilities of Oj under the assumption of

hSi are difficult to speculated. Therefore, we set the initial

values according to the rulers defined by Equation 17 consid-

ering the fairness of the training process.

EMIS_esti,j = 1
/

m (17)

where m is the number of observed states.

In order to put it easily, we take n = 5, and m = 10 as

an example, the initial matrix TRAN_ini and EMIS_ini are

shown in the following matrices.

TRAN_est =













0.6 0.1 0.1 0.1 0.1

0.1 0.6 0.1 0.1 0.1

0.1 0.1 0.6 0.1 0.1

0.1 0.1 0.1 0.6 0.1

0.1 0.1 0.1 0.1 0.6













EMIS_est =













0.1 0.1 0.1 0.1 · · · 0.1 0.1 0.1

0.1 0.1 0.1 0.1 · · · 0.1 0.1 0.1

0.1 0.1 0.1 0.1 · · · 0.1 0.1 0.1

0.1 0.1 0.1 0.1 · · · 0.1 0.1 0.1

0.1 0.1 0.1 0.1 · · · 0.1 0.1 0.1













2) TRAINING

In this section, the classical Baum-Welch algorithm is used

to train rRuler-HMM. Where the training set is defined in

Section V-B and the initial value of the training parameters

are defined in Section V-D.1. The procedure of rRuler-HMM

parameters training algorithm is shown as Algorithm 1.

As shown in algorithm 33, the 2nd line is the initialization

operations; 12th to 13th lines represent forward and backward

algorithm; 15th to 26th lines represent the update process of

parameters.

3) HUMAN GESTURE SENSING

rRuler-HMM verifies the accuracy of sensing and prediction

by utilizing the prediction set defined in Section V-B, and

the prediction algorithm is the classical Viterbi andmaximum

like-hood estimation algorithms.

VI. IMPLEMENTATION AND EVALUATION

In this section, we describe how to implement rRuler and

rRuler-HMM in real word firstly, then we show the results of

Algorithm 1 Parameter Training Procedures of rRuler-

HMM
input : Pt ,TRAN_ini,EMIS_ini,tol,maxiter

output: TRAN_est,EMIS_est

1 Initialization;

2 tol ← 1e− 6; trtol ← tol; etol ← tol; maxiter ← 500;

3 Abnormal judgment;

4 [numStates, checkTr]← size(guessTR);

5 [checkE, numEmissions]← size(guessE);

6 if checkTr == numStates & checkE == numStates then

7 TR = zeros(size(guessTR)); pseudoTR = TR;

converged = false;loglik = 1;E =

zeros(numStates, numEmissions);

pseudoE = E;logliks = zeros(1,maxiter);

8 for interation← 1 to maxiter do

9 oldLL ← loglik; loglik ← 0;

oldGuessE ← guessE; oldGuessTR← guessTR;

10 for count ← 1 to numSeqs do

11 Calculate the forward and backward

probabilities;

12 [ , logPseq, fs, bs, scale]←

hmmdecode(seq, guessTR, guessE);

13 loglik ← loglik + logPseq; logf ← log(fs);

logGE ← log(guessE); logb← log(bs);

logGTR← log(guessTR); seq← [0 seq];

14 Update the parameters;

15 for k ← 1 to numStates do

16 for l ← 1 to numStates do

17 for i← 1 to seqLength do

18 TR(k, l)←

TR(k, l)+ exp(logf (k, i)+

logGTR(k, l)+ logGE(l, seq(i+

1))+ logb(l, i+ 1))./scale(i+ 1);

19 end

20 end

21 end

22 for k ← 1 to numStates do

23 for i← 1 to numEmissions do

24 pos← find(seq == i);

25 E(k, i)← E(k, i)+

sum(exp(logf (k, pos)+ logb(k, pos)));

26 end

27 end

28 end

29 guessE ←

E ./(repmat(sum(E, 2), 1, numEmissions));

guessTR←

TR./(repmat(sum(TR, 2), 1, numStates)); if

converge == true then

30 return;

31 end

32 end

33 end
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TABLE 5. The descriptions of the samples collected from our scenarios.

FIGURE 10. The implementation of rRuler and rRuler-HMM
comprehensive system.

our comprehensive experiments including the performance of

rRuler, the sensing accuracy of rRuler-HMM, and the factors

that impact on human gesture sensing accuracy.

A. SYSTEM IMPLEMENTATION

In order to verify the performance of rRuler and rRuler-

HMM, we implemented the system by utilizing TI Sensortag

as data collection sub-system and a laptop as data analysis

sub-system respectively. Specifically, the basic components

of those two sub-systems are: i) data collection sub-system

contains TI Sensortag in ZigBee mode and Sensortag Debug

Board (Devpack) modules, and ii) data analysis sub-system

contains a laptop installed with SmartRF Studios which is

used to storage and analyze the RSS samples extracted from

the data collection sub-system. The prototype of the system

is shown in Figure 10.

For data collection sub-system, the software was imple-

mented by TI development kit SmartRF, the protocol

was set as ZigBee mode which is fully compatible with

802.15.4. The system uses totally two Sensortags to form

a communication pair. The sender is responsible for send-

ing packets to the receiver continuously, and the receiver

is responsible for receiving the packets and record the

RSS values.

For the data analysis sub-system, the feature extraction

and gesture prediction functions are implemented by Mat-

lab, we run the programs with a laptop which is shown

in Figure 10.

The prototype implemented in this paper could collect and

analyze RSS samples with different gestures in both LoS

and NLoS scenarios. Due to the widely use of the NLoS

scenarios in daily gesture sensing applications, we analyze

the insight experimental results by utilizing the data collected

from NLoS scenarios, we also show the optimized sensing

accuracy in LoS scenarios to further verify the feasibility of

our system.

B. DATA COLLECTION

In order to verify the performance of rRuler and rRuler-

HMM, this section collects 7 different types of gestures in

both LoS and NLoS scenarios under the system implemented

in Section VI-A.

The data collection environment and detailed locations for

LoS and NLoS scenarios are shown as Figure 11. The data

collection environment is a laboratory with 7.7 meters long

and 6.5 meters wide. Position 1 and Position 2 marked with

red circle in Figure 11 are the locations for LoS and NLoS

scenarios respectively. The attributes of the gestures such

as name, type, the number of samples and descriptions are

detailed in Table 5. In summary, we collect 560 samples for

both LoS andNLoS scenarios respectively, which are from 10

different volunteers, where 7 of them aremale volunteers, 3 of

them female volunteers, they are all undergraduate students

aged from 22 to 26.

C. PERFORMANCE MATRICES

In this section, we describe the performance matrices which

use to evaluate both the feature extraction part rRuler and

human gesture sensing part rRuler-HMM. For the feature

extraction part, we measure the similarities among features

to evaluate the accuracy of feature extraction performance,

and we also measure the running time of rRuler to evaluate

its time efficiency. For gesture sensing part, we evaluate

81238 VOLUME 7, 2019



H. Sun et al.: Accurate Human Gesture Sensing With Coarse-Grained RF Signatures

FIGURE 11. The laboratory structure and data collection locations for LoS
and NLoS scenarios.

the human gesture accuracy for rRuler-HMM. Specifically,

the performance matrices of rRuler and rRuler-HMM com-

prehensive system are defined as follows:

• Feature Similarity (hDist)We use hamming distance to

evaluate the similarities among gestures, hamming distance

hDist(s, t) is calculated by Equation 18.

hDist(s, t) = 1− #(x[δ]sj 6= x[δ]tj)
/

δ (18)

where, x[δ]s represents the sample contains gesture s, x[δ]t
represents the sample contains gesture t , the length of the

samples for each gesture is δ according to the output of

rRuler which is calculated by k-means algorithm. There-

fore, #(x[δ]sj 6= x[δ]tj) represents whether it different or

same in location j for gesture s and t . The similarity of

gesture s and gesture t is larger if the cluster feature num-

ber is smaller, vice versa, the similarity of gesture s and

t is smaller if cluster feature number is larger. Therefore,

the similarity of gesture s and t is proportional to the value

of hDist(s, t).

• Time Consumption:

We uses the running time of our Matlab-based simulator

to evaluate the computational overheads of rRuler and its

individual parts.

• Sensing Accuracy:
We uses sensing accuracy to evaluate the performance of

rRuler-HMM system, which also could further verify the

efficiency of rRuler. Sensing accuracy is the ratio of the

number of gestures which could be predicted correctly by

rRuler-HMM and those could not be.

D. PERFORMANCES OF RRULER

In this section, we take the data collected from the NLoS

scenario as an example to demonstrate the performances of

rRuler, including the similarities among gestures and the

computational overheads of each module in different param-

eter settings.

1) PERFORMANCE ANALYSIS UNDER SPECIFIC PARAMETERS

In this section, we evaluated the performance of rRuler under

specific settings of the parameters. The parameters are set

TABLE 6. The average values of the similarities(sampling rate = 250Hz,
UP-rate = 4, ClusterNum = 10).

TABLE 7. Variances of the feature similarities (sampling rate = 250Hz,
UP-rate = 4, ClusterNum = 10).

FIGURE 12. The comparison of the similarities of the same gesture
(sampling rate = 250Hz, UP-rate = 4, ClusterNum = 10).

as: i) SamplingRate = 250Hz; ii) Up-sampling fold is 4,

which is shortly marked as UP − rate = 4; and iii) the

cluster number of k-means algorithm is 10, which is shortly

marked as ClusterNum = 10. Table 6 and Table 7 show the

similarities and the variance of the seven different gestures

collected in Section VI-B respectively.

The results in Table 6 show that the similarities of the

same gestures is higher than the similarities among different

gestures for all the seven different types of gestures in our

data set.

The similarity variances (Table 7) among different gestures

are range from 0.01% to 0.48%, which show that rRuler has

better stability and could extract specific features of different

gestures effectively.

Figures 12 and Figure 13 show more details of the

similarities among the gestures collected in Section VI-B

when Sampling rate = 250Hz, UP-rate = 4, Cluster-

Num = 10. Figure 12 shows the means and variances

of the similarities for 7 gestures, 3 of them have a rel-

ative higher similarities which are 82%, 90% and 92%

respectively; 2 of them reach 75% around; and another

2 gestures for ‘‘WH’’ and ‘‘WV’’ reach 38% and 29% respec-

tively. Briefly, the similarities among the same gestures are

all higher than those among different gestures (Detailed

in Figure 13).
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FIGURE 13. The comparison of the similarities between different gestures
(sampling rate = 250Hz, UP-rate = 4, ClusterNum = 10).

FIGURE 14. Computational overhead of rRuler’s modules.

The similarities between the same gestures are not the

only criterion to evaluate the performance of rRuler. The

similarities between different gestures could fully reflect the

performance of rRuler. Figure 13 show that the similarity of

the gesture ‘‘Fall Forward’’ (FF) themselves is 82% among

different samples, while the similarities of gesture ‘‘FF’’

compared with other six gestures are 76%, 79%, 74%, 36%

and 13% respectively. Other gestures have the same trends

with ‘‘FF’’ which are detailed in Figure 13.

Another important performance of rRuler is the com-

putational overhead. This section uses the running time of

Matlab-based simulator to evaluate the computational over-

head of rRuler’s modules. The hardware and software con-

figures of the Matlab-based simulator are as follows: i) CPU:

Intel Core i7-4610M / 3.00GHz; ii) Memory: 8GB; and iii)

Operating system: Windows 10 with 64-bit. The running

time of each module under the above configures is shown

in Figure 14.

Figure 14 shows the average running time of 4 times

experiments with the same configurations. The statistical

results show that the average execution time of Sample-H

and Resolution-H is 0.043s and 0.040 s; the average execu-

tion time of Time-frequency analysis module is 11.70s and

k-means based clustering module is 2.96s. Therefore, The

overheads of Sample-H and Resolution-H module are

extremely smaller than the traditional time-frequency analy-

sis and k-means based clustering module, which demonstrate

that the fine-grained feature extraction method proposed in

this paper does not introduce much computational overheads.

2) PERFORMANCE WITH CLUSTER NUMBER

The analysis of the experimental results under specific param-

eters shown that rRuler has good reliability and stability.

In order to further demonstrate the performances and their

trends of rRuler under different parameter settings, we inves-

tigate the impact on rRuler under different cluster numbers

(ClusterNum) in this section.

Figure 15 shows the trends of cross similarities among

7 gestures with cluster numbers (ClusterNum) of k-means.

In order to save space, the coordinates ‘‘1’’, ‘‘2’’, ‘‘3’’, ‘‘4’’,

‘‘5’’, ‘‘6’’ and ‘‘7’’ of theX axis andY axes in Figure 15 repre-

sent the gestures ‘‘FF’’, ‘‘FL’’, ‘‘FR’’, ‘‘JM’’, ‘‘RV’’, ‘‘WH’’,

‘‘WV’’ respectively. In addition, the red-like color represents

a higher similarity while the blue-like color represents a lower

similarity.

The results in Figure 15 show that it is difficult to identify

the gestures from each other since the chaotic similarity

patterns when the value of ClusterNum is small (for exam-

ple, ClusterNum = 2). However, the differences between

diagonal values and non-diagonal values in Figure 15 getting

larger with the increasing of ClusterNum and achieves an

acceptance results when ClusterNum= 10/12. The similarity

patterns getting chaotic again when ClusterNum>12.

Figure 16 shows the execution overheads of rRuler’s

modules with different ClusterNum values. As the Clus-

terNum increases, the execution time of the Sample-H,

Resolution-H, and Time-frequency analysis modules are con-

stant because the execution overheads of the Sample-H mod-

ule are only related to the value of the UP-Rate and the

length of the original RSS time series; The execution over-

heads of the Resolution-H module are only related to the

length of the original RSS time series. The execution over-

heads of the Time-frequency analysis module are related

to the length of the output of the Sample-H, Resolution-H

and Time Feature Add modules. However, the overheads of

k-means-based feature clustering module grows linearly with

the increasing ClusterNum. Therefore, we should choose

the appropriate value of ClusterNum to trade off the com-

putational overheads and sensing accuracies in practical

applications.

3) FEATURE EXTRACTION PERFORMANCE WITH

UPSAMPLING RATE

Figure 17 shows the changing similarities of cross-gestures

with the increasing UP-Rate.The similarities among the same

gestures increase graduallywith the increasingUP-Rate value

when UP-Rate ≤ 4, and the similarities keep stable when

UP-Rate>4. This is because the up-sampling module is to

make up the loss of information generated by k-means

dimensionality reduction method. Therefore, the similar-

ities among the same gestures would not continuously

increase if the up-sample fold could make up the information

loss.

Figure 18 shows the execution overheads of the sample-H,

Resolution-H, Time-frequency analysis, k-means clustering

modules increase linearly with the increasing UP-Rate val-

ues. The reason attributes to the increase of the RSS series

data, therefore, we should carefully select the UP-Rate value

to trade off the computational overheads and sensing accuracy

in practical applications.
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FIGURE 15. The trends of the similarities among gestures with ClusterNum (sampling rate = 250Hz, UP-rate = 4).

FIGURE 16. The trends of computational overheads with ClusterNum
(sampling rate = 250Hz, UP-rate = 4).

4) COMPARISON WITH OTHER FEATURE EXTRACTION

METHODS

In order to further improve the performance of rRuler,

this section make some comparisons between our method

and current works which without sample-H, Resolution-H,

gTime-ext modules respectively, and the settings and perfor-

mances of them are shown in Figure 19, and the results show

that rRuler is more accurate than the other three methods,

because the similarities of same gestures extracted by rRuler

are obviously larger than those extracted by other three meth-

ods. Figure 20 shows that if there is no Sample-H module,

‘‘FL’’ is difficult to perceive since it mixedwith other gestures

together; if there is no Resolution-H module, ‘‘FF’’, ‘‘FL’’,

‘‘WH’’ and ‘‘FL’’ are judged to be ‘‘RV’’, and ‘‘WH’’ could

also not be perceived. If there is no gTime-ext module, ‘‘FL’’

is judged to be ‘‘RV’’, ‘‘WH’’ can not be perceived correctly.

Figure 20 is a detailed view of Figure 19 which would help

the reader better study the performance comparisons between

rRuler and other current methods.

E. THE ACCURACY OF GESTURE SENSING

According to the results of Section VI-D, when UP-Rate =
4 and ClusterNum = 12, the features of the same gestures

are obviously different from those of the different gestures.

In order to further prove the performance of rRuler proposed

in Section IV. This section defines and implements rRuler-

HMM to calculate the sensing accuracy base on the dataset

collected in Section VI-B.

The experimental results in the remainder of this section

are under the parameter settings defined in Table 8 in both

LoS and NLoS Scenarios. As shown in Table 8, the window

size of the fast Fourier transform in rRuler is 128, the overlaps

among windows are 120, the frequency range is 1 − 200Hz

(according to the results of Section VI-D, the frequency of

gestures in our dataset is up to 200Hz).

In order to verify the relationship between sensing accu-

racy and RSS sampling rate. rRuler-HMM collects more

data in LoS and NLoS scenarios defined in Sections VI-

B with a changing sampling rate of 250Hz, 500Hz, and

1000Hz respectively. We also collects more data from differ-

ent channels (ZigBee Channel 15, 20 and 26) to perceive the

relationship between sensing accuracy and different center

frequencies.

In order to demonstrate the performance of rRuler-HMM,

we show the sensing accuracies in both LoS and NLoS sce-

narios in Figure 21 with parameter settings: UP-Rate = 4;
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FIGURE 17. The trends of the similarities with up-sampling rate (sampling rate = 250Hz, ClusterNum = 12).

FIGURE 18. The changing trends of the computational overhead with
up-sampling rate (sampling rate = 250Hz, ClusterNum = 12).

FIGURE 19. The comparison of rRuler and current methods (sampling
rate = 250Hz, ClusterNum = 12, UP-Rate = 4).

ClusterNum = 12; STFT’s parameters are set according to

Table 8, sampling rate = 250Hz, and the data acquisition

channel is ZigBee channel 15.

As shown in Figure 21, the accuracy of the rRuler-HMM -

based human gesture sensing algorithm in LoS could reach

an average value of 97.14% in LoS scenario and 95.71% in

NLoS scenario respectively in above settings. The confusion

matrix of the sensing results of LoS scenario and NLoS

scenario are shown as Table 9 and Table 10.

As shown in Table 9 and Table 10, the sensing accura-

cies have the same trends in both LoS and NLoS scenarios.

FIGURE 20. The feature extraction details of the datasets(sampling
rate = 250Hz, ClusterNum = 12, UP-Rate = 4).

TABLE 8. Parameter settings rRuler-HMM.

FIGURE 21. Sensing accuracy of rRuler-HMM (Sampling rate = 250Hz,
UP-rate = 4, ClusterNum = 12, UP-rate × sampling rate = 1000Hz, ZigBee
channel:15).

Gesture ‘‘FF’’ has a certain probability which is wrongly

judged as ‘‘FR’’ and ‘‘JM’’. The reason is ‘‘FF’’, ‘‘FR’’

and ‘‘JM’’ are similar in frequency; Gesture ‘‘FL’’ has a

certain probability of being erroneously judged as ‘‘FR’’ and

‘‘JM’’; ‘‘JM’’ has a certain probability that wrongly judged

as ‘‘FR’’ and ‘‘JM’’ ‘‘WH’’ has a certain probability of being

erroneously judged as ‘‘FF’’; ‘‘WH’’ has a certain probability

wrongly judged as ‘‘FL’’; the sensing accuracy pf ‘‘WH’’

81242 VOLUME 7, 2019



H. Sun et al.: Accurate Human Gesture Sensing With Coarse-Grained RF Signatures

TABLE 9. Confusion matrix in LoS scenario (sampling rate = 250,
UP-rate = 4, ClusterNum = 12 UP-rate × sampling rate = 1000,
ZigBee channel:15).

TABLE 10. Confusion matrix in NLoS scenario (sampling rate = 250,
UP-Rate = 4, ClusterNum = 12, UP-Rate × Sampling Rate = 1000, ZigBee
channel:15).

FIGURE 22. Contribution analysis of each modules in rRuler (Sampling
Rate = 250, UP-Rate = 4, ClusterNum = 12, UP-Rate × Sampling
Rate = 1000, ZigBee channel:15).

is 100%, the main reason is that the frequency of walking

is lower and the directions are different from other gestures

significantly.

In order to further analyze the contributions of eachmodule

proposed in rRuler, we take the data collected in NLoS

scenario as example, the results are shown in Figure 22 and

detailed in Table 11, Table 12, Table 13 respectively.

Figure 22 combines Table 11 show the contributions of

Sample-H module, the results demonstrate that the sensing

accuracy of gesture ‘‘FL’’ decrease 42% without Sample-H

module due to the large loss of information in STFT phase;

the accuracies of other gestures decrease 20%, 0%, 10%,

12.5% and 6.25% respectively.

Figure 22 combines Table 12 show the contributions of

Resolution-H module, the results demonstrate that the sens-

ing accuracies of gesture ‘‘FF’’, ‘‘FL’’, ‘‘FR’’, ‘‘JM’’, ‘‘RV’’,

‘‘WH’’, and ‘‘WV’’ decrease by 2.5%, 21.25%, 33.75%, 0%,

0%, 57.5%, 0%without Resolution-Hmodule. The confusion

matrix shown in Table 12 demonstrates gesture ‘‘FL’’ tends

to be confused as gesture ‘‘FR’’; gesture ‘‘FR’’ tends to be

TABLE 11. Confusion matrix (without sample-H module).

TABLE 12. Confusion matrix (without resolution-H).

TABLE 13. Confusion matrix (without gTime-ext).

confused as ‘‘JM’’; gesture ‘‘WH’’ tends to be confused as

gesture ‘‘FF’’, ‘‘FR’’. Themain reason is that the resolution of

RSS is 1dB, therefore, the details of some gestures are mixed

with each other, which results in reducing of the sensing

accuracy.

Figure 22 combines Table 13 show the contributions of

gTime-ext module, the results demonstrate that 58% of ges-

ture ‘‘WH’’ are confused as gesture ‘‘JM’’ since they occurs

at the same location with similar frequencies. However,

gTime-ext module introduce time domain features which

could increase the sensing accuracies of those gesture with

similar frequencies.

In summary, each module of rRuler makes specific contri-

butions to increase sensing accuracies of the gestures in our

dataset.

F. THE INTERACTIONS BETWEEN GESTURE SENSING

APPLICATIONS AND ORIGINAL COMMUNICATION

NETWORKS

This section validates the interactions between gesture sens-

ing applications and the original communication networks.

The goals are to validate: i) whether the gesture sensing

accuracy affected by different communication channels? and

ii) Does the gesture sensing applications affect the

performance of existing communication networks (such as

the Packet Reception Ratio?). Figure 23 shows the gesture

sensing accuracy fluctuations with different communica-

tion channels (ZigBee channel 15, 20 and 26) are around
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FIGURE 23. Gesture sensing accuracies under different communication
channels.

FIGURE 24. Packet reception rates under the environment with different
gestures.

1-2%. Therefore, different communication channels have less

influence on the accuracy of gesture sensing.

Figure 24 shows that the packet loss rate is below 1% under

different gestures, and actually the packet loss rate is also

due to other disturbances and noise factors in the propagation

environment. Therefore, gesture sensing applications have

little effect on the packet loss rate of the communication

system. Therefore, we could conduct many applications such

as human machine interaction / behavior monitoring without

effecting the existing communication networks.

VII. CONCLUSION

RF-based human gesture sensing is an emerging technol-

ogy in sensing systems. The basic of RF-based human

gesture sensing is multi-path fading theory. In this paper,

we aim to increase sensing accuracy of human gestures with

coarse-grained RF measurement (RSS). The main contri-

butions include: i) proposed a fine-grained human gesture

feature extraction model (rRuler), which includes RSS sam-

pling enhancement algorithm (Sample-H algorithm), RSS

resolution enhancement algorithm (Resolution-H algorithm),

gesture duration extraction algorithm (gTime-ext), frequency

domain feature extraction algorithm and k-means based

dimensionality reduction method; and ii) in order to fur-

ther verify the accuracy of rRuler, this paper presents the

rRuler-HMM for sensing accuracy evaluations. The exper-

imental results show that the average accuracies of rRuler-

HMM are around 95.71% in NLoS scenario and 97.14%

in LoS scenario respectively, which means human gesture

sensing technologies with coarse-grained RF measurements

proposed in this paper are practical and could be widely

adapted in various IoT technologies, such as ZigBee, Blue-

tooth/BLE, WiFi, cellular networks and other potential wire-

less protocols.
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