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Abstract

In this paper we propose an approach for the accurate rotation of a digital image using Hermite

expansions. This exploits the fact that if a 2D continuous band-limited Hermite expansion is rotated,

the resulting function can be expressed as a Hermite expansion with the same band limit. Furthermore,

the Hermite coefficients of the initial 2D expansion and the rotated expansion are mapped through

an invertible linear relationship. Two efficient methods to compute the mapping between Hermite

coefficients during rotation are proposed. We also propose a method for connecting the Hermite

expansion and a discrete image. Using this method, we can obtain the Hermite expansion from a

discrete image and vice versa. Combining these techniques, we propose new methods for the rotation

of discrete images. We assess the accuracy of our methods and compare with existing FFT-based

methods implementing three shears. We find that the method proposed here consistently has better

accuracy than FFT-based methods.
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1 Introduction

Techniques for effecting a two-dimensional rotation of a discrete image are very important in

many different disciplines. Examples include medical imaging, digital photography, and

computer graphics. Unfortunately, the action of rotation is poorly matched with both the

(necessarily) discretized representation of a digital image as well as the discrete Fourier

transform, which is one of the most commonly used tools in image processing. Inaccuracy in

image rotation can cause subtle problems. At the most superficial level, a composition of

rotations that results in an overall rotation that is a multiple of 2π may not bring an image back

to itself. This can have unfortunate effects in digital imaging. For example, in medical imaging,

the loss of information during image rotation may cause the loss of small, but important,

anatomical features.

The interactions among Fourier analysis, digitization, and rotation are more interesting and

more subtle. While the classical continuous-domain Fourier transform is invariant under

rotation, the discrete Fourier expansions used in image analysis do not share this invariance.

This may seem surprising at first. Let us consider the Fourier transform, f̃(ω), for a nonperiodic

function f(x), where x, ω ∈ ℝ2.

If we apply the Fourier transform to the rotated version of f(x),
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for some rotation R of the plane, then we have

In other words, the Fourier transform of a rotated function is the rotated Fourier transform.

However, the continuous Fourier transform is not the one relevant for image analysis, rather

in this setting we need to make use of the discrete Fourier transform (DFT). In this context,

the DFT should be viewed as a sampled version of the Fourier series of a periodic function,

which has a discrete (rather than continuous) spectrum. Under such assumptions the image is

identified with a sampled function on the 2-torus (i.e., periodic in two independent directions)

and rotation of the finite 2D lattice (naturally identified with the torus) is not compatible with

the Fourier transform, much less the finite lattice, which is not generally mapped to itself under

an arbitrary rotation. While this geometric incompatibility could be addressed via linear or

spline interpolations, these are at best approximate methods. Since there is no mathematically

exact way to rotate and resample the underlying band-limited Fourier series from which the

discrete samples were assumed to be drawn, there is no way to “exactly” interpolate discrete

values from the original grid to the rotated one.

In this paper we show how Hermite functions provide a representation better suited for rotation

and discuss how they might be used for image representation. This derives largely from the

fact that the Hermite functions of a given total degree span invariant spaces for the rotation

operator. Their “near-eigenfunction” behavior implies that (1) finite Hermite expansions of a

given highest degree (so-called band-limited Hermite expansions) are mapped back to

expansions of the same degree under rotation and (2) there is an explicit analytic relation

between the coefficients in the original and rotated expansions that is derived here using various

special function relations.

The remainder of this paper is organized as follows: In Section 2, a brief literature review is

given in the field of image rotations and Hermite-function-based image processing. In Section

3, using the fact that the rotation of a 2D band-limited Hermite expansion preserves the band

limit, we derive the relationship between the Hermite coefficients before and after rotation.

We propose two methods for implementing the conversion of the Hermite coefficients. In

Section 4 we propose a method to connect the band-limited Hermite expansion and an arbitrary

two-dimensional array of discrete data. Then in Section 5, we present computational results

and compare the accuracy of our new methods with an existing FFT-based image rotation

approach. Finally in Section 6 we summarize our conclusions.

2 Related works

Non-Hermite based methods for effecting rotation are the standard and there exist various

approximate methods which are simple and efficient. Paeth showed that a 2D rotation can be

effected by applying three shear transformations to a raster image [20]. This method has been

widely investigated [19,24] and extended to three-dimensional rotations of image volumes

[2,4,23]. However, as Toffoli et al. [23] indicated, shear transformations of discrete images

introduce certain errors when local interpolation is applied. The main reason for this loss of

information is that a discrete image is defined on a grid, and when performing shears,

interpolations to new grid points must be performed. Local interpolation is an inexact step that

destroys global information about the image. In spite of these disadvantages, an FFT-based

rotation algorithm using three shears shows fast and accurate results [8,19]. The basic concept

of that method is that one can apply the 3 shear processes to the original image and each shear

process is implemented by the FFT. We will compare our new methods with this method.
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For the purpose of achieving global rotations, steerable filters [5] can be a reasonable tool,

since the class of the steerable filters has the special property of remaining band-limited under

rotation. A steerable filter at any orientation can be constructed as a linear combination of the

basis filters. This special kind of filters has been widely investigated. Steerable filters are widely

used (see e.g., [6,25,26,29]) and have been extended using Lie group theory [14].

A Hermite transform can be viewed as a steerable filter [12,13,26]. Interestingly, to our

knowledge, global image rotation using Hermite functions has not been investigated

previously. The use of the Hermite transform (i.e., expansion of a function in ℝ2 using Hermite

functions) is a relatively new approach to image processing. The related literature includes

approaches to image compression [25,26], local image analysis [12] and deblocking of a

compressed image [16]. In the case of local image orientation analysis using the Hermite

transform, many copies of small Gaussian windows are translated so that the whole image can

be covered by a combination of Hermite polynomials and the windows to capture local

orientational features of the image [12,13,25,26]. Therefore, it is difficult to adapt this method

to perform a global rotation, even though the method shows successful performance in local

feature analysis. In our approach, we consider only one Gaussian window placed at the center

of the image. In practice, Hermite functions act as a filter, because they are the product of the

Hermite polynomials and the Gaussian window.

3 Rotation of 2D Hermite Expansions

3.1 2D Hermite Expansions and Steerable Filters

Hermite polynomials are generated by the Rodrigues formula

Hermite functions are defined as [3,27]

(1)

This definition satisfies the orthonormality condition . The 2D band-

limited Hermite expansion can be defined as [22]

(2)

or equivalently

(3)
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where f̂n,m−n is the Hermite coefficients.

A steerable filter of order m can be exactly constructed by taking linear combinations of the

filters of order m [5]. Since the product of two Hermite functions is a steerable filter on the

plane [12,26], its steerability can be written as [25]

(4)

where (·) is the rotation operator and  is the steering coefficients. If we use the

following property of the Hermite polynomials [27]

(5)

where , we can also derive (4) without prior knowledge of steerable filters,

as was done in [21]

Using (4), the rotation of a 2D Hermite expansion of (3) can be written as

(6)

Note that the band limit of the resulting Hermite expansion is preserved. The new Hermite

coefficients can be written as

(7)

for m = 0, 1, …, N. It is clear that the coefficients f̂θ and f̂ are linearly and locally related.

Namely, the relation can be written as

(8)

where  is the (k + 1, n + 1) element of the matrix, Sm(θ),
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and

3.2 Recurrence formulas for 

For low orders, the transformation matrix, Sm(θ) can be derived using (4) and (5). The first few

Sm(θ) matrices are

S1(θ) and S2(θ) were derived also in [13] and were sufficient for local orientation analysis.

However, we need the higher order results since we are looking at the case of large band limits

for global image rotations. Instead of obtaining the closed form formula for Sm(θ) directly, we

try to derive the recurrence formula for the elements of this transformation matrix.

Multiplying hq(x)hm−q(y) on both sides of (4) and integrating over ℝ2 gives

(9)

Let us consider

If we apply the recurrence formula for Hermite functions

(10)

then we have
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since (4) implies that when m′ ≠ m,

(11)

Similarly, it can be shown that

Now, we compute

Using the recurrence formula (10), we have

Since the first term of the righthand side is zero due to (11), we have

Similarly, it can be shown that

Consequently,
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(12)

Likewise, we can apply the same process to  and  and have

(13)

3.3 Properties of Sm(θ)

It is easy to show that

(14)

where Im is the (m + 1) × (m + 1) identity matrix. The detailed derivation is given in Appendix

A. Since Sm(θ) is a real-valued square matrix and (14) holds, Sm(θ) is an orthogonal matrix.

On the other hand, using (9) we can compute  as

Note that we used the coordinate conversion x′ = x cos θ − y sin θ and y′ = x sin θ + y cos θ.

Therefore, Sm(−θ) = Sm(θ)T = Sm(θ)−1. This guarantees the invertibility of the rotation process,

since Sm(θ)−1 always exists. In addition, the orthogonality of Sm(θ) guarantees the stable

inversion. Consequently, the rotation process by (7) is lossless in exact arithmetic.

Since the rotation on the plane is decomposable and commutative, we have Sm(θ1 + θ2) =

Sm(θ1)Sm(θ2) = Sm(θ2)Sm(θ1). Thus, Sm(θ) is the exponential of a skew-symmetric matrix

multiplied by θ as

(15)

where Ωm is the skew-symmetric matrix. Ωm can be obtained by
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Explicitly, we can compute

The detailed derivation is given in Appendix B.

3.4 Relation between Sm(θ) and Generalized Associated Legendre Function

In this subsection, we connect Sm(θ) and the generalized associated Legendre Function,

 [27]. This is expected to give us a way to compute Sm(θ) by simple matrix

multiplications.

The irreducible unitary representation (IUR) matrix elements of SO(3) are given by [3]

where α, β and γ are the Euler angles, and  is the generalized associated Legendre

functions. The integral form of  is

(16)

When α and γ are zero, we can have U(β) ≡ U(R(0, β, 0)).

Since  is the IUR matrix of SO(3), it follows that Ul(θ1 + θ2) = Ul (θ1)Ul(θ2). Furthermore,

since Ul is unitary and Ul(R(0, β, 0)) is real, Ul(β) is orthogonal. Thus there exist a skew-

symmetric matrix, Γl such that Ul(2θ) = exp(Γlθ). In order to find Γ, we will compute

 at θ = 0. We consider  instead of , because the former is easier to

connect to Sm(θ).

The derivative at θ = 0 is

and
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Therefore

If we let m′ = 2l, n′ = m + l and q′ = n + l, then

where Ω is the skew-symmetric matrix defined in Section 3.3. Therefore, we have shown an

analytic proof of the following:

and

(17)

where m′ = 2l, n′ = m + l and q′ = n + l.

It is worthwhile to consider the following identity for  (from [18])

(18)

Note that  is also denoted by  in many literatures including [18]. Since

 is defined by the same form as (16),  is equivalent to .

Combining (17) and (18), we have the matrix expression as,
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(19)

where E = diagonal([i0 i1 ⋯ im]), G(θ) = diagonal([eimθ ei(m−2)θ ⋯ e−imθ]) and E* is the

conjugate transpose of E. This matrix multiplication gives an alternative way to compute

Sm(θ).

4 Connection between 2D Band-limited Hermite Expansion with discrete

images

Digital images are generally defined on a discrete grid of points, but the Hermite expansion

that we are considering is a 2D continuous function. Therefore, we need to connect the discrete

images and the Hermite expansion. Here we examine both directions: computing the Hermite

expansion from a given discrete image and computing the discrete image from a given Hermite

expansion.

A method to find the Hermite expansion from a discrete image has been reported previously

[22]. In that method, a cost function that computes the difference between the discrete image

and the sampled values from the Hermite expansion was defined. By minimizing the cost

function with respect to the Hermite coefficients, we can fit the Hermite expansion to the given

image. The ‘Hermite-filtered’ image was obtained by resampling the Hermite expansion on

the original grid. However, the method is computationally sensitive and expensive, because it

explicitly inverts a large matrix. We propose here a new method that shows better performance.

The new method uses a Fourier series to connect the discrete image and the 2D band-limited

Hermite expansion. Since one can easily extend the 1D case to the 2D case, let us focus on the

1D case. Given sample values fn = f(2πn/N) for n ∈ [0, N − 1] we can construct exactly the

continuous periodic function

on the continuous domain [−π, π] that hits these sample points exactly. The set of coefficients

{f̃k} can be obtained from {fn} by FFT. The Fourier series contains 2B + 1 terms, and in the

case of the FFT, the number of sampled data, N, is usually taken to be a power of 2. This

discrepancy is rectified if the constraint f̃B = f̃−B is imposed. Then there are N = 2B free

parameters in both [3]. The detailed derivation of {f̃k} from a discrete data set is given in the

Appendix C. When implemented using the FFT this is performed in O(N log N) arithmetic

operations. Now we need to connect the Fourier series and the Hermite expansion.

4.1 Hermite Expansion fit to Fourier Series

Once the discrete data has already been captured in a continuous Fourier series, we can find a

Hermite series to best capture the same data without sampling. In other words, we can seek the

Hermite coefficients {f̂k} such that

Park et al. Page 10

IEEE Trans Image Process. Author manuscript; available in PMC 2010 March 12.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



is minimized. Here s is a scaling factor that we choose so as to capture the best resolution for

a given Hermite band limit, M. In other words, there will be an optimal s = s(M) for a given

image.

Expanding the above cost function out, we find that

where

and c̄ is the complex conjugate of c. Now, a simple approximation can compute them

accurately, assuming a sufficient zero padding of the image and the optimal scaling factor, s.

Namely, if we let x = θ/s, then for functions that decay to zero sufficiently rapidly,

(20)

This means that, due to the orthonormality of Hermite functions over the real line,

and

(21)

The equality in (21) is due to the fact that Hermite functions are eigenfunctions of the Fourier

transform:

Similarly,
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since hn(−x) = (−1)nhn(x).

We can rewrite the cost function as

Therefore, the Hermite coefficients for the Hermite series that approximates this with minimal

mean-squared error will be

(22)

For an appropriate choice of s, and M we should expect that this Hermite series will drive the

RMS error to zero. And the values at the sample points should also converge to the original

specified values. The most critical factor is that the scale and zero padding is chosen so that

(20) is an accurate statement for the integrals that were approximated for al1,l2 and bkl.

4.2 Fourier Series Fit to Hermite Expansion

In the previous subsections we obtained the Fourier series on a continuous domain from a

discrete data set and computed the Hermite expansion fit to that Fourier series. One might

expect that sampling the Hermite expansion back onto the original data grid would give filtered

data close to the original data. However, since the Hermite expansion may have a high band

limit relative to the Fourier series, sampling it directly can cause aliasing. It is therefore more

consistent to use the Fourier series again as an intermediate between the Hermite expansion

and the resulting sampled values. In this way, the Fourier series connects the Hermite expansion

and the discrete data in both directions.

Now we will try to find the Fourier series that best fits to a band-limited Hermite expansion.

The cost function is the same form as in the previous subsection except that the argument is

now the Fourier series coefficients rather than the Hermite coefficients, which are the inputs

in this context. The cost function is
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which can be rewritten as

Therefore, the Fourier series coefficients that minimize the cost function will be

4.3 Determination of Scaling Factor

From (20) and the definition of al1,l2 and bk,l, it is clear that the range of the integral, (−π/s, π/

s) should be chosen to capture enough of the Hermite function. Let us consider the following:

Kn(s) will monotonically increase to 1 as s decreases due to the orthonormality of the Hermite

functions. If Kn(s) is close enough to 1, one can conclude that the range of the integral, (−π/s,

π/s) captures enough of the Hermite function.

The contour plot of Kn(s) as a function of n and s is shown in Fig. 1. For example, if the band

limit of the Hermite expansion is 450, a value of 0.1 or less is good for s, since the corresponding

range guarantees Kn(0.1) is close enough to 1 for n = 0, 1, …, 450. While a smaller value of

s looks better in this context, too small a value of s may cause a problem when we find the

Hermite expansion fit to a Fourier series. If s is very small, the Hermite functions can be

meaningful only in the very small part (near the origin) of the range, (−π/s, π/s). This means

that the Hermite expansion can describe the reference Fourier series near the origin only In

order to avoid this, we need to increase the value of s. Thus, we need to find a balanced value

for s based on these two criteria.

When the image shown in Fig. 2(a) is tested, Fig. 3(a) shows the normalized least-squared error

(NLSE) between the original image and Hermite-filtered image for various s values with

several band limits of the Hermite expansion, The NLSE of the two images, R(m, n) and I(m,

n) is defined as [11]

We prepared a 512 × 512 image shown in Fig.2, where a 256 × 256 initial image is surrounded

by zero-padding. The best value for the scaling factor in this Lena image can be determined as

s = 0.085 based on Fig. 3(a). Fig. 4(a) shows the inverted amplified difference image between

the original and the Hermite-filtered Lena images when the band limit is N = 620 and the scaling

factor is s = 0.085. If we apply the same process to the baboon image as shown in Fig. 2(b),
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we have the different error curve shown in Fig. 3(b) and s = 0.08 is the best value for the scaling

factor in this case and the corresponding inverted difference image is shown in Fig. 4(b). For

better visualization, we presented the inverted difference images instead of the regular

difference images that contain black pixels in most area.

Although the choice of the optimal scaling factor is dependent on the original image of interest,

the image error is not sensitive to the scaling factor around the optimal one. Thus, one can

determine the ‘quasi-optimal’ value for the scaling factor independent of images for a given

image size. Fig. 6 shows the errors between the original and the Hermite-filtered images as a

function of the scaling factor, when various test images (512 × 512) shown in Fig. 5 are used.

As seen in Fig. 6, the scaling factor s = 0.085 is a reasonable choice for all the six test images.

Generalizing this result, we choose the scaling factor s = 0.085 as a quasi-optimal value for

the 512 × 512 images. We can simply apply this to another sizes of images.

5 Rotation of Images and Accuracy Test

5.1 Computation of Sm(θ)

Once we have the Hermite coefficients from a discrete image, the rotation can be applied to

the coefficients using (8). In order to compute Sm(θ), we may use the recurrence formulas, (12)

and (13), or the exponential mapping, (15), or the matrix multiplication, (19). Since the matrix

exponential of large matrices increases the computational time, we pursue two methods; (1)

the recurrence formulas; and (2) the matrix multiplication. For convenience, we will denote

the former method by ‘Method A’ and the latter method by ‘Method B’.

We will consider only rotations between 0 and π/4 radians. Since Sm(−θ) = (Sm(θ))T and any

rotation angle can be accomplished by a combination of rotation by k × π/2 and rotation by θ,

where k is an integer and −π/4 ≤ θ ≤ π/4. Note that rotation of discrete images by k × π/2 can

be perfectly obtained by reassigning the pixel values to a square grid.

Since, by the discussion in Section 3.3, in exact arithmetic Sm(θ) is an orthogonal matrix, we

use the following as a measure of a degree of accuracy in its computation:

where Im is the (m + 1) × (m + 1) identity matrix. Fig. 7(a) shows the contour plot of K(m, θ),

when we apply the first recurrence formula in (12). If we average all 4 recurrence formulas in

(12) and (13), K(m, θ) is improved as shown in Fig. 7(b). However, it still shows the instability

with higher orders, when the rotation angle is above some threshold. This can be overcome by

using the multiplicative property of Sm(θ), which is Sm(θ1 + θ2) = Sm(θ1)Sm(θ2). For example,

Sm(π/4) can be stably obtained by the product Sm(π/8) × Sm(π/8). Consequently, we compute

Sm(θ) by (Sm(θ/2))2, when θ > π/8. We should implement this by

, instead of direct multiplication of the two 2D matrices, in order

to avoid increasing the computational complexity. Using this method, we can obtain the rotated

images as shown in Fig. 8 for the original images shown in Fig. 2.

Alternatively, we can compute Sm(θ) by (19), which is denoted by Method B. Since the

matrices, E and Sm(π/4) in (19) are constant and G(θ) requires only scalar exponential mapping,

this method can be implemented without unstable calculation. One thing that we should be

careful of is handling Sm(π/4). We can compute this, store it into a computer memory (or storage

device) and then use it, when we rotate images. Since computation of Sm(π/4) is performed
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once before rotation, we can sacrifice the computation time to have good accuracy. The matrix

exponential mapping by Padé algorithm [15] can be used for this end. Explicitly, we use

where Ωm was defined in Section 3.3. Practically, all Sm(π/4) for m = 0, 1, ⋯, N cannot be

stored in the memory of current PCs, when the bandlimit, N exceeds 400. We stored them to

disk and used it to compute Sm(θ). Using this method, we can obtain the rotated images as

shown in Fig. 9 for the original images shown in Fig. 2.

5.2 Accuracy Test

Now let us consider the accuracy of our methods. If the original image were defined as a

continuous 2D function, its rotated version would also be a continuous function. This rotated

continuous image would be a ‘perfect’ answer with which to assess the accuracy of our image

rotation method. However, this is not the case. Since the original image is defined only on a

discrete grid and the result is on a different discrete grid, there is no ‘perfect’ baseline to

compare against for image rotations except for special rotation angles (θ = 0, π/2, π…).

Therefore, as an alternative, we perform the following test:

Test 1 We fit the rotated image to an appropriate continuous 2D function and resample it

onto the original grid to have an image close to the original image. We compare

the resulting image and the original image.

Test 1 assesses how much information of the original image remains after the rotation. In order

to compare the original images and the resulting images in accuracy tests, we will use the

NLSE, Sobolev norm and relative entropy.

The Sobolev norm which is defined as [17,28]

where f and g are image functions, and F and G are the discrete Fourier transforms of f and

g, respectively. ηu is the two dimensional frequency vector associated with u. U is the frequency

domain which is a lattice of the same dimensions as the domain of the image functions. n(U)

is the number of pixels of the lattice. We will use δ = 1/2 in this paper. The Sobolev norm

includes the difference between two images in terms of the derivatives.

Relative entropy (also known as Kullback-Leibler distance) is a non-commutative measure of

the distance between two probability distributions [7]. It can also be used for measuring the

difference between images. It is defined as [1]

where p(x) and p̂(x) are two image functions. In this paper, we will let p̂(x) be the original

image and let p(x) be the resulting image in the accuracy tests.
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The NLSEs, the Sobolev norms, and the relative entropies between the original image and the

resampled image by Test 1 are shown in Table 1 and 2. The 2D Fourier series and bi-cubic

interpolation were used in Table 1 and 2, respectively. We report the results by the two methods

(Method A and Method B) for computing Sm(θ). We also report the test results of the FFT-

based image rotation method developed by Larkin et al. [8] and Owen et al. [19] by applying

their method to our example images. As mentioned earlier, in this FFT-based method, three

consecutive shears are implemented using FFT. Since Test 1 is dependent on the choice of the

reference continuous 2D function, this test is not a sufficient test for accuracy, even though

our methods are better in this test.

As briefly mentioned in the previous subsection, rotations by a multiple of π/2(rad) can be used

as a perfect baseline for comparison, since those rotations of a discrete image can be exactly

obtained by reassigning the pixel values to a rectangular grid. The first natural test using this

perfect baseline would be that we rotate an image by π/2(rad) using an image rotation algorithm

and compare the result to the perfect answer. However, this test does not reflect the accuracy

of the FFT-based methods, because π/2(rad) rotation by three shear processes is equivalent to

reassignment of the pixel values to the π/2(rad) rotated grid. Specifically, the amount of

translation of pixels in shear processes is a multiple of the pixel size, when the rotation angle

is π/2. This means that we can not assess the effect of interpolation of the FFT-based method

in this particular case. As an indirect way to assess the accuracy, we run the following tests:

Test 2 We rotate an image by π/4(rad) 2 times consecutively and compare the resulting

image and the image rotated perfectly by π/2(rad).

Test 3 We rotate an image by π/6(rad) 12 times consecutively and compare the resulting

image and the original image.

Test 4 We rotate an image by 9 random angles consecutively and then rotate by the

negative of the sum of the angles. The first 9 angles are sampled from a uniform

distribution on the interval [−π/4, π/4] (rad). We compare the resulting image and

the original image.

These three tests are based on the fact that if an image rotation method is accurate, it will

preserve the information of the original image over the consecutive rotations and will give the

resulting image close to the perfect answer.

Since these three tests requires consecutive rotations, we need to define a concept of the

multiple rotations. Strategy 1 shown in Fig. 10(a) fully exploits the steerability of the Hermite

functions. First we obtain the Hermite expansion corresponding to a discrete image via the

Fourier series. Then we perform the rotation process on the Hermite coefficients. In order to

display the resulting image, one should find the Fourier series fit to the Hermite expansion and

sample it. In this strategy, we retain the Hermite coefficients for the consecutive rotations

instead of the resulting image. Therefore, the loss of information occurs only once when we

fit the Hermite expansion to a discrete data. However, it is more natural to keep the rotated

‘image’ for subsequent rotations. Therefore we also suggest Strategy 2 as shown in Fig. 10(b).

After we apply the rotation process to the Hermite coefficients computed from a given image,

we compute the rotated discrete image by computing the Fourier series fit to the new (rotated)

Hermite expansion and sampling the Fourier series. In order to rotate it again, we apply the

same process to the rotated image. In the numerical test, we will use only Strategy 2, since it

is closer to the real situation of image process.

The test results for Test 2, 3 and 4 are shown in Table 3, 4 and 5. We report the accuracy of

our method when using Method A and Method B. We also report the test results of the FFT-

based method. The band limit of the Hermite expansion is fixed to N = 620. The test results

with the three measurement methods show our new methods have lower error than the FFT-
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based method. Even though we do not pursue Strategy 1, the NLSEs in Test 2, 3 and 4 with

Lena image are 0.0017, when we use Strategy 1. This small error is possible, since the error

in our method occurs only once when the Hermite filtering is performed.

Fig. 11 shows the visual quality of the FFT-based method and our method. In this figure, the

difference images between the original Lena image and the resulting image in Test 3 are shown.

With the Hermite-based method, the difference occurs mainly at the sharp edges in the image.

However, with the FFT-based method, the difference can be seen in the wide area around the

sharp edges.

5.3 Computation Time

Table 6 shows the elapsed time in seconds for the image rotation process, when various sizes

of images are rotated by π/4. The first and second rows show the computation time for Hermite

transform proposed in Section 4.1 and 4.2, respectively. The total elapsed time for Method A

will be the summation of the first three rows. Similarly the total elapsed time for Method B is

the summation of the first, second, fourth and fifth rows. Ideally the time for loading Sm(π/4)

can be excluded from the total elapsed time, since the time for loading the data can be avoided

if the data is built in a memory. In this aspect, Method B shows better performance than Method

A.

The algorithm for computing the Hermite coefficients from a discrete image is implemented

with (N3) computation, when the size of image is (N2) and the band limit of the Hermite

expansion is (N). It is achieved by expressing (22) as a matrix multiplication. In principle,

we could reduce the computation cost to (N2 log2 N) if we used the algorithm in [9,10].

However, the rotation algorithm on the Hermite expansion in Section 3 is the dominant

contribution to the overall computation time. In Method A, the computation of Sm(θ) needs 

(m2) computations, since each matrix has the size of (m + 1) × (m + 1) and all elements are

computed by the recurrence formulas. Because Sm(θ) is multiplied by a (m + 1)-dimensional

vector for m = 1, 2, ⋯, N, the complexity of the whole rotation process is (N3). Method B

using (19) also has (N3) complexity, since computation of Sm(θ) using (19) needs (m2)

calculation.

6 Conclusions

In this work, in order to rotate images, we used the fact that the rotation of a 2D band-limited

Hermite expansion (with a band limit of a special form) is of the same form and has the same

band limit as the original expansion. We observed that the rotation of a two-dimensional band-

limited Hermite expansion results in a linear operation on the Hermite coefficients. We

proposed two ways to compute the matrix representing the linear operation; (1) recurrence

formulas; and (2) matrix multiplication formula. In addition, we proposed a method of

connecting the band-limited Hermite expansion and the discrete images. We used the Fourier

series on a continuous domain for the connection. Combining these techniques, we suggested

the image rotation method and the example results were presented. We also designed the tests

to assess the accuracy of rotation methods. We showed the accuracy of our image rotation

methods is better than that of the existing image rotation technique using FFT and 3 shears.

Reducing computation time of our methods remains ongoing work. The FFT-based method

works in less than one second with the images used in Table 6. Nevertheless, it is important to

note that our methods are based on a direct physical rotation on the plane, while the FFT-based

method uses the three shears. This discrepancy is thought to bring the benefit in accuracy to

our methods.

Park et al. Page 17

IEEE Trans Image Process. Author manuscript; available in PMC 2010 March 12.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Acknowledgments

This work was performed under the support of grants: NIH R01GM075310 “Group-Theoretic Methods in Protein

Structure Determination,” and NIH Grant R01EB006435 “Steering Flexible Needles in Soft Tissue.”

Appendix A

Orthogonality of Sm(θ)

Let use consider the following:

where , , and c̄ is the

complex conjugate of c. Using the orthonormality of the Hermite functions, we can rewrite

this as

(23)

since we are considering real-valued functions, and f̂n,m−n and ĝn,m−n are real-valued scalars.

Since Em is invariant under rotation of fm(x, y)gm(x, y), we have

Using (7), we can rewrite this as

Therefore,

(24)

Equating (23) and (24), we have
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for all possible f̂n,m−n and ĝn,m−n. We can conclude that

or

(25)

where Im is the (m + 1) × (m + 1) identity matrix. Since Sm(θ) is a real-valued square matrix

and (25) holds, Sm(θ) is an orthogonal matrix

Appendix B

The Skew-symmetric Matrix log (Sm(θ))

From the definition of ,

If we define A(θ) and B(θ) as

then Ωm = A(0) + B(0).

The derivative of Hermite function can be computed as [3]

Therefore,
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On the other hand,

Using these identities and (11), we have

Therefore,

The matrix, Ωm is a sparse skew-symmetric matrix.

Appendix C

Connection between Fourier Series and DFT

Here we find the Fourier series exactly hitting the given discrete points. For convenience, we

assume that the number of data, N, is even. For an odd number of data points, we can add zero-

padding to obtain an even number of data points.

For given N equally-spaced sampled points on the unit circle, we have to find the corresponding

Fourier series such that
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where f(θj) is the given sampled points and θj = 2πj/N, j = 0, 1, … (N − 1). We can expand f

(θj) as

(26)

On the other hand, we can apply the DFT(discrete Fourier transform) to the N samples and

have

where . Since we assume N is even, we can have

(27)

Since ei·(N/2)·2πj/N = eiπj = e−i·(N/2) ·2πj/N and

we can rewrite (27) as

(28)

Equating (26) and (28), we can have the relationship between the DFT and the Fourier series

as follows:

for an even number, N.
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Figure 1.

Contour plot of Kn(s)
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Figure 2.

Test images(512 × 512) from http://sipi.usc.edu/database/index.html
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Figure 3.

Normalized least-square error between the original image and the Hermite-filtered images
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Figure 4.

Inverted difference images between the original and Hermite- filtered images (×100 amplified)
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Figure 5.

Additional test images (512 × 512) from http://sipi.usc.edu/database/index.html (a) a house (b)

Barbara (c) boats (d) a clock (e) peppers (f) a bridge
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Figure 6.

Normalized least-square error between the original and the Hermite-filtered images. The

images in Fig. 5 were used for this test.
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Figure 7.

Contour plots of ‖Sm(θ)Sm(θ)T − I‖/‖I‖, where I is the identity matrix
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Figure 8.

Rotated images by Method A. The recurrence formulas were used to compute Sm(θ)
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Figure 9.

Rotated images by Method B. The matrix multiplication in (19) was used to compute Sm(θ).
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Figure 10.

Strategies for consecutive rotations
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Figure 11.

Inverted difference images between the original Lena image and the resulting image in Test 3

(× 30 amplified)
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Table 6

Elapsed time in seconds for the image rotation process measured in seconds. Forward and Inverse Hermite

transforms refer to calculation in Section 4.1 and 4.2, respectively.

Image size (band limit) 128×128 (155) 256×256 (310) 512×512 (620)

Forward Hermite transform 0.094 0.469 2.875

Inverse Hermite transform 0.063 0.453 2.675

Recurrence calculation in Method A 0.688 6.281 56.422

Loading Sm(π/4) for Method B 0.719 0.703 23.250

Matrix multiplication for Method B 0.109 1.078 11.110
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