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METHODOLOGY Open Access

Accurate identification and quantification
of commensal microbiota bound by host
immunoglobulins
Matthew A. Jackson1* , Claire Pearson1, Nicholas E. Ilott1, Kelsey E. Huus2,3, Ahmed N. Hegazy1,4,5,

Jonathan Webber1, B. Brett Finlay2,3,6, Andrew J. Macpherson7,8, Fiona Powrie1 and Lilian H. Lam1*

Abstract

Background: Identifying which taxa are targeted by immunoglobulins can uncover important host-microbe

interactions. Immunoglobulin binding of commensal taxa can be assayed by sorting bound bacteria from samples

and using amplicon sequencing to determine their taxonomy, a technique most widely applied to study

Immunoglobulin A (IgA-Seq). Previous experiments have scored taxon binding in IgA-Seq datasets by comparing

abundances in the IgA bound and unbound sorted fractions. However, as these are relative abundances, such

scores are influenced by the levels of the other taxa present and represent an abstract combination of these effects.

Diversity in the practical approaches of prior studies also warrants benchmarking of the individual stages involved.

Here, we provide a detailed description of the design strategy for an optimised IgA-Seq protocol. Combined with a

novel scoring method for IgA-Seq datasets that accounts for the aforementioned effects, this platform enables

accurate identification and quantification of commensal gut microbiota targeted by host immunoglobulins.

Results: Using germ-free and Rag1
−/− mice as negative controls, and a strain-specific IgA antibody as a positive

control, we determine optimal reagents and fluorescence-activated cell sorting (FACS) parameters for IgA-Seq.

Using simulated IgA-Seq data, we show that existing IgA-Seq scoring methods are influenced by pre-sort relative

abundances. This has consequences for the interpretation of case-control studies where there are inherent

differences in microbiota composition between groups. We show that these effects can be addressed using a novel

scoring approach based on posterior probabilities. Finally, we demonstrate the utility of both the IgA-Seq protocol

and probability-based scores by examining both novel and published data from in vivo disease models.

Conclusions: We provide a detailed IgA-Seq protocol to accurately isolate IgA-bound taxa from intestinal samples.

Using simulated and experimental data, we demonstrate novel probability-based scores that adjust for the

compositional nature of relative abundance data to accurately quantify taxon-level IgA binding. All scoring

approaches are made available in the IgAScores R package. These methods should improve the generation and

interpretation of IgA-Seq datasets and could be applied to study other immunoglobulins and sample types.
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Background
The immunoglobulin isotype A (IgA) is secreted by

plasma cells at mucosal barrier sites such as the gastro-

intestinal (GI) tract, which is also host to the densest

community of commensal bacteria in the human body

[1, 2]. Intestinal homeostasis requires tolerance to the

microbiota but a robust defence against pathogens, and

growing evidence suggests that IgA binding is both

taxon-dependent and context-specific. IgA in the mucus

layer forms a protective barrier between the epithelium

and the luminal microbiota [3–5]. Some commensal

bacteria have adapted to this specialized niche to pro-

mote homeostasis. Bacteroides fragilis produces a surface

polysaccharide that promotes IgA binding and facilitates

mucus layer colonization [6] and the mucin-degrader

Akkermansia muciniphila induces host IgA and IgG re-

sponses [7]. Other studies have suggested that low-

affinity IgA contributes to microbiota maintenance,

whilst high-affinity IgA acts on pathogens to promote

clearance and inhibit virulence [8–15]. Pathobionts are

members of the microbiota that are typically harmless

under homeostatic conditions but can drive disease

given certain environmental stimuli [16]. IgA binding of

taxa might also reflect such pathogenic potential and

IgA bound gut bacteria have been implicated in inflam-

matory disease [17–20]. Accurate identification of com-

mensal microbiota bound by IgA can therefore offer

important insights into the mechanisms underlying host

microbial mutualism and its dysregulation in disease.

Microbiota-wide profiling of IgA bound taxa can be

achieved using IgA-Seq. Anti-IgA antibodies are used to

stain a complex gut microbiota, then bound and un-

bound bacteria are separated by fluorescence-activated

cell sorting (FACS) or magnetic-activated cell sorting

(MACS) and identified by 16S rRNA gene sequencing

[17, 18]. We refer to the sorted IgA bound bacteria as

the IgA+ fraction, the sorted unbound bacteria as the

IgA− fraction and the sample before sorting as the pre-

sort sample. IgA-Seq has been used to uncover antibody

targeting of taxa by both T cell-dependent and T cell-

independent pathways [7, 10, 12, 21, 22], as well as dif-

ferential binding of taxa during disease. IgA-Seq was first

described by Palm et al. to identify taxa differentially

bound by IgA in inflammatory bowel disease (IBD) pa-

tients [17] and was adapted by Kau et al. to identify in-

creased binding of Enterobacteriaceae by IgA in

malnourished infants [18]. Variations of these protocols

have since been applied to study IgA binding in other

disease states, employing a range of IgA-Seq protocols

utilising different reagents, sort modalities and configu-

rations [19, 20]. Some of these parameters have been

validated individually in prior studies but there has yet

to be a comprehensive description of how to design and

benchmark an optimal IgA-Seq protocol.

More importantly, there has yet to be a formal consid-

eration of the analytical approaches used to score taxon

binding in IgA-Seq datasets. IgA-Seq does not quantify

the affinity of IgA antibodies directly, but rather provides

a measure of overall IgA binding. The likelihood of bac-

teria within a given taxon being bound by IgA will be in-

fluenced by a combination of the affinities of the IgA

pool for the taxon, the spatial distribution of those bac-

teria and the expression of relevant epitopes by the

taxon. Additionally, the IgA+ abundance does not solely

represent this likelihood of taxon binding. It is also a

function of the number of bacteria present: a taxon

highly targeted by host IgA could make up a low propor-

tion of the IgA+ fraction if only a few bacteria are

present and vice versa. The principal aim of IgA-Seq is

not to solely identify which taxa are most bound by IgA

but rather to identify those taxa with a higher likelihood

of binding relative to other bacteria. As a result, indices

that account for the initial quantities of bacterial taxa

must be applied to quantify IgA-Seq data.

In IgA-Seq studies to date, IgA binding has largely

been scored using indices as described by either Palm

et al. or Kau et al. (referred to here as the Palm and Kau

indices for clarity) [17, 18]. These scores compare the

abundance of a taxon in the IgA+ fraction to its abun-

dance in the IgA− fraction. This accounts for the overall

pre-sort quantities of taxa on the assumption that, as

both fractions are drawn from the same starting pool of

bacteria, the IgA+ and IgA− abundances are representa-

tive of the proportion of a taxon’s bacteria bound by

IgA. However, these scores are influenced by an add-

itional confounder—that these are relative abundances.

As a result, an increase in one taxon will inherently re-

duce the percentage contribution of others. Thus, the

IgA+ and IgA− abundances of a given taxon are also in-

fluenced by the starting abundances and IgA binding of

all other taxa. Scores like the Kau and Palm indices cor-

relate with taxon-level IgA binding but the necessity to

use relative abundances in IgA-Seq experiments ab-

stracts their interpretation. We will show that, without

careful consideration of these effects, it is possible to

misinterpret results observed using these metrics.

Here, we aim to address these methodological and

analytical limitations to improve the accessibility, quality

and quantitative interpretation of IgA-Seq experiments.

Using germ-free and immune-deficient mice as negative

controls and a strain-specific IgA antibody for positive

controls, we describe the methods that can be used to

validate the quality of each stage of an IgA-Seq experi-

ment and derive an optimised IgA-Seq protocol. In lieu

of a gold standard for benchmarking IgA binding scores,

we develop a platform for simulating an IgA-Seq experi-

ment where the underlying relative IgA binding levels

between taxa are known. Using this, we show that
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existing indices used to score taxon-level IgA binding

are influenced by relative abundances, which needs to be

taken into account when drawing conclusions. We

present novel probability-based scores that circumvent

this by providing direct quantification of the proportion

of bacteria belonging to a given taxon that are bound by

IgA. Finally, we demonstrate the utility of the protocol

and novel probability scores by applying them to study

IgA binding in mouse models of colitis and malnourish-

ment. These methods facilitate generation of high-

quality IgA-Seq data and direct quantification of relative

immunoglobulin binding between taxa.

Results
Quality control standards for bacterial flow cytometry

and IgA staining

We first determined the optimal gating strategy for iso-

lating bacteria from faecal and colonic samples by FACS.

The BD LSRFortessa X20 and FACSAria III flow cyt-

ometers were selected based on an identical configur-

ation with 405, 488, 633 and an additional 561 nm laser,

which eliminated PE-FITC spill over and increased PE

sensitivity. Whereas eukaryotic cells have diameters ran-

ging from 10 to 100 μm, bacteria generally range from

0.3–5 μm, though some can vary by two orders of mag-

nitude and have variable width to height ratios. In stock

configurations, both these cytometers use a sensitive

photomultiplier tube (PMT) to detect side scatter (SSC),

and therefore a minimum SSC threshold was used to

fully capture a wide range of particle sizes.

Bacteria must then be distinguished from small debris

particles in the buffers and the sample itself, particularly

in faecal samples which contain substantial autofluores-

cent debris. For this, nucleic acid dyes have been recom-

mended in flow cytometry applications for diverse hosts

and environments [23–28], and help ensure collection of

adequate DNA for IgA-Seq studies [12, 18–20, 29–31].

It must be noted that nucleic acid staining may be variable

amongst diverse bacteria due to differences in cell perme-

ability and transport mechanisms, the size and number of

copies of genomic DNA and/or asymmetric division.

Studies comparing various DNA dyes have found that the

cell-permeable SYBR Green I effectively stained phylogen-

etically distant bacterial strains, was the most sensitive

and bound specifically to DNA; in contrast to DAPI which

bound non-bacterial particles [25, 26]. This reagent had

also been used successfully in previous studies of im-

munoglobulin coating [30, 31], and was thus selected for

our IgA-Seq protocol. To accommodate bacteria that

stained weakly with SYBR, we utilised a broad gating strat-

egy to capture as much of this heterogeneity as possible

(Fig. S1A). Our SYBR+ gating strategy identified bacteria

in samples from specific pathogen-free (SPF) mice but did

not stain filter-sterilized FACS buffer or stool from germ-

free (GF) mice (Fig. S1A). This approach defined SYBR+

gating parameters that were specific for microbes whilst

minimising contaminating debris (Fig. S1A).

Next, we sought to validate the specificity of the PE-

conjugated rat anti-mouse IgA (mA-6E1) antibody that

would be used in downstream IgA-Seq experiments. We

used IgA-deficient mice as negative controls and a bac-

terial strain-specific IgA antibody as a positive control.

SPF Rag1−/− mice have a complex microbiota but lack T

cells and mature B cells responsible for the production

of IgA. Essentially, no bacteria were stained by the PE

anti-mouse IgA antibody in samples from Rag1−/− mice

compared to roughly 4% of the microbiota in wild-type

SPF mice (Fig. S1B). To further confirm the specificity of

the IgA antibody, we replicated the approach of Kau

et al. [18], using an in vitro system with an artificial 2-

member bacterial community in which only one strain

should be stained by PE anti-mouse IgA. Bacteroides

thetaiotaomicron (B. theta) strain VPI-5482 was coated

with mouse IgA antibody clone 225.4, which is specific

to the capsular polysaccharide of strain VPI-5482 and no

other B. theta isolates [32]. Escherichia coli was coated

with a mouse IgG antibody as a control and mixed with

the labelled B. theta prior to staining with the PE anti-

mouse IgA antibody. Flow cytometry revealed that a

proportion equivalent to the expected B. theta popula-

tion was stained by the PE anti-mouse IgA antibody

(Fig. S1C), confirming the specificity of the antibody to

be used in downstream IgA-Seq experiments. The gating

strategy used for the IgA-Seq protocol (Fig. 1a) was vali-

dated using these SYBR and IgA staining controls.

A benchmarked protocol for IgA-Seq

The goal of IgA-Seq is to isolate bacterial populations

coated by endogenous host IgA and to identify them by

16S rRNA gene sequencing. To this end, it is critical to

identify FACS parameters that maximise the integrity

and purity of sorted samples. Using B. theta as a model

commensal anaerobe, a culture-grown suspension of B.

theta VPI-5482 was once again labelled with strain-

specific IgA and PE anti-mouse IgA, and 100 cells were

sorted as an array onto an agar plate to determine viable

colony-forming units (CFU). The default cytometer set-

tings for 100 and 85 μm nozzles were tested, in addition

to a custom 30 psi configuration for the 85 μm. Intact

bacterial recovery decreased with smaller nozzles sizes

and higher pressures, and viability was enhanced by sort-

ing at the lower 30 psi pressure on the 85 μm nozzle

(Fig. 1b). Only 20% of bacteria could be recovered with

the 70 μm nozzle (Fig. 1b), which was discontinued from

further testing.

To test the sort fidelity of the fractions produced by

each of the configurations, we sorted IgA+ and IgA− bac-

terial populations from SPF mouse stool (Fig. 1a). These

Jackson et al. Microbiome            (2021) 9:33 Page 3 of 22



fractions were then analysed using the same parameters

to determine the percentage of bacteria that were

retained within defined sort gates. All three FACS con-

figurations enabled > 90% sort purity for both IgA+ and

IgA− fractions (Fig. 1c). This is in contrast to magnetic-

activated cell separation (MACS), an alternative sorting

modality which performed poorly with purities of 37.1–

42.9% for the IgA+ fraction (Fig. 1d, e). The FACS con-

figuration utilising the 100 μm nozzle produced the

highest sort purities in both IgA+ and IgA− fractions,

Fig. 1 Benchmarking a protocol to isolate IgA+ and IgA− faecal bacteria by fluorescence activated cell sorting. a IgA-Seq gating strategy. Faecal
bacteria from SPF C57BL/6 mice stained with anti-mouse IgA (PE). Gating on a population based on FSC and SSC characteristics, followed by
discrimination of SYBR+ (FITC) bacteria from autofluorescent (PerCP Cy5.5) debris. IgA+ and IgA− populations were sorted from SYBR+ cells. b
Viability of B. theta VPI-5482 (Bt) collected by various nozzle sizes (μm) and sheath pressures (psi) on the FACSAria III. Culture-grown Bt was
stained with mouse anti-Bt IgA (clone 255.4) and rat anti-mouse IgA (PE, clone mA-6E1). One hundred cells were plated in single cell precision
mode onto BHIS agar plates for enumeration of colony forming units (CFU). c IgA+ and IgA− fractions were collected from SPF C57BL/6J mice (n
= 3). Left: percentage of IgA+ faecal bacteria detected in each collected fraction for a range of nozzle and pressure configurations. Right: sort
purities for these configurations defined by the percentage of events that remained in the designated sort gates. Lines represent means with
SEM. dA portion of the IgA-stained faecal suspensions from Fig. 2a were also separated into IgA+ and IgA− fractions by magnetic activated cell
separation (MACS) as a comparison. PE IgA-stained samples were incubated with anti-PE microbeads and fractions collected by LS column
separation. Representative flow cytometry plots of the starting material in SPF stool and the IgA+ and IgA− fraction isolated by FACS and MACS. e
MACS purity of collected fractions as determined by flow cytometry, technical triplicates from the same stool suspension
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followed by the 85 μm nozzle at 30 psi (Fig. 1c). Practic-

ally, the low pressure required for the 100 μm nozzle re-

duces the flow rate and throughput by ~ 70%. Given that

a minimum of 400,000 cells are required per fraction for

downstream sequencing applications, the 85 μm with 30

psi configuration is vastly more time effective whilst

maintaining high viability and sort purities. We also

found this configuration allowed for sensitive sort con-

trol that, if desired, allows for finer grain collection of

IgA+ subpopulations for instance IgAbright and IgAdim

fractions (Fig. S2). This configuration was selected for

downstream IgA-Seq.

As a final test of the precision of our sorting approach,

we devised an experiment to specifically isolate an IgA+

strain from a complex stool microbiota. We once again

took advantage of our ability to coat B. theta VPI-5482

with mouse IgA in a strain-specific manner, which we

stained separately before spiking into an unstained faecal

suspension prepared from SPF wild-type C57BL/6 mice

(Fig. 2a). Though some members of the faecal micro-

biota are coated by endogenous host IgA, because the

faecal suspension was not stained, only the PE anti-

mouse IgA stained B. theta VPI-5482 culture should be

isolated with this approach. B. theta VPI-5482 was not

found in the SPF stool without spike-in and comprised

roughly 12.5% of the whole community in the spiked

stool mixture, and high sort purities were achieved for

both the IgA+ (97.4–99.4%) and IgA− fractions (97.3–

100%) across three replicate sorts (Fig. 2b). 16S rRNA

gene sequencing was performed on the complex stool

community prior to the addition of B. theta VPI-5482,

and in addition to the IgA+ fractions after three sorts

from the same spiked sample. Genomic DNA from B.

theta was included as a positive control. As a

Fig. 2 Testing IgA-Seq specificity in a complex faecal microbial community. Culture-grown Bt VPI-5482 was stained with mouse anti-Bt VPI-4582
IgA (clone 255.4) and rat anti-mouse IgA (PE, clone mA-6E1), then spiked into an unstained faecal suspension prepared from SPF C57BL/6J mice
with a complex microbiota. a Experimental design and sort setup, gated on SYBR+ cells. b Sorts repeated on the same Bt-stool suspension to
generate technical triplicates. Left: percentage of IgA+ bacteria in the pre-sorted sample, IgA+ and IgA− fractions. Right: purity check on the
collected fractions. Lines represent means with SEM. c Taxa abundances based on 16S rRNA gene sequencing of a complex stool microbiome
(triplicate sequencing replications stool 1–3), triplicate sorted IgA+ fractions (sort 1–3) and Bt genomic DNA (Bt gDNA). Top 10 genera are shown.
d Relative abundance of Bt VPI-5482 (ASV399) in sorted samples
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contamination check, sheath fluid and an extraction

blank (no sample added) were also included as controls,

but these contained undetectable quantities of DNA and

did not produce a viable library. Whilst endogenous

Bacteroides species are present in the faecal microbiota

(Fig. 2c), amplicon sequence variant (ASV) level analysis

confirmed that strain VPI-4582 is absent from C57BL/6

mice (Fig. 2d). The IgA+ fractions were comprised al-

most entirely of B. theta VPI-5482 (ASV399, 98.4–

99.6%; Fig. 2c, d) and lacked any additional unstained

taxa observed in the complex community. This demon-

strates that our optimised protocol can sort IgA bound

bacteria from a complex gut microbiome with high

accuracy.

Pre-sort differences in taxonomic composition and the

relative nature of abundances influences existing IgA

binding scores

Once a sample has been sorted, amplicon-based sequen-

cing of extracted DNA from the sort fractions is used to

determine the relative abundances of the taxa within

them. As discussed previously (see “Background”), the

abundance of a taxon in the IgA+ fraction is a function

of both its likelihood of IgA binding and its overall

abundance in the pre-sort community. As we are princi-

pally interested in the former, we must use scoring met-

rics to quantify the relative IgA binding of taxa whilst

taking their pre-sort abundances into account. To date,

this has principally been achieved using indices that

compare taxon abundances in the IgA+ and IgA− frac-

tions and two such indices have been described—the

Palm and Kau indices (see “Methods”). Using a toy ex-

ample where two samples have identical IgA binding af-

finities for two species but differ in their starting

abundances, we can see that these scores are still influ-

enced by pre-sort abundances and produce different af-

finity scores for each sample (Fig. 3a). This is because

these scores do not account for the fact that abundances

are relative measures and thus the starting abundance

and IgA binding of all other taxa will also influence the

observed abundance of a given taxon in the sorted

fractions.

If we instead consider the IgA+ relative abundance as

the probability of a taxon being within the IgA+ fraction,

it is possible to apply Bayes’ theorem to derive a poster-

ior probability of IgA binding for each taxon, i.e. the

probability that a given bacterium will be bound to IgA

given that it belongs to a given taxon (see “Methods” for

a more detailed discussion). In our example, this poster-

ior probability is not influenced by the effect of pre-sort

taxonomic composition on relative abundances and pro-

vides a direct quantification of the likelihood of IgA

binding for each taxon (Fig. 3a). It is also possible to

apply the same approach to the IgA− fraction and

estimate the probability a bacterium will be in the IgA−

gate given that is belongs to a given taxon. Here, we de-

scribe two scoring methods based on these posterior

probabilities: (1) the IgA+ probability—direct use of the

IgA+ fraction probability; (2) the probability ratio—a

composite score derived from the ratio of the IgA+ frac-

tion probability to the IgA− fraction probability (see

“Methods”).

Probability-based scores accurately recapitulate relative

IgA binding in simulated data

As the true level of IgA binding to each bacterial taxon

cannot be measured directly in vivo, we created a plat-

form to simulate an IgA-Seq experiment in silico to

benchmark scoring methods. This allowed IgA-Seq data

to be generated with pre-defined relative levels of IgA

binding between species. In each simulation, we main-

tain the relative level of IgA binding for each species

across all samples and only change the pre-sort abun-

dances of species. This allows us to determine how ro-

bust scoring methods are to these effects. A perfect

scoring method should produce identical IgA binding

scores for each species across all samples, with a relative

ranking of IgA binding between species that matches the

pre-defined levels.

Ten species were simulated, each having a unique nor-

mal distribution of IgA binding. IgA binding was repre-

sented by an arbitrary value that just represents the

relative levels of binding between taxa (Fig. 3b). Thirty

samples were generated each containing 100,000 bac-

teria. The bacteria were assigned to each of the ten spe-

cies randomly to produce different log distributed

starting abundances for each sample (Fig. 3c). Each bac-

terium in each sample was then assigned an IgA binding

value by sampling from the distribution of its species.

Bacteria whose binding values were above four were

considered IgA+ and those below two in the IgA− frac-

tion. These thresholds were chosen based on the overall

distribution of IgA values to mimic the extremes se-

lected in a typical IgA-Seq experiment (Fig. 3b). The

number of bacteria in each sample’s IgA+ and IgA− frac-

tion was used to determine the size of the fractions and

the species counts were converted to taxonomic relative

abundances (Fig. 3c). These values were in turn used to

derive the various IgA binding scores.

Samples had different IgA+ and IgA− fraction sizes, de-

fined as the percentage of total bacteria within the frac-

tion, due to their different initial taxonomic

compositions and the differing IgA binding of the ten

species (Fig. 3d). Given that each taxon’s IgA binding

was constant across samples, we would expect there to

be no variation across samples if an IgA binding score

properly adjusts for the differences in sample compos-

ition. Comparing the consistency of scoring methods
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Fig. 3 The influence of pre-sort abundances on existing IgA-Seq scores can be overcome using probability-based approaches. a A toy example
where two samples have two species with the same IgA binding profiles but different starting abundances. b The distribution of arbitrary IgA
binding values used for the ten species in the IgA-Seq simulations, dashed lines indicate the IgA+ and IgA− fraction thresholds. Species coloured
as in (c). c The species abundances in the pre-sorted, IgA+ and IgA− samples for the 30 samples simulated. d The size of the IgA+ and IgA−

fractions in the simulated samples as a percentage of their total bacteria. e Comparison of variance in IgA binding estimates across samples using
each scoring approach. Coefficient of variance was calculated for each species individually. **p < 0.01, ****p < 0.0001 in Mann-Whitney tests after
FDR correction. Boxes represent the median and interquartile range (IQR) and the whiskers the largest and smallest values within one and half
IQR of the upper and lower IQR limits. f Pearson and Spearman correlations between the true mean IgA binding scores used to simulate data
and the scores estimated by each of the different indices
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across samples, the IgA+ probability had a significantly

lower coefficient of variation than the Palm index and

the probability ratio had significantly lower variation

than all other scores. The probability-based methods

were more consistent than the Palm and Kau indices,

and thus less influenced by the differences in pre-sort

taxonomic composition between samples (Fig. 3e).

When considering the relative rankings of the species,

all four scoring methods were significantly correlated

with the true IgA binding affinities and ranked species in

the correct order of IgA binding (Fig. 3f). However, the

Palm and Kau indices had a lower correlation than ei-

ther of the probability-based methods due to the larger

variation between samples. Comparing the results of

Pearson and Spearman correlations, it is apparent that

the Kau and probability ratio scores produce a more lin-

ear distribution than the other two methods. This is due

to their consideration of both the IgA+ and IgA− frac-

tions, which is not in the case in the IgA+ probability,

and taking the log to centre the score, which is not the

case in the Palm index or IgA+ probability. Overall in

this initial simulation, probability-based methods proved

robust to the influences of pre-sort taxon levels on post-

sort relative abundances, which introduced variability to

the Palm and Kau indices. The probability ratio almost

perfectly recapitulated the relative relationships of the

true IgA binding values.

Probability-based methods overcome biases effecting the

interpretation of between group comparisons

The Kau and Palm indices showed variation in scores

due to pre-sort differences in taxonomic composition.

This could be particularly problematic when comparing

IgA binding between groups that have inherent and con-

sistent differences in microbiome composition. This is

likely, as a key use-case for IgA-Seq is to determine if

previously established microbiome differences between

groups, such as healthy controls and disease patients, are

being driven by differential targeting of the IgA pool.

To determine the effects of pre-sort compositional dif-

ferences on inter-group comparisons, we repeated the

simulation but divided samples into a case and control

group. The simulation was run with 30 samples per

group each containing ten species with the same under-

lying IgA affinities as before (Fig. 3b). Random initial

abundances were then generated as previously but add-

itional Species 10 (with a moderate IgA affinity value)

was introduced to the 30 case samples—simulating out-

growth of one specific taxon in a disease. In this simula-

tion, as before, an optimal scoring approach will not

detect any differences between the cases and controls

whose species share the same IgA binding and only dif-

fer in their pre-sort composition.

As expected, Species 10 constituted a larger percent-

age of the relative abundances in both the IgA+ and

IgA− fractions of the cases compared to the controls

(Fig. 4a). This led to a significantly higher IgA− fraction

size in the control group when compared to cases but

no difference in the IgA+ fraction sizes (Fig. 4b). Com-

paring the overall distribution of scores, there was

greater variability across samples in the Kau index than

the probability ratio, and Species 10 IgA binding esti-

mates were higher in cases using the Kau index (Fig. 4c).

When testing differences between the simulated case

and control groups, the Kau index inferred significant

differences in the IgA binding of both Species 10 and

Species 6 where there should be none (Fig. 4d). This is

an artefact of measuring relative abundances. In the sim-

ulated disease cases, there was an increased abundance

of Species 10 in the IgA+ fraction. This reduces the rela-

tive contribution of Species 6 (the highest affinity taxa

that would otherwise constitute the majority of the IgA+

fraction) and alters the ratio when calculating the Kau

score. No significant differences were observed using the

Palm index but this only resolved the highly bound Spe-

cies 6, which displayed increased variance in the controls

(Fig. S3). The probability ratio resolved both high and

low IgA binding of taxa and was more resistant to the

influence of the pre-sort abundances, maintaining simi-

lar estimates between cases and controls (Fig. 4d).

IgA-Seq in a mouse model of colitis produces different

outcomes across scoring methods

To demonstrate the utility of our benchmarked IgA-Seq

protocol, we applied it to study commensal IgA binding

in a mouse model of colitis. Helicobacter hepaticus (Hh)

can inhabit the murine intestinal tract without harm but

can emerge as a pathogen when host immune responses

are dysregulated as a result of either genetic susceptibil-

ity or targeted immunomodulation [33]. Abrogation of

anti-inflammatory IL-10 signaling by administration of

an anti-IL10 receptor antibody (aIL10R) results in Hh-

driven colitis [34]. We recapitulated this model in a

gnotobiotic C57BL/6 mouse colony stably colonized

with a 12-member microbiota (MM12) that recapitulates

the taxonomic diversity of a more complex community

[35]. This provides a defined minimal microbiota to spe-

cifically interrogate IgA binding.

Control MM12 mice treated solely with weekly aIL10R

injections did not develop any pathology (Fig. 5a). In

contrast, MM12 mice that received aIL10R in conjunc-

tion with H. hepaticus (Hh+aIL10R) developed marked

inflammation and colitis after 14 days (Fig. 5a).

Lipocalin-2, released by activated neutrophils and a bio-

marker for inflammation [36], was also elevated in the

colon contents of Hh+aIL10Rmice but not control

aIL10R only mice, whose lipocalin-2 levels were similar
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to steady-state mice lacking aIL10R injection (Fig. 5b).

There was a significant increase in IgA-coating of co-

lonic bacteria from colitic mice (Fig. 5c, d). Colonic con-

tents from both control and colitis groups were

subjected to IgA-Seq to identify taxa targeted during

inflammation.

Taxa were profiled in the pre-sort samples and the

IgA+ and IgA− fractions using 16S rRNA gene

Fig. 4 The probability ratio overcomes pre-sort abundance biases when carrying out between-group comparisons. a Simulations were carried out
as in Fig. 3 with an additional 30 samples that were initiated with an exaggerated abundance of Species 10 (cases). This plot shows the species
abundances in these case and control samples’ pre-sort, IgA+ and IgA− fractions using the thresholds as in Fig. 3b. b Differences in the IgA+ and
IgA− fraction sizes as a percentage of total bacteria between cases and controls. P value shown from Mann-Whitney tests. c Heatmaps showing
the scores estimated by the Kau and probability ratios across all samples. d Comparison of IgA binding scores for the ten species in cases and
controls when using either the Kau score or the probability ratio. Significant differences are highlighted with * (FDR adjusted Mann-Whitney p <
0.05) and species are ordered by true IgA binding value. In all boxplots the boxes represent the median and interquartile range and the whiskers
the largest and smallest values within one and half IQR of the upper and lower IQR limits. In (d), points outside this range are shown

Jackson et al. Microbiome            (2021) 9:33 Page 9 of 22



Fig. 5 IgA-Seq in a mouse model of colitis with a defined 12-member microbiota. MM12 mice were administered weekly injections of anti-IL10R
(day 0, 7). Controls received anti-1L10R alone (aIL10R, n = 4), and the colitis group were additionally infected with H. hepaticus at the start of the
experiment (Hh+aIL10R, n = 4). a Experimental design and representative colon histology with haematoxylin and eosin staining. b Mouse
lipocalin-2 ELISA as a measure of colonic inflammation. Lines at means and SEM. **p < 0.01 unpaired Mann-Whitney test, ns non-significant. SS
represents steady state mice with no aIL10R exposure. c Representative flow cytometry plots of the percentage of colonic MM12 bacteria coated
by IgA. d Percentage of bacteria coated by host IgA and subjected to IgA-Seq. P values represent Mann-Whitney tests. e Relative abundance
plots showing the MM12 species in each sample. Each row represents an individual animal. f Non-metric multi-dimensional scaling of pre-sort,
IgA+ and IgA− fractions from Bray-Curtis distances. g Left: means and 95% confidence intervals of IgA binding scores significantly different
between groups. Significance determined by complete permutation of group labels where, exact permuted p < 0.1). Right: Mean difference of
scores between groups (colitic -control). Mean is normalised by its standard deviation for comparability between scoring methods (using the
strictly standardised mean difference SSMD). h Left: boxplots of A. muciniphila relative abundance. Centre: boxplots of IgA+ fraction size. Right:
boxplots of adjustment for the difference in fraction size (abundance in the IgA+ fraction size multiplied by A. muciniphila abundance). In the
boxplots in (d) and (h), boxes represent the median and IQR and the whiskers the largest and smallest values within one and half IQR of the
upper and lower IQR limits
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sequencing. Analyses were carried out at the level of

species summarised ASVs. Using the V4 16S rRNA gene

region, we were able to distinguish almost all members

of the MM12 and Hh either by species level assignment

or sole membership of a genus (Table S1). The excep-

tion was two closely related Clostridium species that

were both assigned to Clostridium XlVa. A blank se-

quencing control was used to identify potential contami-

nants introduced at the DNA extraction and library

preparation stage. Given that we used mice with a de-

fined microbiota, we were also able to determine the

presence of contaminants introduced elsewhere. After

removing taxa observed in the blank control, several un-

expected (non-MM12 or Hh) species remained (Fig.

S4A). The majority of these were at a lower abundance

than the expected species across all samples. These were

removed from later analyses using an abundance thresh-

old chosen to remove rare taxa whilst retaining the ma-

jority of total observations (Fig. S4B). It is of note that

contaminant taxa were far more predominant in the

sorted IgA+ and IgA− fractions. This may be due to the

lower biomass in these samples but could also be due to

species being introduced during sorting or library prep-

aration. These were accounted for by additional screen-

ing to only retain species observed in the pre-sort

sample for each mouse, which led to no unexpected taxa

being observed in any sample (Fig. S4C). Thus, we rec-

ommend using abundance thresholding followed by val-

idation against pre-sort samples to filter taxa prior to

scoring in IgA-Seq analyses.

After quality control, Hh was detected in the whole

and IgA+ fractions of all four Hh+aIL10R mice and sam-

ples clustered clearly by both experimental condition

and sort fraction (Fig. 5e, f). Hh was also detected in the

pre-sort sample in one of the aIL10R only mice, but as

this was not detected in either the IgA+ or IgA- frac-

tions, it ultimately did not influence the IgA binding

scores for this mouse. We compared the different IgA

binding scores across all mice, focusing on the methods

that included both the IgA− and IgA+ fractions. All

methods broadly ranked species IgA binding in the same

order and there was a significant positive correlation be-

tween all scores (Fig. S5A). The Kau index and probabil-

ity ratio shared the strongest correlation, with the main

difference between the two being a more even distribu-

tion of values within the probability ratio than in the

Kau index, which contained isolated peaks of scores

where taxa were predominantly observed in the IgA+ or

IgA− fraction (Fig. S5A).

When comparing species IgA binding scores between

groups, the method used had important and distinct ef-

fects on the interpretation of the results. All methods

identified significant differences in IgA binding of Clos-

tridium between the Hh+aIL10R and aIL10R only

treatments (Fig. 5g, Fig. S5B). This was the largest effect

observed and was clearly detected by all three methods

in the same direction with an increased IgA binding of

Clostridium in colitic mice. Some taxa, such as Entero-

coccus, were only observed in the IgA+ and/or IgA− frac-

tions in the colitic mice. It was therefore not possible to

compare their binding relative to the control mice. This

highlights the need to additionally observe presence/ab-

sence patterns of taxa in the fractions alongside using

quantitative scoring methods.

The Kau index and probability ratio additionally de-

tected a significant difference in IgA binding to A. muci-

niphila between the groups. However, the Kau and Palm

scores were lower for A. muciniphila in colitic mice,

whereas the probability ratio was higher (Fig. 5g). This

discrepancy results from the large contribution of Hh to

the relative abundances in the IgA+ fraction of the colitis

group. This inherently reduced the observed relative

abundance of A. muciniphila in this fraction even in the

absence of a change in the absolute levels bound to IgA.

This is less pronounced in the IgA− fraction (where less

Hh is observed) and thus the overall IgA+/IgA− ratio of

A. muciniphila was reduced (Fig. 5g). However, even

though A. muciniphila accounts for a reduced percent-

age of the IgA+ fraction, the total IgA+ fraction is much

larger in the colitic mice (Fig. 5h). A smaller percentage

of this much larger total IgA+ fraction actually repre-

sents a larger total amount of A. muciniphila bound to

IgA in the colitic group (Fig. 5h). Thus the probability

ratio, which accounts for the fraction sizes, infers a posi-

tive rather than negative shift in IgA binding of A. muci-

niphila. This highlights the benefit of using probability-

based metrics that provide a direct estimate of the likeli-

hood of IgA binding for each taxon in comparison to

solely abundance-based indices, which might lead to a

conflicting interpretation without careful consideration

of what the scores represent.

The probability ratio increases power to detect

differences in IgA binding between conditions

As an additional test of the probability ratio, we applied

it to a published IgA-Seq dataset with extensive experi-

mental evidence to support differences in IgA binding

between conditions. Huus et al. used FACS-based IgA-

Seq to study bacterial binding of GI IgA in a mouse

model of nutrient restriction [20]. Mice on a conven-

tional (CON) or moderately malnourished diet (MAL)

were tracked from weaning to adulthood. Applying the

Kau index, they found that mice on a conventional diet

develop increased binding of Lactobacillus as they age

from three to seven weeks old, whereas malnourished

mice do not. They observed this effect to be consistent

across different sites in the GI tract and confirmed it

was driven by differential binding of IgA to Lactobacillus
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using an enzyme-linked immunosorbent assay (ELISA).

This provided an ideal dataset to test the robustness of

the probability ratio.

Huus et al. provided processed 16S rRNA gene sequen-

cing data generated from faecal samples used in their

study and the associated IgA+ and IgA− fraction sizes,

which had been recorded for a subset of the original data

[20]. This enabled the probability ratio to be calculated for

samples from four CON and MAL mice at each of the

three ages. The Kau score (used in the original study) was

also calculated as a comparator.

Comparing between diet and ages using the Kau index, we

identified five taxa with differential IgA binding (Fig. 6a).

Lactobacillus was the only taxon significantly different by the

interaction of age and diet and reflected the patterns

observed previously. Three taxa, Lactococcus and unclassified

Lachnospiraceae and Erysipelotrichaceae, displayed increased

IgA binding in MAL mice. All three of these taxa were ob-

served with the same association in the original analysis of

the dataset. We additionally observed a reduced IgA binding

of Roseburia in 3week-old MAL mice. This was not reported

in the Huus et al. analysis using the Kau index. However,

due to the smaller sample size available we explicitly targeted

our testing to between group effects and the prior analysis

did not.

Carrying out similar modelling using the probability

ratio to score IgA binding, we reproduced all of the as-

sociations identified using the Kau index with the excep-

tion of the unclassified Erysipelotrichaceae taxon, which

was no longer significantly different between groups

Fig. 6 Increased power when using the Probability Ratio to reanalyse data from Huus et al. 2020. a Boxplots showing the Kau index scores at
each age for all taxa that were significantly different by either diet or the interaction of age and diet in two-way ANOVAs (nominal p < 0.05).
Each plot shows which of diet and the diet:age interaction were significant and their p-values. Boxes represent the median and IQR and the
whiskers the largest and smallest values within one and half IQR of the upper and lower IQR limits. UC represents taxa that were unclassified
below the given taxonomy. b Plot as in (a) but for the probability ratio scores. c Left: Scatterplot of the p-values for all the comparisons that were
significant in either (a) or(b) showing the p value when using the Probability Ratio (y) or Kau Index (x). The red-line shows y = x, highlighting the
lower p values in the probability ratio tests. Right: Scatterplot as for p values but showing the effect size (difference in means between the two
diets) at each of the three ages for all of the significant comparisons in (a) and (b). Effect size is quantified as the strictly standardised mean
difference (MAL-CON). d Boxplots comparing the absolute coefficient of variation of each taxon’s score within each experimental group (for all
taxa detected in the Huus et al. dataset) when using either the Kau Index or probability ratio. Significance shown from Mann-Whitney U test
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(Fig. 6b). Across all of the other associations detected as

significant by either the Kau Index or probability ratio,

the probability ratio consistently produced lower p

values (Fig. 6c, left). This reflects an increased magni-

tude in the differences between the mean scores of the

MAL and CON groups in most comparisons when using

the probability ratio compared to the Kau index (Fig. 6c,

right). This can in part be attributed to a reduced vari-

ation in taxon scores within groups when using the

probability ratio (Fig. 6d), as was also observed in the

simulated data (Fig. 3e). This increased power is an add-

itional benefit of accounting for the size of the IgA+ and

IgA− fractions when scoring IgA-Seq data.

Discussion
The development of IgA-Seq has enabled powerful, un-

biased investigation of immune interactions between

host and commensal microbiota. As this technique gains

wider adoption, it is critical to benchmark experimental

and analytical approaches to ensure accurate quantifica-

tion and interpretation of IgA targeting. To this end, we

provide an optimised IgA-Seq protocol and novel scor-

ing approaches that facilitate accurate identification of

IgA-coated bacteria. We developed a simulation plat-

form that enabled the first formal testing of IgA-Seq

scores. This revealed that existing scoring approaches

are influenced by relative abundances and, without care-

ful consideration, can lead to the inference of alternate

IgA binding patterns solely as a result of pre-sort abun-

dance shifts. Instead, we have developed new

probability-based scoring methods that overcome these

limitations by directly quantifying the likelihood of a

taxon being bound by IgA. Importantly, as we have

showed in both simulated and in vivo datasets, these

probability-based scores provide increased power to de-

tect differences in IgA binding between groups and pro-

mote accurate interpretation of IgA targeting of taxa in

health and disease states.

Analysis of in silico and in vivo datasets revealed that

it is critical to properly account for the pre-sort taxo-

nomic composition of a sample given its effect on the

relative nature of post-sort fraction abundances when

comparing IgA targeting between case and control

groups. Scoring indices that neglect to do so can infer

artificial and/or conflicting shifts in IgA binding esti-

mates between experimental groups. Simulating consist-

ent group-wise shifts in pre-sort abundances resulted in

significant differences in taxon level binding estimates

when using the Kau index. It is not that the Kau scores

are incorrect, but rather that they represent an abstract

combination of both the IgA binding and abundance of

the taxon scored, and the IgA binding and abundance of

all other taxa in the sample. This inherently complicates

their interpretation. In contrast, the probability-based

scores adjust the taxonomic abundances by the number

of bacteria in IgA+ and IgA− fractions. This overcomes

the relative nature of quantification, which removes the

influence of other taxa, and allows for proper adjustment

for pre-sort composition. As a result, probability-based

scores provide a direct measure of the likelihood that a

bacterium is bound to IgA given that it belongs to a spe-

cific taxon. As shown with the increased binding of A.

muciniphila in the colitis model, this simplifies the inter-

pretation of between group changes in IgA binding

when using the probability ratio.

Aside from artefacts that arise in between-group com-

parisons, all scoring indices were correlated when con-

sidering global patterns across samples. This suggests

that taxa ranked as generally highly bound in previous

studies are unlikely to change if quantified using the

novel probability-based scores. However, we found that

the influence of pre-sort taxonomic composition meant

there was higher variability between samples when using

the Kau and Palm scores compared to the probability-

based methods. This increased variance reduces the

power to detect effects in experimental data and resulted

in a moderate increase in power when applying the

probability ratio to the Huus et al. data. Maximising

power by using probability-based metrics is particularly

desirable given the high investment of experimental time

required to generate IgA-Seq data, which can introduce

a practical limit on sample sizes.

Our work highlights the importance of selecting scores

based on the underlying biological question.

If the primary interest is to simply identify which taxa

have the most bacteria bound by IgA, then the IgA+

abundance of a taxon can be used directly. If the pur-

pose is to identify which taxa are being more/less prefer-

entially bound over other taxa, which is arguably more

relevant when studying IgA targeting, then probability-

based scores that account for the relative nature of taxo-

nomic abundances should be used (Fig. S6). To select

between using the IgA+ probability or probability ratio:

if the sole interest is to identify taxa most likely to bind

IgA then the IgA+ probability is sufficient and benefits

from its direct interpretability as a probability of IgA

binding (ranging from 0 to 1); otherwise, the probability

ratio provides a more generally applicable score that also

provides better resolution of relative binding between

taxa with lower IgA binding. For example, detecting the

loss of Lactobacillus binding in undernourished mice de-

tected in the Huus et al.’s study [20]. The probability ra-

tio additionally benefits from being centred on zero, so a

positive or negative score indicates if the majority of a

taxon’s bacteria fall into the IgA+ or IgA− fraction re-

spectively. Score choice might also be based on available

sequencing data. The IgA+ probability requires sequen-

cing of the IgA+ fraction and the pre-sort sample and
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the probability ratio requires sequencing of the IgA+ and

IgA− fraction. However, sequencing of both the IgA+

and IgA− fractions and the pre-sort sample has often

been applied in previous studies [17, 18]. As we have

shown here, this provides additional benefits in the de-

tection of contaminants introduced by sorting and over-

all compositional differences between experimental

groups.

We have also presented an optimised IgA-Seq protocol

that enables precise separation of IgA+ and IgA− gut

microbiota, and their cultivation to support subsequent

interrogation in gnotobiotic disease models and/or strain

phenotyping. Our FACS-based protocol outperformed

MACS in sort purity and benefits from innate quantifi-

cation of the IgA+ and IgA− fraction sizes required to

calculate the probability ratio. We employed a protocol

design strategy that combined individual approaches ap-

plied in previous studies including the controls used for

validation of the staining and gating strategy [17, 18].

Whilst access to specific flow cytometers may vary, the

concepts in experimental design presented herein can be

applied to validate IgA-Seq protocols on different sort

modalities. To minimize technical variation between ex-

periments, regular instrument calibration alongside

staining controls and gating templates should be

employed.

This framework can additionally be used to evaluate

reagent selection, a process essential to obtaining robust

IgA-Seq results. To differentiate bacteria from intestinal

debris, we utilised a sensitive SYBR I dye that efficiently

stains diverse bacteria and has been used in other IgA-

Seq studies [30, 31], whilst others have used SYTO BC

dyes [12, 18, 20]. More comprehensive studies are

needed to elucidate the potential for taxon-specific false

positives and negatives that occur with the usage of dif-

ferent DNA dyes in different environmental contexts.

We selected anti-mouse IgA antibody clone mA-6E1 for

our studies, which has been used by Palm et. al., Huus

et. al. and a large number of other IgA-Seq studies [6,

29, 37–40]. We utilised the same antibody lot for all

experiments within this study, but staining controls

and gating strategies need to be verified in instances

of lot-to-lot variation. Other studies have also used

polyclonal antibodies and biotin-streptavidin staining

approaches [12, 18]; future work applying similar

benchmarks will help shed light on how these may

differ in specificity and/or affinity and the subsequent

impact on IgA-Seq results. The use of germ-free and

Rag1−/− mice as negative controls and our novel posi-

tive control approach to protocol evaluation, isolating

pure IgA-bound B. theta from a complex microbiota,

provide benchmarking standards to validate these

various reagents in the context of specific experimen-

tal setups.

16S rRNA gene sequencing has enhanced our ability

to identify microbes in a variety of environments, includ-

ing low biomass samples for IgA-Seq. A major challenge

to accurately characterize low biomass communities is

contamination from external sources, as we observed in

the enrichment of low abundance contaminant reads in

our sorted samples. Contamination could potentially

occur during sorting, DNA extraction and library prep-

aration [41]. Whilst our negative FACS sheath controls

were blank, environmental contamination could still

occur whilst sorting IgA+ and IgA− fractions as sample

and collection tubes remain open for the duration of the

sort. In our in vivo model, using a library prepared from

a blank kit, we were able to trace some but not all con-

taminants to the DNA extraction step, a well-established

source of contaminants [41]. In addition, index hopping

and stochastic sequencing effects have been shown to

contribute to noise in low biomass samples on the Illu-

mina MiSeq platform [42, 43]. In our study, even utilis-

ing a defined MM12 community along with the

inclusion of sheath and extraction controls, there were

inevitably low abundance contaminants that needed

screening from the sorted fractions. This highlights the

need to carryout rigorous controls for the low biomass

sequencing runs. In particular, we found it invaluable

having the pre-sort sample sequencing available as a ref-

erence to remove taxa not observed in this higher bio-

mass source.

Similar approaches to IgA-Seq have also been used to

study other isotypes, such as IgM and IgG [22, 44–46],

and immunoglobulins isolated from other sites, for ex-

ample quantifying GI bacteria bound by serum IgA [29].

Expanding beyond IgA targeting of the gut microbiota,

in future work, our protocol design strategy and scoring

approaches could be applied to investigate other sample

types and immunoglobulins. Further work could also be

done to explore other sequencing variables influencing

IgA binding scores. For example, amplicon-based taxo-

nomic abundances are inherently influenced by PCR

biases, differences in 16S rRNA gene copy number and

the taxonomic resolution of the variable region amplified

[47–49]. However, these are more general limitations of

16S rRNA gene sequencing and their impact should be

minimised assuming they occur uniformly in the IgA+

and IgA− fraction. Mock sorts have previously shown

that the sorting process itself has little influence on com-

munity structure [17].

Technical variation in the isolation of IgA+ bacteria

will also influence IgA binding estimates. We have not

explored the influence of sort purity on binding esti-

mates. We assume that using a less pure sorting ap-

proach such as MACS would reduce the accuracy of IgA

binding indices across the various scoring approaches.

This is not likely to influence study outcomes if sort
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purity is uniform across an experiment but it may be

valuable to ensure that this is the case; in particular to

check that sort purity is not correlated with experimen-

tal conditions. Similarly, using a more sensitive anti-IgA

antibody or setting wider IgA+ gating in FACS will in-

crease the size of the IgA+ fraction and inherently in-

crease the likelihood a taxon will be IgA+. This will not

influence relative scoring between taxa within a sample

but it is important to maintain these variables across

samples in an experiment and/or consider randomisa-

tion of samples across technical batches to avoid con-

founding of experimental groups. For similar reasons,

absolute score values from any method are unlikely to

be analogous between experiments; however, the relative

rankings of taxa should remain comparable. IgA-Seq is

additionally limited to scoring relative, overall, IgA bind-

ing between taxa. Understanding what drives the ob-

served differences, such as alterations in the spatial

distribution of bacteria or changes in the affinities of

host IgA, requires additional targeted experiments, such

as fluorescence in situ hybridisation and enzyme-linked

immunosorbent assays [10, 20].

We have developed an optimised experimental proto-

col and novel scoring methodologies for IgA-Seq. These

enable robust and accurate identification of commensal

bacteria targeted by the host immune response. The

IgAScores R package facilitates the application of these

scores and we have presented a guiding framework for

selecting appropriate metrics. Furthermore, its simula-

tion platform will aid the future development of IgA-Seq

analytics. This work enhances the accessibility and qual-

ity of IgA-Seq studies, which should consequently un-

cover novel mechanistic insights into host-microbiota

interactions and the microbial drivers of health and

disease.

Conclusion
Existing methods used to score taxon-level IgA binding

in IgA-Seq experiments are influenced by the initial

taxonomic composition of samples and the relative na-

ture of abundance quantification. This inflates the vari-

ability in these scores and can have important

consequences in between-group comparisons, where

scores might infer false or contrasting associations as a

result of systematic differences in microbiome compos-

ition between groups. Probability-based IgA scores can

be used that overcome this by providing a direct esti-

mate of the likelihood a bacterium will be bound by IgA

given its taxonomy. These scoring methods are available

in the IgAScores R package. Combined with the practical

approaches described here, these analytical develop-

ments enhance our ability to study taxon-level immuno-

globin binding of commensal microbiota; by increasing

the power to detect associations through reduced

variability across samples and by providing an accurate,

direct, quantification of taxon binding from IgA-Seq

data.

Methods
Indices for scoring relative IgA binding of taxa in IgA-Seq

experiments

Palm index

In Palm et al.’s initial description of IgA-Seq, they simply

used the ratio of a taxon’s IgA+ to IgA− abundance in a

score termed the IgA coating index [17]. Here, for clar-

ity, we refer to this as the Palm index (Palm). If IgA+

and IgA− represent taxon abundances in the respective

fractions, for taxon i in sample j the Palm index is de-

fined as in Eq. 1, where if IgA −

ij is equal to zero a

pseudo count (c) is added to negate division by zero.

Throughout, we use a pseudo count of a similar magni-

tude but below the smallest abundance observed in any

sample.

Palmij ¼
IgAþ

ij

IgA −

ij

ð1Þ

Kau index

Kau et al. described the IgA index, which is also solely

based on IgA+ and IgA− relative abundances [18]. It uses

log transformation to make scores more comparable be-

tween taxa and considers the difference of the IgA+ and

IgA− abundances relative to their total. This has the

benefit of centering the score such that positive and

negative values reflect overall higher abundances in the

IgA+ or IgA− fractions respectively. Using notation as

previously, the Kau index (Kau) is defined as in Eq. 2.

Kauij ¼ −

log IgAþ
ij þ c

� �

− log IgA −

ij þ c
� �

log IgAþ
ij þ c

� �

þ log IgA −

ij þ c
� � ð2Þ

IgA+ probability

The relative abundances of taxa in a fraction or pre-sort

sample sum to one. These can be considered as prob-

abilities. For example, taxa abundances in the pre-sort

sample represent the probability that any given bacter-

ium in the sample belongs to a given taxon. The abun-

dances in the IgA+ and IgA− fractions can be considered

as conditional probabilities (i.e. the probability of event

A given that B has occurred). For instance, IgA+ abun-

dances represent the probability a bacterium belongs to

a taxon given that it is sufficiently bound to IgA to be in

the IgA+ gate. In the case of IgA-Seq, we are interested

in the inverse: the probability that a bacterium will be

IgA+ if it belongs to a given taxon. This is a posterior
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probability and can be calculated following Bayes’ the-

orem (Eq. 3).

P AjBð Þ ¼
P BjAð ÞP Að Þ

P Bð Þ
ð3Þ

Where P(A| B) is the posterior probability that a bac-

teria is IgA+ given that it is from a chosen taxon. P(A) is

the probability that any bacterium is bound to IgA suffi-

ciently to be in the IgA+ fraction—measured as the per-

centage of bacteria that fall within IgA+ FACs gate. P(B)

is the probability that a bacterium will belong to a given

taxon—measured as the taxon’s relative abundance in

the pre-sorted sample. P(B|A) is the probability a bac-

teria belongs to the taxon given that it is in the IgA+

fraction—measured by the taxon’s IgA+ abundance. In

which case, the posterior probability (ProbIgA
þ

) for taxon

i in sample j is defined as in Eq. 4.1. Where FracSize

equals the fraction of sorted bacteria in the IgA+ gate

and PreSort equals taxon abundances in the pre-sorted

sample.

Prob
IgAþ

ij ¼
IgAþ

ij FracSize
IgAþ
j

PreSortij
ð4:1Þ

This measure will be referred to as the IgA+ probabil-

ity. The numerator provides a direct estimate of the pro-

portion of initial bacteria bound to IgA avoiding the

relative influence of other taxa in the IgA+ fraction

abundance. The numerator must be normalised to the

total amount of that taxon in the original sample prior

to sorting (PreSort) to make it comparable across taxa.

As this is the pre-sort level of the taxon, the denomin-

ator should theoretically always be larger or equal in

value. However, due to amplification and other technical

biases, this may not practically be the case in IgA-Seq

data, thus Eq. 4.2 can be used to account for this and en-

sure probability estimates fall below 1.

Prob
IgAþ

ij ¼
IgAþ

ij FracSize
IgAþ
j

max PreSortij; IgA
þ
ij FracSize

IgAþ
j

n o

ð4:2Þ

This will assign a probability of 1 when the estimate of

IgA+ bacteria in a taxon is larger than the observed total

abundance in the pre-sort sample, a reasonable assump-

tion being that very high levels of IgA binding would be

necessary to produce these results.

This score only requires two additional pieces of data

than the Kau and Palm indices: the taxonomic abun-

dances in the pre-sort fraction and the percentage of

sorted bacteria that are in the IgA+ gate in the FACS

run. The latter value is already generally recorded during

sorting and most IgA-Seq studies to date have profiled

the microbial communities from pre-sorted sample s[17,

18]. Furthermore, if the only interest is to identify highly

bound taxa, this method can negate the need to se-

quence the IgA− fraction.

Probability ratio

The IgA+ probability only provides a measure of the

likelihood a taxon is sufficiently bound to IgA to be in

the IgA+ fraction. The converse, the IgA− probability,

can also be calculated by simply substituting the IgA−

abundances and fraction sizes into the IgA+ probabil-

ity equation. The IgA− probability thus represents the

probability a bacterium is in the IgA− fraction given

it belongs to a given taxon. If we calculate both the

IgA+ and IgA− probabilities from a sample, we can be

combine the estimates by comparing the ratio of the

IgA+ probability to IgA− probability, a score we term

the IgA probability ratio (Eq. 5). This provides finer

granularity of estimates of the relative binding be-

tween taxa with low levels of IgA binding than using

the IgA+ probability alone. Additionally, as both the

IgA+ and IgA− probabilities are normalised to the tax-

on’s abundance in the pre-sort fraction, this can be

removed from the equation (Eq. 5) negating the need

to sequence the pre-sort sample whilst still account-

ing for pre-sort compositional differences.

ProbRatioij ¼ log2
IgAþ

ij FracSize
IgAþ
j

� �

þ c

IgA −

ij FracSize
IgA −

j

� �

þ c

0

@

1

A

ð5Þ

Pseudo counts (c) must be included in the probability

ratio to negate division by zero where taxa are not ob-

served in the IgA− fraction. Using the probability ratio

has the benefit of capturing both extremes of IgA bind-

ing within a single score (whereas the IgA+ or IgA−

probabilities are limited to either direction). Addition-

ally, we take the log of the ratio, which, similar to the

Kau index, centres values on zero. This directionality

provides a clear indication of whether bacteria in a taxon

have a higher probability of being found in the IgA+ or

IgA− fractions.

One limit of using the ratio as in Eq. 5 is that the

range of possible values returned is determined by the

pseudo count used. The magnitude of these effects can

be reduced by dividing ProbRatio by a scaler based on

the pseudo count as in Eq. 6. This will bring all values

within the range − 1 to 1, with these values representing

the extreme case where all bacteria are in a single
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fraction and belong to a single taxon. Scaled probability

ratios are used throughout.

Scaler ¼ log2
1þ c

c

� �

ð6Þ

The Palm, Kau, IgA+ probability and probability ratio

scores were all calculated as defined above using the iga-

scores function that we have created as part of an R

package IgAScores, which is available at https://github.

com/microbialman/IgAScores.

Simulating an IgA-Seq experiment

A simulation was used to generate IgA-Seq data where

the underlying relative taxonomic binding of IgA bind-

ing was known. Ten species were assigned a mean IgA

binding value by random sampling from an exponential

distribution (raising two to the power of the generated

values to increase their spread). These values are arbi-

trary numbers that simply provide a relative IgA binding

measure between the species and are used as the mean

to generate a normal distribution of IgA binding for

each species (with a standard deviation of one). For ini-

tial simulations, 30 samples were then generated with

random pre-sort abundances for the ten species sampled

from a log normal distribution.

To simulate an IgA-Seq experiment, each sample was

assumed to have profiled 100,000 bacteria (a reasonable

magnitude for 16S rRNA gene sequencing). For each

sample, the 100,000 counts were assigned to one of the

ten species based on the sample’s species abundances.

Then, for each of the 100,000 bacteria in each sample, a

value of IgA binding was generated at random from the

normal distribution defined by its species mean. The dis-

tribution of IgA scores across all species was used to

identify values that cut off the upper and lower tails of

IgA binding and these were used to define the bacteria

within the IgA+ and IgA− fractions respectively. The bac-

teria within the IgA+ and IgA− fractions for each sample

were then used to generate the IgA+ and IgA− relative

abundances and all other measures required for generat-

ing the various IgA-Seq scores.

A secondary simulation was performed to model the

case where two groups are compared with a consistent

difference in starting abundances between them. For

this, the simulation was run using the same ten species

as before but now considering 60 samples. Additionally,

prior to generating bacterial IgA binding values, 0.5 was

added to the abundance of species ten in half of the

samples before renormalizing the abundances to sum to

one. Samples with additional species ten were consid-

ered cases and the unaltered samples considered

controls.

All stages of the IgA-Seq simulation were carried out

using the function simulateigaseq, which is also part of

the IgAScores package. All IgA-Seq indices were calcu-

lated as defined previously using the igascores function.

For simulated data experiments, a value of 10−6 was used

for pseudo counts when required as this was the same

magnitude as the minimum non-zero abundance value

observed in the simulated data. Correlations were

assessed using the cor function in R [50]. Between group

comparisons were performed using the wilcox.test func-

tion, adjusting p values using p.adjust. Code for all simu-

lation analyses can be found at https://github.com/

microbialman/IgAScoresAnalyses.

Bacterial culture

Bacteroides thetaiotaomicron VPI-5482 (B. theta) was

cultured at 37 °C in in brain heart infusion broth supple-

mented with 5 μg/ml hemin and 0.5 μg/ml vitamin K

(BHIS medium) under anaerobic conditions (10% H2,

10% CO2, 80% N2). Escherichia coli LF82 was cultured

aerobically at 37 °C in Luria-Bertani (LB) medium. Heli-

cobacter hepaticus ATCC 51449 was grown in tryptone

soya broth (TSB) supplemented with 10% fetal calf

serum and Skirrow Campylobacter supplements (Oxoid)

under microaerophilic conditions (1–3% oxygen). To

stain bacteria, pure overnight cultures were pelleted by

centrifugation (8000×g, 5 min, 4 °C), washed in sterile

phosphate-buffered saline (PBS) and blocked with filter-

sterilized 10% mouse serum (10 min, ice). The following

monoclonal antibodies were used to stain bacteria in a

100 μl volume: mouse IgG2b anti-E. coli (1:100; Abcam

clone 2D7/1) and mouse IgA anti-B. theta (1:100; clone

255.4 [32]). To generate the 2-member community, the

optical density (OD, 600 nm) and corresponding colony-

forming units (CFU) were determined for OD600 of 1: E.

coli 8 × 107 CFU; B. theta 1.2 × 108 CFU. Acutalibacter

muris KB18, Akkermansia muciniphila YL44, Bacter-

oides caecimuris I48, Bifidobacterium animalis subsp.

animalis YL2, Blautia coccoides YL58, Clostridium clos-

tridioforme YL32, Clostridium innocuum I46, Entero-

coccus faecalis KB1, Flavonifractor plautii YL31,

Lactobacillus I49, Muribaculum intestinale YL27 and

Turicimonas muris YL45 were used to generate stably

colonized MM12 mice [51].

Mouse strains

All experiments were conducted in accordance with the

UK Scientific Procedures Act (1986) under a Project Li-

cense (PPL) authorized by the UK Home Office. Animals

were housed in accredited animal facilities at the Univer-

sity of Oxford and provided with sterile water, food ad

libitum and environmental enrichment. Both males and

females were used in experiments after 8 weeks of age.

Specific pathogen-free (SPF) C57BL/6J and C57BL/6J
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Rag1−/− mice were routinely tested and negative for

Helicobacter spp. and other known intestinal pathogens.

Germ-free (GF) C57BL/6J mice were maintained in ster-

ile flexible film isolators and routinely screened for bac-

terial contamination by culturing, Gram stain and 16S

rRNA gene PCR. GF C57BL/6J mice were stably colo-

nized with a defined consortium of 12 bacterial mem-

bers, see below, of murine intestinal microbiota to

generate a sDMDMm2 [35, 51] (MM12) colony that was

maintained in sterile flexible film isolators. All GF and

MM12 mice were maintained on sterile food and water.

Helicobacter hepaticus-induced colitis

To induce colitis using Helicobacter hepaticus (Hh),

NCI-Frederick isolate 1A strain 51449 was grown as pre-

viously described [52]. Littermate control mice with

MM12 microbiota were randomly assigned to groups.

Mice were fed 1.0 × 108 CFU by oral gavage on day 0

and 1. On day 0 and 7, 1 mg IL-10 receptor blocking

antibody (clone 1B1.2) was delivered by intraperitoneal

injection. Control mice were housed in a separate flex-

ible film sterile isolator and were given IL-10 receptor

blocking antibody in the absence of Hh administration.

Animals were routinely monitored for weight loss and

onset of diarrhoea. Mice were sacrificed at day 14 and

processed aseptically in a class II microbiological safety

cabinet. Colon contents were collected for IgA-Seq and

lipocalin-2 measurements (EMLCN2, Life Technologies)

and stored at − 80 °C. Formalin-fixed paraffin-embedded

cross-sections of proximal, middle and distal colon were

stained with haematoxylin and eosin to assess histopath-

ology. Sections were examined for hallmarks of inflam-

mation: epithelial hyperplasia, goblet cell depletion,

leukocyte infiltration, crypt abscess formation, submuco-

sal leukocyte infiltration and interstitial edema.

Lipocalin-2 enzyme-linked immunosorbent assay

To prepare intestinal supernatants, 50–100 mg of colon

contents were added to screw-capped O-ring tubes filled

with 1 ml of cOmplete ULTRA EDTA-free protease in-

hibitor (Roche). Samples were homogenized on the Tis-

sueLyser II (QIAGEN) for 10 min at 30 Hz and debris

separated by centrifugation (10,000×g for 5 min at 4 °C).

Supernatant was carefully collected and either used im-

mediately or stored at − 20 °C. Lipocalin-2 was quanti-

fied using a mouse LCN2 enzyme-linked

immunosorbent assay (ELISA) kit (ThermoScientific) ac-

cording to manufacturer’s instructions. Each sample was

run in duplicate and measurements reported as ng of

lipocalin per gram of sample.

Preparation of samples for bacterial flow cytometry

Only sterile reagents were used to process samples. Fro-

zen stool and intestinal contents (10–50 mg of sample)

were rehydrated in 1 ml of PBS and suspended by vor-

texing. Large debris were separated by centrifugation

(50×g, 15 min, 4 °C) and the clarified supernatant was

passed through a 70 μm filter. A 500 μl aliquot of the

suspension was transferred into a new 1.5 ml microcen-

trifuge tube and an additional 1 ml of PBS added. Bac-

teria were pelleted (8000×g, 5 min, 4 °C) and blocked

with 100 μl of 10% rat serum (10 min, ice). An add-

itional 1 ml of PBS was added to the blocking suspen-

sion and centrifuged, and pelleted bacteria were washed

with 1 ml of FACS buffer (PBS + 1% bovine serum albu-

min). Following centrifugation, the resulting pellet was

stained with PE-conjugated rat anti-mouse IgA (1:100,

eBioscience clone mA-6E1) in a 100 μl volume (30 min,

covered on ice). Clone mA-6E1 was titrated testing con-

centrations of 1:10, 1:20, 1:50, 1:100, 1:200, 1:500 and 1:

1000. Samples were washed twice with FACS buffer and

resuspended in 1 ml buffer containing SYBR Green I nu-

cleic acid gel stain (1:400,000, Life Technologies) in the

dark at room temperature. The optimal concentration of

SYBR was determined by titration testing a range from

1:100,000 to 1:500,000. Samples were then placed in a

covered ice box and immediately acquired on the flow

cytometer (LSRFortessa X20 and FACSAria III, BD

Biosciences).

To validate the IgA-Seq protocol, 1 ml of an overnight

B. theta culture was first stained with mouse IgA clone

255.4 (25 min, ice), washed with 1 ml PBS, followed by

staining with PE-conjugated rat anti-mouse IgA (1:100,

eBioscience clone mA-6E1). Stained bacteria were

washed three times in FACS buffer before resuspension

in 1 ml FACS buffer. A 500 μl aliquot of IgA-coated B.

theta was spiked into a faecal suspension prepared from

specific pathogen-free (SPF) C57BL/6J mice. SYBR was

added to the final mixture.

Fluorescence-activated cell sorting of bacterial

populations

Samples were sorted using a FACSAria III (BD Biosci-

ences) instrument with external aerosol management.

Both sample and collection tubes were maintained at 4

°C. Sterile, preservative-free PBS without calcium or

magnesium (Invitrogen) was used for sheath fluid and

was autoclaved prior to sorting. The flow cytometer was

sterilized according to the manufacturer’s Aseptic Sort

protocol to decontaminate the entire sheath and sample

paths. In addition, both before and after sorting, freshly

made 10% bleach was run for 20 min on max flow rate

followed by sterile PBS for 10 min. Sheath fluid from the

droplet stream was collected prior to sorting as a con-

trol. Sample Line Backflush was run between samples to

prevent carryover.

For finer resolution of small particles including bac-

teria, the neutral density filter was removed and
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threshold set to 200 for side scatter (SSC). Drop delay

values were determined with the Accudrop feature and

were updated with each new sort setup. To sort and cul-

ture live B. theta, various nozzle sizes (70, 85, 100 μm)

and sheath pressures (20, 30, 45, 70 psi) were tested. A

10 × 10 grid was programmed into the automated cell

deposition unit (ACDU) stage, and B. theta suspended

in PBS was sorted in Single Cell precision mode onto

BHIS agar plates for enumeration of colony-forming

units (CFU). Nozzle sizes and sheath pressures were also

tested for sort purity of IgA+ and IgA− populations of

faecal bacteria.

For stool and intestinal samples, the SYBR nucleic acid

stain (FITC channel) helped to differentiate bacteria

from autofluorescent debris (BV421 or PerCP Cy5.5

channels). Samples were diluted in fluorescence-

activated cell sorting (FACS) buffer containing SYBR in

order to achieve an event rate of 5000–6000 events per

second. To begin, 100,000 events were recorded from

the initial sample (pre-sort) in order to calculate the per-

centage of bacteria in the IgA+ and IgA− gates used in

the probability-based scores. Gates were then drawn to

delineate bacterial populations that were bound with

IgA (IgA+) or unbound (IgA−). The 4-way purity preci-

sion mode was used to capture 400,000 events for each

IgA+ or IgA− fraction. Fractions were collected into

autoclaved 2 ml screw cap tubes (ThermoFisher Scien-

tific) pre-coated with 200 μl FACS buffer. Sort purity of

each fraction was recorded from 100 events, and DNA

was immediately extracted from the remainder. BD

FACSDiva and Flowjo software (TreeStar) were used for

instrument setup and data analysis.

Magnetic-activated cell separation

As a comparison with FACS, IgA-stained samples were

incubated for 30 min at 4 °C with anti-PE microbeads

(1:50, Miltenyi) in magnetic-activated cell separation

(MACS) buffer (0.5% bovine serum albumin and 2 mM

EDTA in PBS). Microbeads were titrated by testing con-

centrations of 1:5, 1:20, 1:50, 1:100, 1:200, 1:500. Cells

were pelleted by centrifugation (10,000×g, 5 min, 4 °C)

and washed twice in MACS buffer before resuspension

in 1 ml. LS columns (Miltenyi) were placed on a mag-

netic stand (Miltenyi) and pre-washed with 10 ml MACS

buffer before the sample was loaded. Unlabelled “MACS

neg” cells were collected in 3 × 3 ml washes. The LS col-

umn was then removed from the magnet and the la-

belled “MACS pos” cells were collected in 6 ml MACS

buffer using the LS column plunger. MACS fractions

were then analysed for purity by flow cytometry.

DNA extraction

Only sterile molecular-grade reagents and filter-

sterilized buffers were used to extract DNA. Sorted

fractions were centrifuged (16,000 × g, 20 min, 4 °C) and

the supernatant removed such that only 300 μl remained

in the tube. For unsorted (pre-sort) samples, 100 μl was

transferred into an autoclaved 2 ml screw cap tube con-

taining 200 μl FACS buffer. The following was then

added to each tube: 250 μl autoclaved 0.1 mm zirconia/

silica beads (Biospec), 300 μl Lysis buffer (200 mM NaCl;

200 mM Tris; 20 mM EDTA; pH 8), 200 μl 20% SDS

and 500 μl of phenol:chloroform:isoamylalcohol (PCI 25:

24:1, pH 7.9, Sigma). Samples were bead beaten (6500

rpm for 4 min, 3 min on ice, repeat 2×, Precellys tissue

homogeniser), then centrifuged (6000×g, 10 min, 4 °C)

to separate phases. The aqueous phase was transferred

into 5PRIME Phase Lock Gel Light tubes (Quantabio)

and an equal volume of PCI added. After mixing by in-

version, samples were centrifuged (16,000×g, 10 min)

and the aqueous phase transferred to a new Eppendorf

tube. DNA was precipitated with 1/10 volume 3 M

NaOAc (pH 5.5) and 1 volume of isopropanol overnight

at − 20 °C. After precipitation, DNA was pelleted (16,

000×g, 30 min, 4 °C) and the supernatant carefully re-

moved. The pellet was washed in 500 μl 70% ethanol,

centrifuged (16,000×g, 10 min, 4 °C) and the wash re-

peated again. Residual ethanol was removed from pel-

leted DNA and the tube placed on a 37 °C heat block

until the pellet was completely dry. Cleaned DNA pellets

were resuspended in 30 μl TE buffer at 50 °C for 30

min, then stored at − 20 °C until 16S rRNA gene library

preparation.

16S rRNA gene sequencing

The V4 region of 16S ribosomal RNA gene was ampli-

fied using barcoded primer pairs [53, 54]. Amplicons

were generated in 50 μl PCR reactions: template DNA (2

μl), 10 μM 515F primer (1 μl), 10 μM 806R (1 μl),

5PRIME HotMasterMix (20 μl) and water (26 μl). Water

was added instead of DNA for no-template controls.

Thermocycler conditions: 94 °C for 3 min; 35 cycles of

94 °C for 45 s, 50 °C for 60 s and 72 °C for 90 s; 72 °C

for 10 min. Amplicons were cleaned (UltraClean PCR

Clean-Up Kit, QIAGEN) and quantified (Quant-iT

dsDNA high-sensitivity kit, ThermoFisher) in triplicate

before pooling. The pooled library was precipitated with

2 volumes of 100% ethanol and a final concentration of

0.2 M NaCl (45 min, ice). The supernatant was removed

following centrifugation (7800×g, 40 min, 4 °C) and the

pellet washed with 1 volume of 70% ethanol. The

cleaned library was pelleted (7800×g, 20 min, 4 °C) and

air dried to remove residual ethanol before resuspending

in 100 μl DNAase-free water. Gel clean-up was per-

formed (QIAquick Gel Extraction Kit, QIAGEN) and the

final library was sequenced on the MiSeq (Illumina) plat-

form to generate 2 × 250 base pair paired-end reads.
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All 16S rRNA gene sequencing data were quality

checked using FastQC and processed using DADA2

within the NGSKit pipeline (https://github.com/

nickilott/NGSKit) to generate an amplicon sequence

variant (ASV) table [55]. In brief, DADA2 was run on

each sample individually. The filterAndTrim function

was first used on the paired-end files with the following

parameters: trunclen 240,140; maxN 0; maxEE 2,2;

truncQ 2. These filtered forward and reverse read files

were then used for generation of the error models using

the learnErrors function over 10,000,000 bases; for dere-

plication using the derepFastq function; and for sample

inference using the dada function. The reads were then

merged using mergePairs and chimeric reads screened

using removeBimeraDenovo. The assignTaxonomy and

addSpecies functions were used to assigned taxonomy to

ASVs using a database built from a combination of both

the RefSeq and RDP databases [56]. Unless otherwise

specified, the default parameters were used for all func-

tions. ASV counts were then summarised at the species

level and all analyses carried out on these relative abun-

dances (summing to one within a sample).

IgA-Seq in a mouse model of colitis

ASV counts were generated from 16S rRNA gene se-

quences as described above, producing 54,091 ± 7970

(mean ± SD) ASV counts per sample (excluding the

blank control which had 5119 counts). These were sum-

marised at the species level. Given the samples con-

tained a known MM12 microbiota, the presence of

unexpected species in samples and species observed in a

sequencing control blank were used to find an abun-

dance threshold that removed the majority of contami-

nants. Non-metric multi-dimensional scaling was used

to visualise the relationship between samples from each

mouse in each fraction using the metaMDS function

from the vegan R package [57]. Comparisons of IgA-Seq

data were performed between the four anti-IL10R only

controls and the four Hh-treated mice for the Palm, Kau

and the probability ratio scores. These were generated

using the igascores function as for the simulated data. A

pseudo count of 10−3 was added where necessary as this

was the magnitude of the lowest non-zero abundance

value observed in the data.

Scores were compared between the colitic and control

groups for taxa where there were at least three samples

scored in both groups (taxa were scored NA if they had

zero abundance in both the positive and negative frac-

tions). Given the small sample size of each comparison,

significant differences were determined by carrying out

all possible permutations of group labels and observing

the difference in group means for each taxon for each

score. The true difference in means was compared to

the differences across permutations to derive an exact p-

value, considering significance where p < 0.1. This more

permissive threshold was used given the small sample

size (min three per group). To generate comparable ef-

fect sizes between scores, which are on different scales,

the difference in means between groups was normalised

to the standard deviations within the groups using the

strictly standardised mean difference, calculated using

the ssmd function from the phenoDist R package [58].

The species level data for these analyses are made avail-

able within the IgAScores package and all code for the

ana l y se s a re ava i l ab l e a t h t tps : / / g i thub . com/

microbialman/IgAScoresAnalyses.

Analysis of Huus et al.’s data

Sample metadata, IgA+ and IgA− fraction sizes and the

pre-processed taxon count table used in the original

study were provided by the authors. The counts table

was filtered to remove low abundance taxa using code

published with the original study and then subset to just

the samples for which the fraction sizes were available.

The Kau Index and probability ratio scores were then

generated using the igascores function as previously. For

each taxon, a two-way analysis of variance (ANOVA)

was performed, using the aov function in R, to deter-

mine if there was a difference in IgA binding score be-

tween diet treatments or the interaction of diet and

mouse age. This was carried out for both the Kau Index

and probability ratio, considering a taxon significant if

either diet or the diet-age interaction had a nominal p <

0.05. Taxa were only tested that had scores (i.e. were not

absent in both the IgA+ and IgA− fractions) in at least

six samples spread across all age points and both condi-

tions. The magnitude of effects was estimated as the dif-

ference in mean scores between MAL and CON for each

taxon and was calculated at each of the three ages indi-

vidually. Mean differences were normalised by the stand-

ard deviation within groups, using the strictly

standardised mean difference as for the colitis analysis

(to make the values comparable between the Kau index

and probability ratio). Coefficient of variation was calcu-

lated within each taxon within each experimental group

(age and diet combined) for each scoring method and

compared using a Mann-Whitney test. All code for the

replication analysis can be found at https://github.com/

microbialman/IgAScoresAnalyses.
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scores between groups in a mouse model of colitis. Figure S6. Summary
of the representation of the different scores and what questions they ad-
dress. Table S1. Mapping of bacterial strain names to their mappable
identifiers in the 16S rRNA database used.
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