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Fig. 7. Control design step: k = 2, y,W,, 1/E, 1/ W,, and Q.

here is known to be more conservative than the p measure of Doyle,
it is affine in the performance index and admits reasonable optimiza-
tion strategies. In particular, a relaxation algorithm is proposed and
shown to produce a sequence of controllers which have monotoni-
cally improving robust performance. Several important properties of
the identification criterion were discussed, including its tendency to
force accurate curve fitting in the vicinity of the critical point in the
Nyquist plane.
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Accurate Identification for Control: The Necessity
of an Iterative Scheme

Ruud J. P. Schrama

Abstract—If approximate identification and model-based control de-
sign are used to accomplish a high-performance control system, then the
two procedures have to be treated as a joint problem. Solving this joint
problem by means of separate identification and control design proce-
dures practically entails an iterative scheme. A frequency-response iden-
tification technique and a robust control design method are used to set
up such an iterative scheme. Its utility is illustrated by an example.

1. INTRODUCTION

Many control design techniques rest on the availability of a
model. It is often taken that an appropriate model can be dcnved
prior to the control design. Traditionally, a nominal model P
estimated from plant data, and subsequently a compensator C,, is
designed for P. Since P is just an approximate description of the
plant P, the compensator Cp must be robust. This has motivated
the development of identification techniques that estimate an upper
bound on the model error as in [9] and [6]. With this upper bound, a
controller Cps can ideally be designed to achieve some robust
performance. However, this robust performance can be a high
performance only if the nominal model P has been chosen with
care. .

In this note, we focus on the derivation of a nominal model P foE
high-performance control design. Accordingly, a nominal model P
is said to be appropriate, if it gives rise to a controller Cp, that
achieves similar high performances for P and P. Thus, the perfor-
mance of the model-compensator pair P, Cp must be robust in
view of the plant P. This is accomplished, if the feedback system
composed of the nominal model P and the model-based compen-
sator Cp approximately describes the feedback system containing
the plant P and the same compensator Cp. In this perspective, the
quality of a nominal model P depends on its compensator Cp.

Now suppose we derive an approximate model first, and after
that, we design a compensator. Then, in the approximation stage,
we have to select a nominal model P without knowing fully the
quality of each candidate model. The exact quality of the selected
nominal model P will remain unknown until the second stage of
control design has been completed. In order that the model-com-
pensator pair P, Cp approximately describes the plant-compensator
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pair P, Cp, we have to treat the approximation and the control
design as a joint problem instead of two individual problems. An
iterative scheme is required to solve this joint problem by means of
the separate stages of approximate identification and model-based
control design.

The need of an iteration has been motivated already in, e.g., [15]
and [12], and it is also advocated in philosophical terms in [1].
However, to our knowledge, approximation of feedback properties
rather than approximation of the plant itself has not been raised as a
motivation before. Several iterative schemes of identification and
control design have been proposed in the literature. In [11], such an
iteration is used to build prefilters for a control-relevant, open-loop,
prediction-error identification. Instead of using one open-loop
dataset, we take new data at each identification stage while the plant
is operated under feedback by the previously designed compensator.
This is closely related to adaptive control, but the iterative scheme
enables an analysis of the interaction between the identification and
control design stages [2]. In the latter reference, prediction-error
identification and LQG/LTR control design are combined in an
iteration that focuses on robust stability. The iterations of [3] and [7]
use prediction-error identification and address LQ-performance.

We tackle the joint problem by an iteration of repeated
frequency-response identification and robust control design. In this
note, we delineate our iterative scheme, and we focus on the
identification part in particular. For a full discussion, the reader is
referred to [14]. In Section II, we discuss the robust control design
method, which leads to the problem of feedback-relevant approxi-
mate identification from closed-loop data. Then in Section III we
frame the identification problem in terms of coprime factorizations.
Section IV contains an example of the proposed iteration and the
final section provides some concluding remarks.

1I. CONTROL DESIGN AND APPROXIMATION

From [4], we adopt the following control design paradigm. The
feedback configuration of interest is depicted in Fig. 1. The transfer
matrix, which maps col (r,, r,) into col (9, &), is denoted T(P,C),
i.e.,

(5.C) = p(1+ch)'c B(I+cP)”

(1)

-1

(1+ch)”'c  (1+cP)”

The model-based controller Cp is derived from P as

Cp = arg min | T(P.C) )
c

The resulting controller is robust in the sense that it anticipates
stable factor perturbations (see [4] and [16] for details). Moreover,
Cj pursues traditional design specifications such as a small sensitiv-
ity at the lower frequencies and a small complementary sensitivity at
the higher frequencies [10].

If | T(P, Cp)| s is small, then the nominal performance is high.
The performance for the actual plant P can be examined through

IT(P,Cs)llo < I T(P,Cp) e
+IT(P.Cp) = T(P,C5) -

®3)
The term on the left reflects the performance of the controlled plant.
| T(P, Cp)|l o is the minimum achieved in (2); and [|T(P, Cp) —
T(P, Cp)||o is the ““worst-case’” performance degradation due to
the fact that Cp has been designed for the nominal model P rather
than for the plant P.

The feedback systems corresponding to T(P, Cp) and T(P,C 5)
have similar performances if | T(P, Cp) — T(P,Cp)| . is small.
At the same time, || T(P, C3)|| ., must be made as small as possible
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Fig. 1. Feedback configuration for control design.

in order to achieve a high performance. As the latter is pursued in
the control design stage, cf. (2), we would like to minimize
| T(P,Cp) — T(P,Cp)]ls in the preceding approximation stage.
And since Cp is not known a priori, the approximation and control
design have to be treated as a joint problem.

We propose the following iterative scheme to tackle the joint
problem. In the ith step, we obtain data from the plant while it
operates under feedback by C;_ - The nominal model P; is derived
according to
P = arg.min I T(P.Cit) - T(P’Ci»l)”oo (4)

Pe?

where 2 is the set of candidate models. This minimizes the
performance degradation for C;_,. Subsequently, 13,- is used to
construct C; as in (2), which produces a small nominal performance
term || T(P;, C)|| - Then, this controller is applied to the plant P
and new data can be collected.

In a straightforward application of the identification in (4) and the
control design in (2), we would encounter the following problem.
Since by (2), C; is based solely on the nominal model 13,-, the
““new” compensator C; may be completely different from the
““old’’ compensator C,_,. And although T (13,,0,-_1) approxi-
mately describes T(P,C;_;) [see (4)], this does not necessarily
hold if C;_, is replaced by C,. Consequently, the degradation
| T(P,C) — T(P;,C)|| can be very large, despite the fact that
C; is maximally robust in view of the achieved nominal perfor-
mance. In order to provide for a small performance degradation, we
have to introduce weighting functions in the control design of (2).

In this note, we just use an adjustable scalar weight «;. The
controller C; is designed as

()

C; = argmin|| T(a,f’i, C/a;)l o
c

This causes C; to maximize robustness for a nominal performance
level associated with o;. The resulting designed feedback system
will have its bandwidth close to the crossover frequency of o; P;
[10]. Thus, a large «; corresponds to a high nominal performance,
and it can be adjusted to cause only a slight improvement upon
C,_,. Thereby, we keep the performance degradation small at each
step of the iteration. By gradually increasing the weight during the
iteration, we end up with a large weight and a high-performance
controller for the plant.
The identification problem that has to be solved at each iteration
step is
P = arg r;in”T(a,P, Ci_ /0‘1) - T(O‘iP’ Ci_, /D‘i)"m- (6)
Pe

As there exists no identification technique that can be used to solve
(6), we replace the above H, (or L) approximation by an L,
approximation. The rationale for this replacement is that the L,
approximation will yield a reasonably good nominal model in L,
sense, provided that the error-term is sufficiently smooth. This
observation is backed up by the result in [5] on the L, consistency
of L, estimators. The L,-identification problem is discussed in the
next section.
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Feedback configuration for identification.

III. FRAMEWORK FOR IDENTIFICATION

We consider the case in which the plant P is controlled by C,_,
as in Fig. 2. In order to simplify the notation, we take o; = 1. The
problem of interest is to identify a nominal model P; from measure-
ments of the plant’s input « and output y such that
P, = ar%minHT(P»Ci—l) -T(P.Ci ),
Pe?

™

With P¢ & the minimization of (7) from # and y combines all
problems that are encountered in approximate identification and
closed-loop identification. Therefore, direct application of standard
identification methods to # and y will not yield the desired 13,- (see
[13] for a discussion). In order to solve (7), we represent the plant
P by a right coprime factorization (definitions are found in [16]),
which is dual to the representation used in [8].

We assume that the plant P is stabilized by the controller C;_,.
Since C;_, is known from the previous design step, it can be used
to parameterize the set of all stabilized systems by their right
coprime factorizations. This result is dual to the parameterization of
all stabilizing compensators [16]. One of these factorizations corre-
sponds to the unknown plant P. Hence, P can be written as

P = (N,+D.R)(D, - N.R)" (8)

where R is stable, the pairs (N, D,), (N,, D,) are coprime factor-
izations satisfying C;_, = N,D-' and P N,D; ", and P, is
just an auxiliary model, that is stabilized by C,_,. Next we define

N°=N,+D,R; D°=D,-N.R (9)

so that N%(D?) ~! is a right coprime factorization of P by virtue of
(8). With this representation of P we can obtain the following two
results.

Lemma 3.1: Let the feedback system of Fig. 2 be stable and let
controller C;_; be known. Further let (N,, D,) be a right coprime
factorization of an auxiliary model P,, that is stabilized by C;_,.
Then the variable x of Fig. 2 can be reconstructed from u and y

via
x = (Da+ci—lNa)‘l(u+Ci—1y)‘ (10)

Proof: From Fig. 2, we have y = N°x and u = D“x, and by
straightforward calculation we obtain x = (D“ + C;_,N°)~"(u +
C;_,»). With the equality

D°+ C;,_;N° =D, + C;_|N, (11)
in which the right-hand side follows from substituting (9) on the
left-hand side, we arrive at (10).

Theorem 3.2: Let the assumptions of Lemma 3.1 hold. Then, the
frequency response of T(P, C;_,) can be estimated from u and y.

Proof: With the use of P = N9 D" and (11), the transfer
function T(P, C;_,) can be rewritten as

r(p.c, ) - |V @)@+ Cn ()]

[(D*+ coiv) (097
-[C,._, I]
[y]@scomy e 1 o)

The terms (D, + C;_;N,) and [C,_, I] are known, and thus their
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frequency responses can be calculated. Further, the frequency re-
sponses of N? and D¢ can be estimated from y = N%x and
u = D% and x reconstructed as in Lemma 3.1. Together, these
frequency responses make up an estimate of the frequency response
of T(P,C;_)). n

In [13], it is shown that Lemma 3.1 and Theorem 3.2 do also
hold in case the plant output y is contaminated by an unmeasurable
noise. That is, x can still be reconstructed from « and y, and the
identification of N% and D? from u, y and x turns out to be an
open-loop identification problem.

With Theorem 3.2, we have access to the frequency response of
T(P,C;_,) and thus P can be identified from (7). This frequency-
domain ldentlﬁcatlon problem is not trivial, because P appears in
T(f’, C;_,) in a multiple and nonlinear fashion. In [14] an algo-
rithm is developed that solves (7) by estimating 13, in terms of
coprime factors.

1V. EXAMPLE

The plant P under investigation is a real rational continuous-time
system of order 9: P(s) = n(s)/d(s) with

n(s) = 6.599 - 10~5° — 2.552 - 1073s®
— 0.126457 — 0.28365° — 4.1955°

+ 6.983s* — 13.745% 4 215.25% + 144 .0s + 1057
d(s) = s° +2.401s% + 32.685” + 54.785s°

+ 347.25° + 351.2s5* + 125653
+ 488.852 + 635.35 + 105.9.

The iterative scheme started from open-loop, i.e., Cy = 0. The
identified nominal models 13,— are of order 5, and the controllers C;
are of order 4. The design objective is to reduce the sensitivity at
the lower frequencies. Pretending that the plant P is unknown, we
cannot tell @ priori what performance is attainable with a reduced-
order controller.

The number of performed iteration steps is 19. The log-magni-
tude Bode diagrams of the nominal models P,, P,,, and P,y have
been draw in Fig. 3 together with that of the plant P. The curves
corresponding to P and the open-loop nominal model P, are
indiscernible at the frequencies where the magnitude of P is high.
The other two nominal models show a good match only in the
frequency range from 1 to 2 rad/s. Based on Fig. 2, Pl2 and P19
should be marked as bad nominal models. Similar observations
apply to the phase plots.

The scalar design weight «; has been increased during the
iteration: o; = 1, oy, = 5.4, and a9 = 9.2. For completeness, we
mention that the design from IA’l would have resulted in a destabiliz-
ing controller if o had been used instead of «;.

The sensitivity (/ + C;P)~" has been depicted in Fig. 4 for the
controllers C,, C|,, and C|4. These curves show that a reduction of
the sensitivity at lower frequencies has been realized at the expense
of some increase at higher frequencies. For comparison, we have
also designed controllers from the plant P itself. The controller
Cp, which has order 4 also, has been designed with the scalar
weight a,o. The resulting sensitivity (I + CpP)~" shows a great
resemblance to (1 + C;oP)~'. From this we conclude that the
nominal model P, is very well-suited to high-performance control
design in the sense that the resulting model-based controller C,q is
as good as the **plant-based”’ controller Cp. Lastly, we remark that
P, exhibits the worst open-loop match, and at the same time it is
the best nominal model for high-performance control design.

V. CONCLUDING REMARKS

We observed that approximate identification and model-based
control design have to be treated as a joint problem if they are
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combined to achieve a high-performance control system. Solving
this joint problem with individual identification and control design
methods requires an iterative approach.

The proposed iterative scheme is based on a robust control design
method. Each identification step uses the previously designed con-
troller to obtain new data from the plant. The associated identifica-
tion problem has been solved by means of a coprime factorization
of the unknown plant. An example has given evidence of the utility
of the iterative scheme. It also illustrated the need of an iteration,
since a good controller is required for the identification of an
appropriate nominal model for high-performance control design. As
an additional pay-off, the iteration reveals the performance that is
attainable for the unknown plant.

A drawback of our iteration is that the identification stage focuses
on the “‘old’’ compensator. In order to speed up the iteration, the
identification should anticipate the ‘‘new’’ compensator. This is a
topic for future investigations, together with the application of the
same identification framework in case of time-domain data and other
control design methods.
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