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Abstract

As one of the most important reversible types of post-translational modification, protein methyla-

tion catalyzed by methyltransferases carries many pivotal biological functions as well as many es-

sential biological processes. Identification of methylation sites is prerequisite for decoding methy-

lation regulatory networks in living cells and understanding their physiological roles. Experimental

methods are limitations of labor-intensive and time-consuming. While in silicon approaches are

cost-effective and high-throughput manner to predict potential methylation sites, but those previ-

ous predictors only have a mixed model and their prediction performances are not fully satisfac-

tory now. Recently, with increasing availability of quantitative methylation datasets in diverse spe-

cies (especially in eukaryotes), there is a growing need to develop a species-specific predictor.

Here, we designed a tool named PSSMe based on information gain (IG) feature optimization

method for species-specific methylation site prediction. The IG method was adopted to analyze the

importance and contribution of each feature, then select the valuable dimension feature vectors to

reconstitute a new orderly feature, which was applied to build the finally prediction model. Finally,

our method improves prediction performance of accuracy about 15% comparing with single fea-

tures. Furthermore, our species-specific model significantly improves the predictive performance

compare with other general methylation prediction tools. Hence, our prediction results serve as

useful resources to elucidate the mechanism of arginine or lysine methylation and facilitate

hypothesis-driven experimental design and validation.

Availability and Implementation: The tool online service is implemented by C# language and freely

available at http://bioinfo.ncu.edu.cn/PSSMe.aspx.

Contact: jdqiu@ncu.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Many post-translational modifications (PTMs) of proteins provide

the proteome with structural and functional diversity, and regulate

cellular plasticity and dynamics (Mann and Jensen, 2003). Protein

methylation is considered one of the most common and reversible

PTMs (Paik and Kim, 1967), which is an important element in many

significant biological functions (Bedford and Richard, 2005;

Bannister et al., 2005; Paik et al., 2007). Meanwhile, researchers

and clinicians have proved that protein methylation and their regu-

latory enzymes are involved in the process of a variety of human
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diseases such as cancer (Aleta et al., 1998; Wang et al., 2009), car-

diovascular disease (Yang and Bedford, 2013), multiple sclerosis

(Mastronardi et al., 2006), rheumatoid arthritis (Suzuki et al.,

2007), as well as neuroses generative disorders (Longo and

Kennedy, 2006). Therefore, annotation of methylation in proteomes

would certainly provide very useful information or clues for drug

discovery to study and analyze the mechanisms that govern these

basic epigenetic phenomena.

Identification of methylated sites is the first step towards to

understanding molecular mechanism of protein methylation.

Although there have many conventional experimental methods to

identify protein methylation sites, such as Chip-Chip (Johnson

et al., 2008), mass spectrometry (MS) (Ong et al., 2004) and

methylation-specific antibodies (Boisvert et al., 2003), these experi-

mental approaches are limited to labor-intensive and time-

consuming. While in silicon prediction of methylation sites is much

more desirable for its convenience and fast speed, and there have

been several tools published for prediction protein methylated sites.

Recently, our lab (Shi et al., 2015) have systematically summarized

current of computational prediction methylation sites method of

the past ten years. Furthermore, we have also summarized charac-

teristic of differences among several typical tools (the detailed infor-

mation in Supplementary Table S1), including MeMo (Chen et al.,

2006), BPB-PPMS (Shao et al., 2009), MASA (Shien et al., 2009),

PMeS (Shi et al., 2012), PLMLA (Shi et al., 2012), MethK (Lee

et al., 2014), iMethyl-PseAAC (Qiu et al., 2014) and GPS-MSP

(Deng et al., 2016). For instance, Plewczynski et al. (2005) designed

the first methylation sites predictor within their AutoMotif Server

using regular expression technique. Subsequently, Shao et al.

(2009) combined Bi-profile Bayes feature extraction with support

vector machine (SVM) to predict arginine and lysine methylation.

Based on an enhanced feature encoding scheme (composed of the

sparse property coding, normalized van der Waals volume, position

weight amino and accessible surface area), our lab developed a tool

PMeS (Shi et al., 2012) to predict arginine and lysine methylation.

Meanwhile Shi et al. (2012) incorporated protein sequence infor-

mation, secondary structure and amino acid properties to identify

methylation and acetylation of lysine residues in whole protein se-

quences. Lee et al. (2014) used amino acid composition (AAC) and

accessible surface area (ASA) coalition SVM to identify lysine-

methylated sites on histones and non-histone proteins. Most re-

cently, Deng et al. (2016) adopted GPS 3.0 algorithm and built

GPS-MSP (Methyl-group Specific Predictor) for the prediction of

general or type-specific methyllysine and methylarginine residues in

proteins.

Although each of the aforementioned methods possesses its own

merit and did play roles in stimulating the development of this area,

they still have limitations when applied to whole proteomes and need

improvement from one or more of the following aspects: (i) The

benchmark dataset used by the previous investigators needs to updated

by incorporating new experiment-confirmed data, because methyla-

tion data updated very quickly in recent years. For example, Lee et al.

(2014) created MethK model just with 1306 methyllysine sites at

2013, whereas our work have found 3180 lysine methylation sites in

total. (ii) The features used by the previous models were single and

simple, which it is casing the performance of the several aforemen-

tioned predictors not fully satisfactory, so there is still room to im-

prove the predictive accuracy (the detailed information see comparison

with other general prediction tools in results and discussion). (iii) The

third limitation is that the methylation specific classification (species

or methyltransferase family) was not discussed in previous methods.

The majority of existing studies except GPS-MSP disregarded the

differences of species and considered all species methylation sites as

generic sites to build a mixed model. However, sequences or structural

patterns around the methylation sites may significantly differ in differ-

ent organisms, so it highlighting necessity to develop species-specific

predictors. (iv) Furthermore, some of these tools were only published

as a method and did not provide a user-friendly web service or the

web server does not work (Xu et al., 2013; Zhang et al., 2013). The

tools with web services are useful for user to predict methylation sites

when they want to experimental design and verify whether sequence is

methylated, especially for large-scale predictions.

Protein methylation site prediction has not been as widely

studied as other types of PTM (such as phosphorylation and acetyl-

ation) due to lack of methylation data. With techniques rapidly

increasing in the past few years, the growing number of methylation

datasets was found in diverse species (especially in eukaryotes). For

example, Lott et al. (2014) found over 800 arginine methylated pro-

teins in an early-branching eukaryote Trypanosoma brucei. Li et al.

(2014) collected 6449 methylation sites with species information in

3237 experimentally validated methylated proteins in SysPTM 2.0.

Protein methylation has attracted more and more attentions, there is

a growing need to develop a species-specific predictor. In this work,

we developed a new tool named PSSMe (prediction species-specific

methylation sites) to overcome above limitations of the existing

methods, which is specifically designed to predict both species-

specific and general methylation sites. Reliable and large-scale ex-

perimental methylation sites data from multiple species were col-

lected from several sources which used to train for building the

species-specific models. In particular, our model first used a well-

established feature selection method IG (Huang and Berger, 2008)

coupled with a two stage to distinguish the importance and valuable

dimension feature vector, which it is more simple and convenient

comparison with other selection and optimization methods (such as

the maximum relevance minimum redundancy (mRMR) method)

(Peng et al., 2005), The first-stage selects five features, including

amino acid compositions (AAC), K-spaced amino acid pair compos-

ition, amino acids binary encoding (BE), K Nearest Neighbors fea-

tures (KNN) and amino acid physicochemical property (PSP)

features. The second-stage incorporates five features and finds most

valuable dimension features based on information gain (IG) method,

and then reconstitute a new orderly features to build the model for

methylation sites prediction. After prediction of independent test

dataset, the result showed that our prediction performance overall

significantly enhance than other tools.

Furthermore, we discussed the model of methylation in different

species; the analysis result shows the following: (i) the methylation

patterns are significantly different in different species. (ii) IG method

can effectively select valuable dimension features and reduce redun-

dant features for improving the prediction performance. (iii) Based

on IG score, it suggests that KNN feature is important and makes a

great contribution for prediction methylation sites. (iv) Finally, the

web service of PSSMe supports continuous stringency adjustment to

meet the various confidence requirements of user’s cross-validation

tests and provides better probability information for prediction re-

sults by comparison with other prediction tools.

2 Methods

2.1 Data collection and preprocessing
Methylation is predominantly found on lysine and arginine residues,

of which arginine methylation data were composed of three species:

H.sapiens (human), M.musculus (mouse) and R.norvegicus (rat).
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And lysine methylation data were also collected from three species:

H.sapiens (human), M.musculus (mouse) and the others eukaryotes

(i.e. yeast, cow, sheep and so on). The data were mainly extracted

from several database sources including PhosphoSite (March 1,

2015) (Hornbeck et al., 2004), UniProtKB/Swiss-Prot (March 1,

2015) (Chernorudskiy et al., 2007), SYSPTM (Li et al., 2014),

dbPTM (Lee et al., 2006), CPLM databases (Liu et al., 2013) as well

as the relevant literatures. From the literatures in recent years, we

found 287 methylarginine sites and 57 methyllysine sites which have

been experimentally verified and were not collected in databases.

Totally, the original dataset of methylarginine contained 3550 pro-

teins including 7198 methylated sites, of which 3603 sites were

found from human, 2931 sites from mouse and 425 sites were from

rat (detailed information in Supplementary Table S2). Similarly, the

methyllysine dataset contained 3180 methylated sites from 1764 ly-

sine proteins in different species. Among them, we found 2045

methylated sites from human, 289 methylated sites from mouse,

while 480 methylated sites from the other eukaryotes in all. Because

methylation dataset from several sources may own a high protein se-

quences homology, we need cluster the protein sequences from data-

set with a threshold of 30% identity by CD-HIT (Li and Godzik,

2006) to eliminate homology protein sequences. Afterward, we got

the non-redundant species methylation datasets, and then randomly

selected 30 arginine and lysine proteins containing methylated sites,

respectively, to use as the independent data for different species

model testing. The remaining 2980, 2644, 321 arginine methylation

sites as well as 1741, 186, 173 lysine methylation sites of various

species were used to construct our training models, respectively.

Finally, numbers of methylation sites for arginine and lysine differ-

ent species model training and testing are shown in Supplementary

Table S3 (the detailed training methylation set in Supplementary

Data S1 and Data S2).

2.2 Features extraction and optimization
As heterogeneous features used to predict PTMs sites in silicon are

often noisy and redundant leading to an adverse impact on model

training, such as decreasing performance, a time-consuming train

classifiers and possibly biased model prediction, thus features opti-

mization is very necessary. In our study, a new method IG was

adopted to select and optimize multi-features, which can effectively

remove redundant features and significantly improve the predictive

performance. In the first-stage, we selected some features from

which have been evidenced good performances for prediction PTMs

sites. After the preliminary evaluation testing of SVM (SVM infor-

mation in Supplementary Ep1), we selected the five features which

can effectively predictive methylation sites. These features are the

amino acid composition (AAC), binary encoding (BE), K-spaced

amino acid pair composition (K-spaced), K Nearest Neighbors

(KNN) features and physicochemical properties (PSP). The detailed

feature information is following (the K-spaced and BE feature infor-

mation in Supplementary Ep2):

2.2.1 AAC

Amino acid composition feature is the most popular coding method

and widely used for prediction PTMs sites (such as phosphorylation

and acetylation) (Suo et al., 2012), which reflects protein sequences

amino acid occurrence frequencies information. In this work, AAC

is the fraction of each type of amino acid in a sequence fragment, we

calculated amino acid occurrence frequencies in the sequence sur-

rounding the query site (the site itself is not counted). There are 20

types of amino acids, and thus 20 frequencies are calculated, the

sum of which is 1.

2.2.2 KNN

Local sequence clusters often exist around methylation site because

substrate sites of same methyltransferases usually share similar pat-

terns in local sequence fragments (Kennelly and Krebs, 1995). We

used the local sequence around a possible methylation site in a query

protein and extracted features from similar sequences in both the

positive and negative sets by a KNN algorithm. For example, two

local sequences, s1¼ [s1 (i)] and s2¼ [s2 (i)] define the distance Dist

(s1, s2) between s1 and s2 as:

DistðS1; S2Þ ¼ 1�

Xp

i¼�p

SimðS1ðiÞ; S2ðiÞÞ

2pþ 1
(1)

Simða;bÞ ¼ Mða; bÞ �minfMg
maxfMg �minfMg (2)

where p represents the length of a protein sequence; Sim, the amino

acid similarity matrix, is derived from the BLOSUM62 substitution

matrix (Henikoff and Henikoff, 1992); a and b are two amino acids,

M is the substitution matrix and max/min{M} represent the largest/

smallest number in the matrix, respectively.

2.2.3 PSP

Physicochemical property is the most intuitive feature for biochemical

properties, the specificity and diversity of structure and function of

proteins depend to a large extent on various properties of each of the

amino acids. A large body of experimental and theoretical researches

has been performed to characterize different kinds of properties of in-

dividual amino acids and represent them in terms of the numerical

index (Tomii and Kanehisa, 1996). Version 9.1 of Amino Acid index

database (AAindex) (Kawashima and Kanehisa, 2000) is containing

total 544 amino acid indices physicochemical and biochemical proper-

ties of 20 amino acids. Furthermore, PSP has been successfully applied

to predict such protein modification as phosphorylation, acetylation.

Moreover, Shi et al. (2012) and Lee et al. (2014) also have shown that

the feature set of PSP is one of best type of feature for predicting

methylation sites. Thus, in our work, comparing the prediction accur-

acy of all PSP, then the top three were selected and defined as inform-

ative features for the prediction model. The detailed informative of

PSP in different model is shown in Supplementary Table S4.

2.2.4 IG

The second-stage is selection and optimization aforementioned five

features to find the most valuable dimension feature vectors for

building the prediction model. In fact, compared to the single fea-

ture, the combination of features can reflect more protein sequence

information leading to a certain improvement of prediction per-

formance. However, the combination of complex features is highly

dimensional, redundant, heterogeneous and noisy, which would

lead to a time-consuming practice to train classifiers and possibly

biased model prediction. In this stage, we analyzed all dimension

feature vectors of five features based on IG method, then distin-

guished the importance and contribution features. We selected this

valuable dimension feature vectors to reconstitute a new orderly fea-

tures which employed for methylation sites prediction. The IG

method could effectively select valuable dimension feature vectors

and significantly improve the predictive performance. The detailed

theory of IG method is following.
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Information gain measures the decrease in entropy when a given

feature is used to group values of another (class) feature. The en-

tropy of a feature X is defined as

HðXÞ ¼ �
X

i

PðxiÞlog2ðPðxiÞÞ (3)

where [xi] is a set of values of X and P (xi) is the prior probability

of xi. The conditional entropy of X, given another feature Y is

defined as

HðXjYÞ ¼ �
X

j

PðyiÞ
X

i

PðxijyiÞlog2ðPðxijyiÞÞ (4)

where P (xi j yj) is the posterior probability of X given the value yi of

Y. The amount by which the entropy of X decreases reflects add-

itional information about X provided by Y and is called information

gain

IGðXjYÞ ¼ HðXÞ �HðXjYÞ (5)

According to the above theory, we can draw the conclusion that

the larger the value of IG, the greater the impact of the correspond-

ing features vector for prediction methylation site.

3 Results and discussion

3.1 Analysis of sequence information results
First, we used the sample logo to analyze sequence structural infor-

mation to determine statistically significant residues surrounding

methylation sites. In order to identify distinct patterns or conserved

sequence motifs between methylation and non-methylation proteins,

we applied Two Sample Logo tool (Vacic et al., 2006) to generate

sequence logos (Fig. 1) for the arginine/lysine methylation sequence

with three different species based on the curated datasets. From the

sequence logo, the amino acid residues that significantly enriched

and depleted around arginine/lysine methylation sequence were eas-

ily identified. We find methylation sequence very similar in three dif-

ferent species, where ‘G’ (glycine) is primary acid residue and tends

to appear across all positions. However, there is a slight difference

in three species sequence logo. For example, ‘P’ (proline) at pos-

itionþ4 only found in human and mouse sequence, whereas residue

is not favored in rat sequence. In contrast, residue‘P’ is favored at

position �3 in rat, whereas not favored in human and mouse se-

quence. For the lysine methylation sequence logo, in Figure 1B, we

observed that this sequence residue is more significant difference

than arginine sequence in different species. In the human sequence,

‘R’ (arginine) residue tends to enrich at position �7, �6, �1,þ1,þ4

andþ8, whereas it does not appear in mouse sequence and tends to

deplet at position �4 andþ7 in the others eukaryotes sequence.

Another example is that at position �1 andþ1 the residue diverse in

three species sequence, the human sequence main residue is ‘R’ and

the others eukaryotes sequence are ‘F’ (phenylalanine) and ‘Y’ (tyro-

sine) residues, whereas there are significant enriched ‘S’ (serine) and

‘G’ residue in mouse sequence. The sequence logo suggested that

methylation and non-methylation fragments have a considerable dif-

ference among the species sequence. Altogether, the result highlights

the necessity and significance of addressing the task of precise argin-

ine and lysine methylation site recognition by developing species-

specific predictors.

Second, we investigated the difference of the AAC between

methylation and non-methylation sequence in different species. In

Figure 2, from left to right, the upper amino acid residues mean

that enriched in methylation sequence, whereas other underside

amino acids are depleted. For arginine methylation sequences, in

Figure 2A, with a slight tendency of distinctions among different

species, the overall trends are very similar. Amino acids Gly, Phe,

Met, Pro and Tyr are enriched in the methylation sequences,

whereas Glu, Lys, Asp, Cys, Ile, Thr, Val and Trp are depleted.

However, there are also some differences in diverse species. One ex-

ample is that amino acids Pro and Tyr have significant difference be-

tween methylation and non-methylation sequences favored in rat,

but have no distinction in human and mouse sequences. For lysine

methylation, in Figure 2B, AAC distinctions are pretty obvious

among three different species, and the amino acid residues of en-

riched and depleted were also easily identified. For instance, amino

acid Cys and Tyr in mouse methylation sequences are depleted,

while they are enriched in other two species sequences.

Furthermore, amino acids Ala, Trp, Val, Pro, Lys, Asp and Arg

are enriched or depleted in human and mouse sequences, whereas in

the others eukaryotes model amino acids sequences is more probable

opposite. These results show that AAC were obvious distinction be-

tween methylation and non-methylation sequence, which it could be

a helpful feature for methylation prediction.

3.2 Analysis of evolutionary features results
Evolutionary information is an important characteristic of protein,

in the field, KNN feature was used to quantify the evolutionary con-

servative information. The KNN feature has been successfully used

for prediction PTM sites such as phosphorylation (Gao et al., 2010)

and ubiquitylation (Chen et al., 2013) sites. KNN score measures

whether the local sequence surrounding a query site is more similar

to the sequences containing methylation sites in the positive set or

those with non-methylation sites in the negative set. When the score

greater than 0.5 means the query site is more likely to the positive

set, while score smaller than 0.5 means it is more similar to the nega-

tive set. The larger the KNN score, the more similar the site is to

some known methylation sites, and thus, the more likely it is a

Fig. 1. Sequence logo illustration generated by Two Sample Logo for methy-

lation sites sequence information in different species. (A) Arginine methyla-

tion logo for human, mouse and rat. (B) Lysine methylation logo for human,

mouse and the other eukaryotes (Color version of this figure is available at

Bioinformatics online.)
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methylation site. In Figure 3, we compared the KNN scores of

methylation sites with those of non-methylation sites (due to the gap

of data, we selected different k values and comparison sets;

Supplementary Table S5). As can be seen in Figure 3A, the KNN

score has significant difference among various values of k in human

methylarginine and non-methylation sequences, the methylation site

scores are within 0.6–0.7, whereas non-methylation scores are

around 0.4–0.5. For KNN scores of three different species in methyl-

arginine, the average KNN scores of methylation sites with different

sizes of nearest neighbors are within 0.6–0.75 for all three organ-

isms. For non-methylation, the average KNN scores are around 0.

35–0.5. The same to methyllysine, from in Figure 3B, we found the

lysine methylation average KNN scores are within 0.5–0.7 for all

three organisms and the average scores of non-methylation are

around 0.35–0.5, respectively. Overall, methylation sites have larger

KNN scores than non-methylation sites. These analyses show that

the local sequences surrounding known methylation sites are more

similar to their nearest neighbors in the positive set (excluding self-

matches) on average as expected, but the sequences in the negative

set are not predominantly more similar to nearest neighbors in either

the non-methylation or negative set. These similarities are not due to

protein homology or the global sequence similarity, because any

two proteins in our comparison datasets are either insignificant or

low. Also, the result confirms that methylation-related clusters exist

in regional sequences around methylation sites. For non-methylation

sites, the average KNN scores are minimal, because methylation-

related sequence clusters are unlikely to exist in the negative set.

Thus, the sequences in the negative set have a similar chance to find

close neighbors in either the positive or negative set. In short, KNN

scores capture the cluster information in the local sequence around

methylation sites and hence distinguish them from the background.

Therefore, KNN scores are suitable to be used as a feature for pre-

diction methylation site.

KNN feature is very effective for predicting both general and

species-specific methylation sites. For methylation site predictions,

KNN feature relies on similarity of local sequence substrates of a

common methylation-related enzyme family to automatically distin-

guish whether site is methylation or not. Although most known

methylation sites have no annotation about their sequence substrates

of corresponding enzymes family, KNN features can still use the in-

herent cluster information in them. Oftentimes, one enzyme corres-

ponds to multiple local sequence motifs, and using a single sequence

profile may not be as effective as KNN, which better handles diverse

sequence clusters.

3.3 Analysis of physicochemical properties results
Physicochemical property is the most intuitive feature applied in

PTMs prediction studies. From the previous work, Shi et al. (2012)

and Lee et al. (2014) used solvent accessible surface area (ASA) (one

of physicochemical properties) coding feature and have been evi-

denced PSP plays an important role for prediction methylation sites.

Because the physicochemical property has a total of 544 (if we se-

lected all PSP of features that would highly dimensional, heteroge-

neous, noisy and time-consuming classification of the training

model), we compared the prediction accuracy of all PSP and only se-

lected top three to define as informative features for the prediction

model. As can be seen from Supplementary Figure S2, one of the spe-

cific examples of informative PSP in arginine mouse model was pro-

vided. We calculated the mean values of physicochemical property

‘Thermodynamic beta sheet propensity’ (KIMC930101) at each pos-

ition in methylation and non-methylation sequences. Interestingly,

we found mean values of this property in methylation sequences is

higher than in the non-methylation at all the positions, especially at

the near the central sites (the positions �1,þ1 andþ2) the phenom-

enon is more remarkable. This property features could easily distin-

guish the methylation or non-methylation sequences, which is

suitable for prediction methylation sites (compare with other PSP,

this feature have higher prediction accuracy). Furthermore, the se-

lected optimal features of PSP differed, depending on the species of

interest. The detailed information of selected top three PSP in differ-

ent species see Supplementary Table S3.

Fig. 2. Comparisons of AAC in positive and negative datasets. The vertical

axis represents the log2 ratio of amino acid frequencies surrounding methyla-

tion sites and non-methylation sites. The horizontal axis represents the 20

amino acids sorted in descending order by the mean log2 ratio (A) arginine

sequence; (B) lysine sequence (Color version of this figure is available at

Bioinformatics online.)

Fig. 3. Comparison of KNN scores between methylation sequences and non-

methylation sequences. (A) Histogram of KNN scores of five thresholds (K1,

K2, K3, K4 and K5) in arginine human and comparison of mean KNN scores

between the arginine methylation in three species. (B) The KNN scores of five

thresholds in lysine human and comparison of mean KNN scores between

the lysine methylation in three species (the detailed comparison data infor-

mation see Supplementary Table S5) (Color version of this figure is available

at Bioinformatics online.)
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3.4 Analysis of feature optimization results
3.4.1 The features optimization results

The selected five features (AAC, BE, K-spaced, KNN feature and

PSP) were independent coding tests for prediction methylation sites,

which the performances are not fully satisfactory. However, com-

pare with single feature, the combination of different five features

would provide a more powerful predictor. If we combine all of five

features that have totally 2245-dimensional features vector (detailed

five features dimensional information in Supplementary Table S6).

The highly dimensional features which will lead to a time-

consuming classification of the training model, some of features vec-

tor may unwanted noise and possibly biased model prediction per-

formance. Accordingly, not all features are equivalently important

for the performance of the trained model, so optimization of incor-

porative features is generally necessary to reduce dimensionality but

keep important one. In this work, we first apply IG method to select

the valuable dimension feature vectors to reconstitute a new pseudo

amino acid composition feature. After first-stage of feature selec-

tion, we combined all of five features which totally have 2245-di-

mensional feature vectors. Subsequently, we find that the IG score

have a quite different in each dimension. We know a higher IG score

means that it is a more valuable vector based on the IG theories.

Then we select IG score top 400 vectors from 2245-dimensional fea-

ture vectors and reconstitute it a new orderly feature (from low to

high of IG score) named as the ‘Final feature’. The prediction per-

formance of used single five features and the ‘Final feature’ for pre-

diction methylation sites are shown in Figure 4, and we found the

‘Final feature’ have better prediction performance than other single

feature. One of example that the accuracy of mouse lysine methyla-

tion prediction model used single five features (AAC, BE, K-spaced,

KNN feature and PSP) are 66.39%, 61.02%, 67.47%, 68.01% and

65.86%, respectively (The other species of five features prediction

performance detailed information in Supplementary Tables S7 and

S8). While when we applied ‘Final feature’ for prediction, the accur-

acy is 81.18%. Comparing with single five features, which improved

accuracy are 14.79%, 20.16%, 13.71%, 13.17% and 15.32%, re-

spectively. The result shows that the IG method could effectively ex-

tract those important valuable dimension vectors from multi-

features for methylation sites prediction, which have significantly

improvement of prediction accuracy about 15%.

3.4.2 Analysis of feature importance and contribution

As mentioned previously, the five features sets (AAC, BE, K-spaced,

KNN feature and PSP) were selected to predict methylation sites.

We do not know the five features make how much contribution and

which is more importance than others. However, we adopted IG

method to analyze features importance and contribution, and eval-

uated which dimensions features vectors are valuable to prediction

model. For example, for human arginine methylation (the IG score

of 2245-dimensional feature vector is shown in Supplementary Fig.

S3), we found that IG score of KNN 5-dimensions is significantly

higher than other four features dimensions vector, suggesting that

KNN features play significant roles in determining the prediction

performance of the model and make a great contribution to pre-

dict methylation sites. In fact, methylation histones possess highly

conserved sequences in most species. The KNN feature is related

to conserved residues and protein evolutionary information,

which has good prediction performance in this model. In contrast,

most of IG score values of K-spaced and BE features dimensions vec-

tor are low, which suggest that most of dimension features is un-

wanted and this two features are not importance as KNN feature for

the model.

We additionally discuss the constitution of finally dimensions

features vector, which is various at different species model. These

analyses show that the number of optimal dimensional features se-

lected from five features was differed, depending on the species of

interest. Detailed information of our results is presented in

Supplementary Table S9. Taking human lysine methylation as an ex-

ample, the reconstitution of 400-dimension new feature from afore-

mentioned five features (AAC, BE, K-spaced, KNN feature and

PSP), and the rations of selected dimension feature vectors belonging

to the five features group are 0.7 (14/20), 0.09 (38/399), 0.16 (289/

1746), 1 (5/5) and 0.95 (54/57), respectively. From these results, we

discover that most of dimension feature vectors from AAC, PSP and

KNN three features are valuable and make a contribution to predic-

tion model, while the other two features BE and K-spaced have

many unwanted or redundant dimension vectors. These suggest that

compared with BE and K-spaced features, the other three features

are more importance to this model. Furthermore, considering the

features optimization results in different species, therefore, we ex-

pect that IG method fully consider the importance and contribution

of each dimension feature vectors, which can obtain the higher pre-

diction accuracy.

3.5 Species-specific methylation site prediction of

PSSMe
The proposed PSSMe predictor trained and tested for arginine and

lysine methylation has four models based on IG method optimiza-

tions features, respectively. To evaluate the performance of PSSMe

for species-specific methylation site prediction, we performed a 10-

fold cross-validation test in each species. Sensitivity at different spe-

cificity levels in each cross-validation were calculated according to

Supplementary Ep3. By taking different thresholds, then we plotted

Fig. 4. Prediction performance of using single five features and the ‘Final fea-

ture’ for prediction methylation sites in different species models
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the receiver operating characteristic (ROC) curves and calculated

the AUC as shown in Supplementary Figure S4. Three arginine

methylation models of human, mouse and rat are achieved under

ROC curves (AUC) of 0.846, 0.864 and 0.853, respectively.

Similarly, three lysine methylation models of human, mouse and the

other eukaryotes achieved AUC of 0.844, 0.856 and 0.867, respect-

ively. From the ROC curves, we knew that those models have good

confident predictions with high specificities, especially for the argin-

ine mouse model, the prediction sensitivities reached 58% at the

90% specificity level, and 30% at the 95% specificity level.

Furthermore, the AUC of models of arginine combined and lysine

combined achieved of 0.851 and 0.834, respectively. The PSSMe

model was testing by 10-fold cross-validation, which has stabled

prediction performance. In contrast, we take a testing for cross-

species prediction for methylation sites, but the results of prediction

is not fully satisfactory and achieved lower specificities and AUC

scores. In summary, these justify our PSSMe general and species-

specific predictor model have stabilization and good prediction

performance.

3.6 Comparison with other prediction tools
To further evaluate the performance of PSSMe prediction methyla-

tion site, we compared it with some existing widely used arginine

and lysine methylation prediction tools. Although there have been

reported many tools for predicting protein methylation sites since

2005, considering the web server tools whether do work or not, four

general tools and one species-specific predictor GPS-MSP were se-

lected to compare the arginine and lysine models, respectively. The

comparison of general arginine methylation predictors are MeMo,

BPB-PPMS, PMeS and iMethyl-PseAAC, while the comparison of ly-

sine methylation tools are MeMo, PLMLA, PMeS and MethK.

Because the training data used to build these tools were collected

from different databases, the prediction performance varies greatly

among them. To avoid any bias, in this work, the additional inde-

pendent test dataset was applied in the cross-species prediction

evaluation. We submitted each species test dataset to MeMo, BPB-

PPMS, PMeS and iMethyl-PseAAC tools for prediction arginine

methylation site. From the results (Table 1), PSSMe achieves signifi-

cantly higher AUC values than other four tools (the ROC perform-

ance comparison of our model with other tools in Supplementary

Figs. S5 and S6). For arginine methylation model, AUC values of the

prediction performance of PSSMe are 0.870, 0.893 and 0.978 in

human, mouse and rat model, respectively. Comparing with MeMo

(the AUC values is 0.683), our three model improved the AUC val-

ues are 0.187, 0.21 and 0.295, respectively. In addition to the AUC

value comparison, we also calculated the MCC, sensitivity and spe-

cificity, as shown in Table 1. BPB-PPMS and iMethyl-PseAAC tools

can achieve high specificity along with sacrificing sensitivity, which

would case a low MCC and AUC values. PMeS have a good balance

between specificity and sensitivity, but the MCC and AUC of predic-

tion performance are not fully satisfactory. However, PSSMe not

only offers good sensitivity as well as high specificity, but also have

higher AUC and MCC values. One of the examples for human ar-

ginine model, the prediction performance is sensitivity of 83.3%,

specificity of 91.0%, accuracy of 87.1%, MCC of 0.745 and AUC

of 0.870, while other four approaches have lower values. It shows

that species-specific PSSMe outperforms general tools.

For the lysine methylation tools, we made a comparison of pre-

diction to the species of human, mouse and the others eukaryotes.

The performance of PSSMe and other four tools predict independent

test methylation dataset are shown in Table 2. We found that

MeMo and PMeS tools have high specificity meanwhile sacrificing

sensitivity, the AUC and MCC are not good when prediction human

and mouse methylation sites. PLMLA and MethK have a good bal-

ance of prediction performance, but comparison with PSSMe, which

our prediction result is better. For example, the performances of

MethK for prediction human lysine methylation are sensitivity of

72.7%, specificity of 96.9%, accuracy of 84.8%, MCC of 0.718

and AUC of 0.858, while the performances of our tool are sensitivity

of 98.4%, specificity of 96.9%, accuracy of 97.7%, MCC of 0.954

and AUC of 0.969. Meanwhile, MethK have not good performances

when used to predict the other eukaryotes methylated sites, while

PSSMe have significantly improvement of sensitivity and AUC val-

ues for species-specific methylation site prediction. In addition, we

compared PSSMe arginine and lysine combined models with other

four tools for methylation sites, respectively. The detailed

Table 1. Prediction performance comparison between our method

(arginine methylation model of different species) and other tools

(SN: sensitivity, SP: specificity, ACC: accuracy, MCC: Matthew cor-

relation coefficient)

Organism Tools SN SP ACC MCC AUC

Human MeMo 0.384 0.897 0.641 0.328 0.683

BPB-PPMS 0.115 1.00 0.557 0.247 0.746

iMethyl-PseAAC 0.166 0.974 0.570 0.239 0.732

PMeS 0.512 0.705 0.609 0.222 0.604

GPS-MSP 0.807 0.897 0.852 0.708 0.841

Our work 0.833 0.910 0.871 0.745 0.870

Mouse MeMo 0.478 0.753 0.615 0.241 0.621

BPBPPMS 0.188 0.898 0.543 0.123 0.596

iMethyl-PseAAC 0.275 0.913 0.594 0.244 0.621

PMeS 0.608 0.521 0.565 0.130 0.555

GPS-MSP 0.841 0.754 0.797 0.597 0.804

Our work 0.927 0.840 0.884 0.771 0.893

Rat MeMo 0.460 0.857 0.658 0.345 0.683

BPBPPMS 0.269 0.984 0.627 0.362 0.763

iMethyl-PseAAC 0.285 0.968 0.627 0.347 0.744

PMeS 0.539 0.730 0.634 0.274 0.625

GPS-MSP 0.362 0.921 0.659 0.377 0.700

Our work 1.00 0.952 0.976 0.953 0.978

The best evaluation parameters for each test model are highlighted in bold.

Table 2 Prediction performance comparison between our method

(different species of lysine methylation model) and other tools

Organism Tools SN SP ACC MCC AUC

Human MeMo 0.197 0.893 0.545 0.126 0.575

PLMLA 0.439 0.636 0.537 0.077 0.547

PMeS 0.303 0.969 0.636 0.365 0.733

MethK 0.727 0.969 0.848 0.718 0.858

GPS-MSP 0.767 1.00 0.849 0.731 0.882

Our work 0.984 0.969 0.977 0.954 0.969

Mouse MeMo 0.278 0.934 0.606 0.282 0.723

PLMLA 0.508 0.606 0.557 0.115 0.582

PMeS 0.377 0.950 0.663 0.400 0.723

MethK 0.868 0.885 0.877 0.754 0.885

GPS-MSP 0.328 0.918 0.623 0.306 0.682

Our work 0.946 0.875 0.910 0.823 0.847

The others

eukaryotes

MeMo 0.625 0.906 0.765 0.553 0.786

PLMLA 0.546 0.546 0.546 0.093 0.558

PMeS 0.703 0.890 0.796 0.604 0.793

MethK 0.750 0.890 0.820 0.647 0.823

Our work 1.00 0.921 0.960 0.924 0.963

The best evaluation parameters for each test model are highlighted in bold.
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information of result is listed in Supplementary Table S10; PSSMe

arginine combined models improved the AUC values of 0.244, 0.

331, 0.328 and 0.374 than MeMo, BPB-PPMS, PMeS and iMethyl-

PseAAC, respectively. Similarly, PSSMe lysine combined models im-

proved the AUC values of 0.233, 0.342, 0.154 and 0.039 than

MeMo, PLMLA, PMeS and MethK, respectively. What is more, we

also compared with other species-specific predictor GPS-MSP,

which is developed by the author of MeMo. First, in order to make

the results comparable, sensitivities of GPS-MSP and PSSMe were

set to 0.5. Then, we submitted species-specific independent test data-

set to GPS-MSP model for prediction methylation site, and the re-

sults are shown in Tables 1 and 2. We found that comparison with

other general prediction tools, prediction performances of species-

specific models PSSMe and GPS-MSP have outperformed. Take ar-

ginine human model as an example, PSSMe and GPS-MSP achieved

significantly higher AUC values than other four general tools, it is

evidenced that developing a species-specific predictors is necessary.

Meanwhile, comparing with species-specific prediction methylation

sites, PSSMe have outperformed GPS-MSP. For example, for lysine

methylation rat model, our model could more accurately predict

methylation than GPS-MSP. It is show that PSSMe has good predic-

tion performance for species-specific prediction methylation sites.

The reason that PSSMe outperforms other predictors is mainly

following: (i) the data sources of the experimental methylation sites

for the previous tools was collected mainly from UniProtKB/Swiss-

Prot and it may bias on some special species (most of earlier methy-

lation data were collected from human protein and only a few hun-

dred methylated proteins). The little data may case a bias

classification of the training model and are not suitable for predict-

ing all species. However, PSSMe integrated 8100 experimental

methylation sites from multiple resources, which have been accumu-

lated the methylation data from thousands of proteins in different

species. (ii) The BPB-PPMS and iMethyl-PseAAC tools have low

AUC that is partly attributed to using the single feature, which could

not extract fully features information from methylation sequences.

In contrast, PSSMe integrated five features to ensure the complete

extraction of sequence information, further conducted multi-

features selection and optimization based on IG method. Finally,

analysis of each features contribution and importance found valu-

able dimensions feature vector to build the model for prediction

methylation sites. (iii) When performing the comparisons, we used a

prediction model that was trained from a dataset excluding the pro-

tein sequences in the independent test dataset. However, for com-

parison tools, some of the test proteins might have been included in

their training processes, and thus prediction performances may be

biased favorably toward these tools in the comparisons. This possi-

bility implies that the performance improvement of over these tools

might be underestimated.

4 Conclusion

This is the study which classifies proteins into species-specific to

identify potential arginine and lysine methylation sites. We not only

demonstrated that PSSMe both general and species-specific models

have stabilization and good prediction performance, but also

showed that our models significantly improved the prediction results

compared to previous mixed model. Our analysis shows the methy-

lation patterns are significantly different in different species, and fea-

ture optimization by using IG method indicates that KNN feature is

important and makes a great contribution for prediction model.

Furthermore, we have developed a user-friendly web server, PSSMe,

to implement the described methylation site prediction, which could

be especially useful for some hypothesis-driven experiments.

However, our method still has certain limitations, which are com-

mon to almost all computational prediction tools. For example, the

methylation data that we have found only labeled positive data,

while the negative data have no any evidenced to labeled, which

may affect the prediction performance. It will be resolved in the fu-

ture with techniques rapidly increasing, we will develop some novel

models for specific prediction methylation sites. In conclusion, we

believe that PSSMe could serve as a powerful and complementary

tool for in vivo or in vitro species-specific methylation site identifica-

tion. Additionally, the combination of computational analyses with

experimental verification could greatly speed up our systematic

understanding of the methylation mechanisms and explore the cor-

responding regulatory networks in living cells.
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