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Abstract

Accurate junction detection and characterization are of primary importance for several as-

pects of scene analysis, including depth recovery and motion analysis. In this work, we introduce

a generic junction analysis scheme. The first asset of the proposed procedure is an automatic cri-

terion for the detection of junctions, permitting to deal with textured parts in which no detection

is expected. Second, the method yields a characterization of L-, Y- and X- junctions, including

a precise computation of their type, localization and scale. Contrary to classical approaches,

scale characterization does not rely on the linear scale-space, therefore enabling geometric accu-

racy. First, an a contrario approach is used to compute the meaningfulness of a junction. This

approach relies on a statistical modeling of suitably normalized gray level gradients. Then, exclu-

sion principles between junctions permit their precise characterization. We give implementation

details for this procedure and evaluate its efficiency through various experiments.

Keywords: Junction detection, scale characterization, a-contrario method, contrast invariance.

1 Introduction

Junctions are of primary importance for visual perception and scene understanding. They are parts
of the well known primal sketch, the schematic representation of images introduced by D. Marr [1].
Recent approaches to the computational computation of this sketch, as proposed by [2], show the
key role played by junctions. Depending on the number of edges they connect, junctions are often
classified into L-, Y- (or T-) and X-junctions. In particular, the role of T-junctions as cues for the
perception of occlusions has been thoroughly studied by G. Kanisza [3]. Later, it has been shown
in [4] that junctions are essential local cues to initiate contour completion and that their specific
configuration (e.g. T- or Y-junction) has to be taken into account in this process. The distinct roles
of L- and T-junctions for the perception of motion, in particular through the aperture phenomenon,
has been known for long [5]. Junction types and positions are also shown to have a strong impact on
the perception of brightness and transparency, as investigated in [6, 7].

Junctions are therefore naturally used as important cues for various computer vision tasks. Since
they reveal important occlusion relationships between objects, they are involved in figure/ground
separation [8, 9, 10, 11]. Junctions are also used for grouping edges and regions to achieve image
segmentations [12, 13, 14]. The role of junction for object recognition has been studied since the early
works on automatic scene analysis, see [15, 16, 17].

In the present work, we propose a principled and automatic method for the detection, localization
and characterization of junctions. We define junctions as local or semi-local structures at the center of
which at least two dominant and different edge directions meet. Junctions are defined locally, and not
for instance as a by-product of a global image segmentation, mostly to achieve precise description of
the junction. Following observations from psychophysics [18], we nevertheless consider large regions
for the assessment of a junction. This is made possible by an automatic scale selection rule. It should
be noticed that not all perceived junctions enter this framework, and that some of them are only
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detected while performing scene analysis [18]. Nevertheless, as advocated above, we believe that a
precise and accurate description of junction makes them valuable information in view of a more global
scene analysis.

More precisely, we take interest in a junction detection method meeting several requirements.
First, junctions have to be clearly related to the geometry of the image. In particular, the description
of the junction branches should be accurate. This is in strong contrast with the classical corner
detectors such as Harris, that are commonly used a keypoint detectors. Second, an automatic valida-
tion rule will be derived. For this, we rely on the a contrario methodology [19], in which structures
are validated by controlling the number of false detections. A key advantage of this approach is the
automatic setting of detection parameters in a way that will prevent the numerous junctions that are
usually detected in textured areas. Third, the position and scale of the junctions should be detected
precisely and be closely related to the image geometry. This will be achieved thanks to a competition
between junctions relying on a sound quality measure, the number of false alarms associated with a
junction.

1.1 Related works

Corner detectors Automatic junction detection has been a very active research field over the last
four decades. One of the earliest methods was introduced by [20], considering corners as points which
are not self-similar in an image. The similarity of two points is measured by using the sum of squared
differences (SSD) between their associated image patches. Harris and Stephens [21] then proposed to
approximate the SSD by the autocorrelation in a patch. The resulted cornerness measure is isotropic
and has an analytic expansion, called the Harris matrix, and is widely used in practice. A large
number of detectors rely on this idea, the detection of corners boiling down to the analysis of the
eigenvalues of this matrix, see e.g. [22, 23, 24, 25]. In particular, in order to achieve contrast invariance,
Kovesi [24] uses phase congruency to derive cornerness measurement. In this work, the image gradient
is normalized over small wedges. Alternative measurements of self-similarity have also been proposed,
such as the univalue segment assimilating nucleus (USAN) [26] and its variants [27, 28, 29]. Observe
that such methods relying on a measure of cornerness actually do not distinguish between different
types of junctions. They are therefore usually used to compute generic interest points but their use
as local cues for occlusion analysis or figure/ground separation is less clear. Also observe that in
order to identify the characteristic scale of a corner, corner detectors usually make use of the linear
scale-space [30, 31, 32, 33, 34]. One of the main shortcomings of such approaches is that they quickly
lose precision both in localization and scale. An alternative approach is to rely on some contrast
invariant multi-scale analysis. In this direction, Alvarez et. al. [35] analyze junctions in images using
an affine morphological scale space.

Boundary based methods A second popular and efficient way to detect corners relies on explicit
boundaries in images. Corners are interpreted as points in the image where a boundary changes
direction rapidly and points with high curvature are selected. Many works have concentrated on
different and efficient ways to compute the curvature of curves for detecting corners, see [36, 37,
38, 39, 40, 41]. In a different way, it has been proposed in [42] to detect junctions by extending
disconnected edges and by filling gaps at junctions. Junction detection can also rely on the grouping
of edges in the neighborhood of a candidate junction [43, 44, 45]. Several works have proposed to
rely on the contrast invariant level lines of images to detect junctions. Caselles et. al. [46] have
proposed a method based on a level-set representation, detecting junctions as points where two level
lines meet. Cao [47] detects corners as breaking points under a good continuation criterion on image
level lines. Corners are detected as points where the curvature along a level line is abnormally high, in
an a contrario framework. In other approaches, a global segmentation of the image is first performed,
followed by a heuristic grouping of edges to form junctions [48, 49]. It should there be emphasized that
the segmentation process in itself is a very challenging task. For instance, before detecting junctions,
Maire et. al. [49] finds contours by the global probability of boundary (gPb) detector learned from a
human-annotated database. Such approaches permit to benefit from global image interpretation to
find junctions. On the other hand, boundary are often imprecise in the neighborhood of a junction,
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so that such approaches do not enable an accurate characterization of junctions, that in turn can be
used to refine edges.

Template-based methods Among existing approaches, the model-based or template-based ones
are the most suitable for accurate local junction detection. In [50], Deriche and Blaszka present
computational approaches for a model-based detection of junctions. A junction model is a 2D intensity
function depending on several parameters. Starting from a poorly localized initialization (e.g. from
the Harris detector) parameters are then optimized in view of a precise localization. Parida et

al. [51] suggest a region-based model for simultaneously detecting, classifying and reconstructing
junctions. A junction is defined as an image region containing piecewise constant wedges meeting
at the central point. This work relies on a template deformation framework and uses minimum
description length principle and dynamic programming to obtain the optimal parameters describing
the model. This work also involves junction candidates provided by a preliminary corner detector.
Ruzon and Tomasi [52] model junctions as points in images where two or more image regions meet.
Regions are described by their color distributions, which allows textured objects with the same mean
color to be distinguished. Following the model of Parida, Cazorla and Escolano [53, 54] propose both
a region-based and an edge-based model for junction classification by using Bayesian methods. The
region-based one formalizes junction detection as a radial image segmentation problem under region
competition framework and the edge-based one detects junctions as radial edges minimizing some
Bayesian classification error. In this work, the edge-based approach is shown to yields more accurate
junction detection, but at the price of a large number of false detections, especially in textured
regions. More recently, the work of Sinzinger [55] first detects a set of junction candidates by using a
preliminary detector (for instance the Harris detector) and then refines those candidates by relying
on a radial edge energy.

Method Cornerness-based Contour-based Template-based our approach
(template-based)

Some represen-
tative works

[21, 31, 26, 27, 34, 29,
24]

[44, 46, 48, 49, 41] [50, 51, 53, 55] −−

Junction detec-
tion cues

Cornerness measure-
ments, such as Harris
matrix.

Edge map Gradients or piecewise
region consistence

Amplitudes
and phases of
gradients

Scale of junc-
tions

Possibility of scale de-
tection relying on the
linear scale space ([31,
34]).

No scale defini-
tion.

Junctions are detected
at a given scale (ex-
cept : scale selection by
MDL in [51])

Each junction is
associated with
an adaptive scale

Classification
of junctions

No No Yes Yes

Contrast
changes

Dependent (except
in [24])

Dependent Dependent Robust

Detection cri-
terion

Thresholds on local cor-
nerness

Heuristic group-
ing principles

Energy minimization
from a junction model

Probabilistic per-
ceptual principles

Table 1: Different approaches for junction detection.

The different approaches for junction detection, as well as their properties, are summarized in
Table 1.

1.2 Contributions and outline

As explained earlier in the introduction, the goal of this paper is to design a junction detection
procedure involving an automatic decision step and permitting a geometrically accurate description
of junction properties, including type, localization and scale. This is made possible thanks to the
use of an a contrario methodology [19]. The resulting detection method will be coined ACJ (for
a contrario junction detection). In short, we first define (in Section 2) junctions as geometrical
structures in discrete images and we associate to each candidate junction a quantity called strength,
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which is designed to be high at locations where several edges (called branches) meet in the image.
This strength relies on a well chosen normalization of the gradient, which makes the whole approach
robust to local contrast changes. We then rely in Section 3 on a statistical framework in order
to decide automatically which junctions deserve to be detected or not in a given image. More
precisely, meaningful junctions are detected as those which could not occur by chance under some
null hypothesis H0. This detection step is followed by several exclusion criteria, designed to rule out
redundant junctions and to identify precisely the correct scales, positions and complexities (number
of branches) of junctions. As a by-product of the scale estimation, the whole approach is robust to
resolution changes. Finally, in Section 4, details about implementation and parameter settings are
provided. Section 5 analyzes the proposed algorithm experimentally.

2 Contrast Invariant Junctions

The aim of this section is to define junctions in discrete images (Section 2.2) and to associate to each
candidate junction a strength (Section 2.3). The strength of a junction is defined through both the
gradient orientation and magnitude. Robustness to local contrast changes is achieved by normalizing
the gradient magnitude, as explained in Section 2.1. The strength of junctions will be used in Section 3
to decide whether junctions are meaningful or not in a given image.

2.1 Gradient normalization

Let us start with some definitions and vocabulary that will be used throughout the paper. A discrete
image is a function I : Ω→ R, where Ω is a rectangular subset of Z×Z. We write ∇I = (Ix, Iy) for the

discrete gradient of the image I. For a pixel q in Ω, we define φ(q) = (arctan
Iy(q)
Ix(q) +π/2)modulo(2π),

the direction perpendicular to the gradient at q (and set φ(q) = π when Ix(q) = 0). We call this
angle the direction of the pixel q.

In order to be robust to local contrast changes, we locally normalize the gradient magnitude by
dividing it by its average on a small neighborhood. That is, for q = (x, y), we define ∇̂I = (Îx, Îy) as

Îx(q) =
Ix(q)

〈
√
I2
x + I2

y 〉Nq

and Îy(q) =
Iy(q)

〈
√
I2
x + I2

y 〉Nq

, (1)

where Nq is a small neighborhood around q and 〈.〉Nq
is the average operator on Nq. The resulting

gradient is robust to contrast changes that can be approximated by affine transformations on each
neighborhood Nq. An example of the gradient and normalized gradient of an image, obtained with
a square neighborhood of size 5× 5 around each pixel, is shown in Figure 1. Observe that the phase
of the normalized gradient is the same as the phase of the plain gradient.

In Section 3, we will rely on the empirical distribution of the gradient to detect meaningful
junctions. More precisely, we will consider the globally normalized gradient

Ĩx =
Îx − µx

σx

and Ĩy =
Îy − µy

σy

, (2)

where µx (resp. µy) and σx (resp. σy) are the empirical mean and standard deviation of Îx (resp. Îy

) over the whole image. The norm ‖∇̃I‖ =

√
Ĩx

2
+ Ĩy

2
will be used in the following paragraphs to

define the strength of a junction. As we will see, the distribution of this norm in natural images is
well approximated by a standard Rayleigh distribution.

2.2 Discrete junction definition

A junction is defined as a discrete image structure  :
{
p, r, {θm}Mm=1

}
, characterized by its center

p, its scale r ∈ N and a set of branch directions {θ1, . . . θM} around p. The number M of branches
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(a) Image patch I (b) ‖∇I‖ =
q

I2
x + I2

y and φ (c) ‖c∇I‖ =

q
bIx

2
+ bIy

2
and φ

Figure 1: Gradient ∇I and normalized gradient ∇̂I on an image patch

in the junction is called the order of the junction : when M = 2, 3 or 4, we speak respectively of L,
Y or X-junctions. The discrete set D(r) of possible directions at a given scale r is defined as

D(r) :=

{
2πk

K(r)
; k ∈ {1, . . .K(r)}

}
, (3)

where K(r) is the number of possible discrete directions permitting a one pixel precision, that is
K(r) = ⌊2πr⌋.

For a given scale r and a given direction θ in D(r), we define the branch of direction θ at p as the
disk sector

Sp(r, θ) :=
{
q ∈ Ω; q 6= p, ‖−→pq‖ ≤ r,

d2π(α(−→pq), θ) ≤ ∆(r)
}
, (4)

where ∆(r) is a precision parameter, α(−→pq) is the angle of the vector −→pq in [0, 2π] and where d2π is
the distance along the unit circle, defined as d2π(α, β) = min(|α− β|, 2π − |α− β|). We note J(r, θ)
the number of pixels in a sector of direction θ at scale r. This size depends on the scale r but also
slightly changes with the direction θ since the image is defined on a discrete grid.

Finally, we require that two branches of a given junction do not intersect. It follows that the angle
between two directions in a junction  must be larger than 2∆(r). As a consequence, the number of
possible directions in a junction at scale r is smaller than π

∆(r) . An example of a junction with three

branches is shown on Figure 2.

2.3 Junction strength

The strength of a junction will be defined from the strength of its branches. The strength of a branch
is a measure of how well the corresponding angular sector agrees with the pixels it contains. A pixel
q contributes all the more to the strength as its direction φ(q) is in agreement with the direction

α(−→pq) and as the normalized gradient ‖∇̃I(q)‖ is large. Precisely, the strength of a branch is defined
as

Definition 1 (Strength of a branch) Let p be a pixel, r a positive scale and θ a direction in D(r).
The strength of the branch Sp(r, θ) is defined as the quantity

ωp(r, θ) =
∑

q∈Sp(r,θ)

γp(q), (5)
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Figure 2: A junction with three branches. Each branch is represented by a disk sector Sp(r, θ) with
an angular aperture of 2∆(r).

where

γp(q) = ‖∇̃I(q)‖ ·max
(
| cos(φ(q)− α(−→pq)|−

| sin(φ(q)− α(−→pq))|, 0
)
. (6)

The max operator has been chosen so that the contribution of the pixel is equal to zero if the
difference between α and φ is larger than π/4. Other choices could be made. The larger the strength
of a branch, the more likely it is that the branch corresponds to an edge. Figure 3 (c) shows the
values of γp(q) for the image patch shown in Figure 3 (a).

The strength of a junction is then derived from the strength of its branches as follows:

Definition 2 (Strength of a junction) The strength of a junction  :
{
p, r, {θm}Mm=1

}
is defined

as

t() := min
m=1...M

ωp(r, θm). (7)

Starting from this definition, a first naive algorithm for junction detection can be developed. The
idea is to detect, for a fixed scale r and a given threshold t, all the junctions in I having a strength
greater than t. In practice, testing all possible junctions for every point p in Ω is computationally
heavy. Among all the potential branches at a given point p, we restrict ourselves to the directions θ in
the discrete set D(r) where the periodic function ωp(r, .) reaches a local maximum. Moreover, in order
for branches not to intersect, we impose that the local maximality holds over a length 2∆(r), that is
ωp(r, θ) is greater than ωp(r, θ′) for θ −∆(r) ≤ θ′ ≤ θ + ∆(r). The set of these local maxima can be
computed quickly, for instance by using a non-maximum suppression (NMS) procedure (see [56, 57]).
In practice, if two local maxima are equal and located at a distance smaller than ∆(r), one of them
is discarded.

The case of L-junctions In order not to detect all edge points as L-junctions, junctions for
which M = 2 and whose branches are opposite (that is, with two directions θ1 and θ2 such that
d2π(θ1, θ2 + π) ≤ 2∆(r)) are discarded.

The overall detection procedure is summarized in Algorithm 1.
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Algorithm 1 Junction detection in an image I at a given scale r.

Input: A discrete image I, an order M , a positive scale r, a number K of discrete directions, a
precision ∆ and a threshold t.

1: compute ∇̃I at each pixel using Equation (1);
2: set D =

{
2πk
K

; k = 1, . . .K
}

3: for each pixel p do
4: (1) compute ωp(r, θ) for each θ in D, using Equations (5) and (6);
5: (2) use a NMS procedure to only keep directions θ such that ωp(r, θ) is locally maximum on

[θ −∆, θ + ∆]; call Θ the set of these directions;
6: (3) find all the subsets Θ′ of size M in Θ such that minθ∈Θ′ ωp(r, θ) ≥ t ; for each of these

subsets, mark  :
{
p, r,Θ′

}
as a junction if M 6= 2, or if M = 2 and Θ′ = {θ1, θ2} with

d2π(θ1, θ2 + π) ≤ 2∆.
7: end for
8: return The set of detected junctions.

The first parts of the procedure are illustrated in Figure 3. In this example, the pixel p is chosen
as the center of Figure 3 (a). Figure 3 (d) shows in blue the values of ωp(r, θ) when the angle θ spans
the periodic set D(r) and shows in red the semi-local maxima kept after the NMS procedure (step (2)
of the loop in Algorithm 1). Figures 3 (e) represent respectively a candidate L-junction, a candidate
Y -junction and a candidate X-junction at p.

The main drawback of this detection algorithm is that the threshold t on the junction strength
remains the same whatever the junction scale and order and whatever the image size. Setting such a
threshold globally is not easy and can lead to over-detect at some scales and under-detect at others.
The goal of the next section is to provide detection thresholds that adapt to the junction scale and
order, as well as to the image size. For this purpose, we resort to an a contrario methodology.

3 An a contrario Approach for Junction Detection

The a contrario detection theory has been primarily proposed by Desolneux et. al. [19]. This
methodology is inspired by geometric grouping laws governing low-level human vision, known as
Gestalt laws [3], and states that meaningful structures in images are structures which are very unlikely
under some hypothesis of randomness. The method has been extensively tested and successfully
applied to various problems in image processing and computer vision, see e.g. [47, 58, 59, 60]. A
complete overview of these methods can be found in [61]. In this section, this methodology is adapted
to the detection of meaningful junctions in images.

3.1 Null hypothesis

The goal of the following sections is to set detection thresholds on junction strengths in such a way
that no junction will be detected in a “generic random image”. Let us precise what “generic random

image” stands for here. Let I be a random image. For each pixel q, we write ‖∇̃I(q)‖ and φI(q)
the random variables corresponding to the value and orientation at this pixel. We say that these
variables follow the null hypothesis H0 if

1. ∀q ∈ Ω, ‖∇̃I(q)‖ follows a Rayleigh distribution with parameter 1 ;

2. ∀q ∈ Ω, φI(q) is uniformly distributed over [0, 2π] ;

3. the family {‖∇̃I(q)‖, φI(q)}q∈Ω is made of independent random variables.

Let us comment on the first assumption. In [62], Ruderman et al. observe that if we normalize
the logarithm of an image intensity by its local mean and standard deviation in a neighborhood
Np around each pixel, “the histogram of pixel values has Gaussian tails, and the distribution of
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(a) original image (b) ‖f∇I‖ and φ

(c) γp(q), the contributions of pixels to the junc-
tion strength

  9

  18

  27

  36

  45

6

43

13

50

19

56

25

62

31

68

38 0

(d) branch strength ωp(r, θ) in blue and semi-
local maxima in red;

(e) From left to right, a potential L-junction, a potential Y-junction and a potential X-junction respectively;

Figure 3: Computation of junction candidates at scale r = 12, when p is the center of the original
image (a). The blue curve in (d) shows the strength ωp(r, θ) as a function of the direction θ along the
circle. The directions that remain after the NMS procedure are shown in red. For r = 12, K(r) = 75,
and 2∆(r) = 0.289 (see Section 4.1).
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gradients in the‘variance-normalized’ image is almost exactly the Rayleigh distribution”. This result
can be extended to our modified derivatives Îx and Îy: except on a small neighborhood around 0, their
distribution is well approximated by a Gaussian distribution. This is illustrated for a particular image
I in Figure 4. In this Figure, the empirical distributions of Îx and Îy are drawn in blue, and the best
Gaussian fits are drawn in red. If we except a peak around 0, the fit is excellent. This approximation
is of particular interest for junction detection since the gradients around a junction usually take
large values. Observe that this Gaussian approximation is not valid for the classical gradient (Ix, Iy),

whose distribution is quite heavy tailed. It follows that the distributions of Ĩx and Ĩx are usually
well approximated by the standard normal distribution (that is, a Gaussian distribution with zero

mean and unit variance) and the norm ‖∇̃I‖ in natural images approximately follows a central chi-
distribution with 2 degrees of freedom (also known as the Rayleigh distribution of parameter 1). This
is confirmed experimentally by the example shown in Figure 4. Moreover, we performed a small scale
experiment whose results are shown on Figure 5a. In blue are displayed the empirical distributions of
‖∇̃I‖ for 50 different natural images, as well as the density of the Rayleigh distribution of parameter
1 (in red).

(a) original image I (b) eIx (c) eIy (d) ‖f∇I‖ =

q
eIx

2
+ eIy

2

(e) distribution of eIx (f) distribution of eIy (g) distribution of ‖f∇I‖

Figure 4: Approximations of the distributions of Ĩx, Ĩy and ‖∇̃I‖ (given by Equations (1) and (2)).
The blue curves are the empirical histograms and the red curves are the approximated distributions.
(e) and (f) are Gaussian distributions and (g) is a Rayleigh distribution of parameter 1.

3.2 Distribution of t() under H0

Let  :
{
p, r, {θm}Mm=1

}
be a junction in I and assume that the normalized gradients and directions

of I follow the null hypothesis H0. Then the strengths ωp(r, θm) of the different branches Sp(r, θm)
are independent random variables (since branches do not intersect). Recall also that the strength of
a junction is the minimum of the strengths of its branches. Thus, if we note t() the random variable
measuring the strength of ,

PH0
[t() ≥ t] = PH0

[∀m, ωp(r, θm) ≥ t]

=
M∏

m=1

PH0
[ωp(r, θm) ≥ t]. (8)

9



(a) (b)

Figure 5: Distributions of ‖∇̃I‖ (blue curves in (a)) and γp(q) (blue curves in (b)) for 50 different
natural images. Rayleigh(1) density (red curve in (a)) and the corresponding strength distribution
µ(z) (red curve in (b)) are displayed for comparison.

Now, the strength of each branch, ωp(r, θm), is itself a sum (over the angular sector Sp(r, θm))
of i.i.d. random variables γp(q). For two given points p and q in Ω, the direction α(−→pq) is a
constant in [0, 2π]. This implies that under the hypothesis H0, the random angle φI(q) − α(−→pq)
is still uniformly distributed on [0, 2π]. As a consequence, each γp(q) can be written as a product
X ·max(| cos θ| − | sin θ|, 0), where X and θ are independent, X follows a Rayleigh distribution and
θ is uniformly distributed on [0, π]. Finally, the distribution of each γp(q) under H0 can be written

µ(z) =
1

2
δ0(z) +H(z) · 1√

π
e−

z2

4 · erfc(z
2
)dz, (9)

where δ0 is a Dirac mass at 0, H is the Heaviside function (H(z) = 1, for z ≥ 0, and H(z) = 0

otherwise) and erfc is the complementary error function, erfc(z) = 2√
π

∫ ∞
z
e−s2

ds.

The empirical distribution of γp(q) on 50 natural images is displayed in Figure 5b, along with its
theoretical distribution µ, showing excellent fit to the model. Under the hypothesis H0, the law of
the strength of a branch ωp(r, θm) (that is, of the sum of pixel contributions given by Formula (5))
is obtained by convolving J(r, θm) times with itself the distribution µ, where J(r, θm) is the size of a
sector of orientation θm at scale r. Finally,

Proposition 1 Let  :
{
p, r, {θm}Mm=1

}
be a junction and suppose that the hypothesis H0 is satisfied,

then the probability that the random variable t() is larger than a given threshold t is

F(t) := PH0
[t() ≥ t] =

M∏

m=1

∫ +∞

t

J(r,θm)
⋆

j=1
µ(dz), (10)

where J(r, θm) is the size of a sector of orientation θm at scale r.

3.3 Meaningful junctions

Thanks to the previous computations, we are now in a position to automatically fix detection thresh-
olds on junction strengths. Indeed, thresholds are set so that the average number of false detections
under the null hypothesis is controlled. This is obtained by thresholding the probability (10) and by
taking into account the number of possible discrete junctions in the image.

10



Number of tests In this paragraph, we assume that the order M is fixed, and we call J (M)
the set of all possible junctions of order M in the discrete image I. The size of J (M) depends
on several parameters: the minimum and maximum authorized scales rmin and rmax, the size N
(number of pixels) of I and the precision ∆(r) of branches at each scale r. The practical setting of
these parameters will be discussed in Section 4.1.

At a given location p, once the first branch is chosen among the K(r) possible directions, the
second direction must be chosen in such a way that the two branches of width 2∆(r) do not intersect,

which means that only K(r)(1− 2∆(r)
π

) directions are authorized. Therefore, at each location p ∈ Ω,
and for a given scale r, the number of possible junctions of order M is always smaller than

1

M !

M∏

m=1

K(r)

(
1− 2(m− 1)

∆(r)

π

)
.

It follows that the size of the set J (M) is upper bounded by

#J (M) =
N

M !
·

rmax∑

r=rmin

M∏

m=1

K(r)

(
1− 2(m− 1)

∆(r)

π

)
. (11)

ǫ-meaningful junctions The next definition and the following proposition explain how to fix
thresholds on junctions strengths in order to control the average number of false detections.

Definition 3 (ǫ-meaningful junction) Let I be a discrete image. For ǫ > 0, a junction  of order

M and at scale r is said to be ǫ-meaningful if

NFA() := #J (M) · F(t()) ≤ ǫ. (12)

The quantity NFA() is a measure of the meaningfulness of the junction: the smaller it is, the more
meaningful the junction . A junction of order M and scale r is detected as ǫ-meaningful in I if its
strength t() is larger than the threshold

t(r, ǫ) := min
{
t; F(t) ≤

ǫ

#J (M)

}
. (13)

Notice that for a fixed ǫ, this formula yields a different threshold on t() for each value of the scale
r. The value ǫ is easy to interpret: it corresponds to an expected number of false detections in I.
Indeed,

Proposition 2 Let I be a discrete random image and assume that the null hypothesis H0 is satisfied.

Let M be a positive integer. The expectation of the number of ǫ-meaningful junctions of order M in

I is smaller than ǫ.

Proof 1 First, observe that if X is a random variable and if we define F (t) = P[X ≥ t], then for all

β in [0, 1], P[F (X) ≤ β] ≤ β. Thus, if  is a junction of scale r in J (M), Formula (10) yields

PH0

[
NFA() ≤ ǫ

]
= PH0

[
F(t()) ≤

ǫ

#J (M)

]

≤ ǫ

#J (M)
. (14)

Finally,

EH0

[
#{ ∈ J (M);NFA() ≤ ǫ}

]

=
∑

∈J (M)

PH0

[
NFA() ≤ ǫ

]

≤
∑

∈J (M)

ǫ

#J (M)
≤ ǫ. (15)

Observe that in the definition of the NFA, the correcting factor #J (M) is independent of the
scale r. We could have used different correcting factors, depending on the junction scale r, in order
to favor some particular scales in the detection, and still have a result similar to Proposition 2.
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3.4 Junctions or nearby edges?

In images, some structures may appear as junctions at large scales without being detected as such
when the scale is small. For instance, when three straight edges have close endpoints and are sup-
ported by concurring lines, an Y -junction may be detected even if the actual edges do not physically
meet, when the possible junction contains a gap at its center. Deciding between a real junction and
interacting edges is actually far from trivial. Psychophysical experiments [4] suggest that human may
find junctions although there is a small gap at the center. In practice, we observed that detections
were visually more satisfying when removing junctions with large gaps at their center. This restriction
is imposed by computing for each ǫ-meaningful junction  : {p, r, {θm}m∈{1,...,M}} a minimum scale
of detection, defined as (see Figure 7)

rd[] = min
{
r′ ≤ r; ∀s ∈ [r′, r], ∃′ : {p, s, {θ′m}Mm=1}

s.t. ′ is ǫ-meaningful.
}
, (16)

and by removing all ǫ-meaningful junctions such that rd[] > rgap. In practice and within the scope
of this paper, this threshold is chosen as rgap = 12. In order to be fully scale invariant, this threshold
could be replaced by a value proportional to the junction scale r.

3.5 Redundant detections and maximality

Redundancy: scale and location As it is common when analyzing geometrical structures in
images, junctions are usually detected in a redundant way. A single structure in the image may
yield many detections. First, junctions are detected over a range of scale. For a single ideal junction
in the image, meaningful junctions will be detected for scales both smaller and larger than the one
of the underlying structure, see Figure 6, middle, where several junctions having the same center
but different scales, and corresponding to the same ideal Y -junctions, are displayed. Second, several
junctions with slightly different locations are detected for a single underlying structure. This is all
the more strong as there is blur in the image. An example of such redundant detections is displayed
in Figure 6, right. Moreover, both type of over-detections (multiple scales and multiple locations)
are usually combined in images. These redundancies are addressed in the next paragraph thanks to
an exclusion principle.

Figure 6: Redundancy of junction detection. For the sake of clarity, each junction is represented by
a circle and its center, the radius of the circle is equal to the scale of the junction, and the color of
the circle depends on the NFA value (red corresponds to small values, i.e. very meaningful junctions
and blue corresponds to high values). Left: a junction  : {p, r, {θm}m∈{1,...,3}}, with r = 20. Mid:
all junctions detected at the same point p, with different scales. Right: all Y -junctions detected in
the neighborhood of p, with the same directions and scale.
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Figure 7: Scale of a junction. Left: image I. The point p is chosen as the center of I. Middle:
for each scale r (in abscissa) is displayed the smallest NFA() observed for a junction  of order 3
centered at p. Right: the smallest scale of detection rd = 8 in magenta and the scale corresponding
to the smallest NFA in red (found for r = 13), represented on top of the strength γp(q).

Maximal junctions In order to choose the right representative among all redundant detections,
we use an exclusion principle, called maximality. We assign to each junction  a neighborhood N ′

 .
For a given order M , we only keep the junctions not containing any more meaningful junction in its
neighborhood. That is, we only keep junctions that are maximal in the following sense.

Definition 4 (Maximal ǫ-meaningful junction of order M) A junction  : {p, r, {θm}Mm=1} is

said to be a maximal ǫ-meaningful junction of order M if  is ǫ-meaningful and if NFA() ≤ NFA(′)
for any junction ′ : {p′, r′, {θ′m}Mm=1}, with p′ ∈ N ′

 .

Observe that in this definition the use of the NFA is the keypoint. Indeed, it permits to compare
structures at different scales. Using the strengths t() to carry out this comparison would require a
well chosen normalization depending on the scale.

In order to select maximal meaningful junctions, the most meaningful junction is first considered.
All junctions having it as a neighbor are then removed. Then we proceed to the next most meaningful
junction and iterate the same procedure until all junctions have been treated.

Figure 8: Maximal meaningful junctions of order 3. Each Y -junction is represented by a circle and its
center. The radius of the circle indicates the junction scale r, and the color of the circle corresponds
to the NFA of the junction (the cooler the color, the larger the NFA). Left: all ǫ-meaningful Y -
junctions, with ǫ = 1. Mid: the maximal meaningful Y -junctions. Right: the maximal meaningful
Y -junctions displayed over the image.

A result of these selection rules is illustrated in Figure 8 for M = 3. In practice, the spatial
neighborhood N ′

p used for maximality is chosen as a disk centered at p, with a radius rd[], the
minimum scale of detection of  as defined by Formula (16).

Masking and junction order When a Y -junction is perceived in a image, the underlying L-
junctions are usually not perceived and we decided not to detect them. This masking phenomenon
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(for a given junction, no junction made of a subset of its branches should be detected) is easily
implemented by the following second exclusion principle: locally, only the more complex junction
(the one with the largest order) is kept.

Definition 5 (Maximal ǫ-meaningful junction) A junction  : {p, r, {θm}Mm=1} is said to be a

maximal ǫ-meaningful junction if  is a maximal ǫ-meaningful junction of order M and if there is no

maximal ǫ-meaningful junction of order M ′ located at p′ with M ′ > M and p′ ∈ N ′
 .

3.6 The three algorithmic steps for junction detection

The different steps of the junction detection procedure are summarized in Algorithms 2 (the a con-

trario detection), 3 (maximality of order M) and 4 (maximality). The complete algorithm pipeline
includes a speed-up step and an optional precision refinement and will be described in Section 4 and
summarized in Algorithm 7.

Algorithm 2 A contrario junction detection

Input: An image I, a maximal order M ′ and parameters ǫ, rmin, rmax, rgap.
Output: A list of junctions Jlist and the corresponding list of minimum detection scales rd[Jlist].

1: Compute ∇̃I at each pixel using Equation (1);
2: For each value of M between 2 and M ′, compute #J (M) by using Equation (11);
3: for each pixel p do
4: Let ρ be a M ′ × rmax matrix (used to record the values rd), and fill it with zeros.
5: for r = 1 to rmax do
6: Compute the branch strength ωp(r, θ) for each direction θ in D(r), using Equations (5)

and (6).

7: Use a NMS procedure to only keep semi-local maxima of ωp(r, .); call Θ = {θm}#Θ
m=1 the set

of these directions.
8: Sort the vector ωp(r,Θ) in a descending order

(index, υ) ← sort(ωp(r,Θ)).
9: Suppression of alignments:

if M = 2 and d2π(θindex(1), θindex(2) + π) ≤ 2∆(r)
θindex(2) = θindex(3)

end if
10: for M = 2 to M ′ do
11: Define the junction  : {p, r, {θm}index(M)

m=index(1)}, with strength t() = υ(index(M))

12: Compute log NFA() by using Equation (24)
13: if log NFA() ≤ log ǫ then
14: if ρ(M, r − 1) 6= 0 then
15: ρ(M, r) = ρ(M, r − 1) and rd[] = ρ(M, r − 1)
16: else
17: ρ(M, r) = r and rd[] = r
18: end if
19: if rd[] < rgap then
20: Accept the junction proposal : Jlist← 
21: end if
22: end if
23: end for
24: end for
25: end for

Algorithm 2 does not include the two maximality steps (described in Algorithms 3 and 4). Notice
however that line 11 of Algorithm 2 is a first step towards maximality, since only the best junction
of a given order M is tested at each point. This permits to speed-up the algorithm by excluding
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junctions that will obviously not be maximal. If we wish to compute all ǫ-meaningful junctions in an
image, and not only maximal junctions, lines 11 to 22 should be replaced by Procedure 5.

Algorithm 3 Maximality for junctions of order M

Input: Jlist: the list of L ǫ-meaningful junctions of order M detected in I and the list rd[Jlist].

1: Sort Jlist in a descending order according to the NFA of junctions: Jlist ← Sort(Jlist, NFA)
2: Remove non-maximal meaningful junctions
3: for j = 1 to L do
4: 1 ← location of junction Jlist[j];
5: for k = j + 1 to L do
6: 2 ← location of junction Jlist[k]
7: if ‖p1 − p2‖2 ≤ rd[1] then
8: remove Jlist[j], then break;
9: end if

10: end for
11: end for

Algorithm 4 Maximality

Input: A maximum order M ′. The list Jlist of maximal ǫ-meaningful junctions of all orders smaller
than M ′ in I and the list rd[Jlist]. L is the size of Jlist.

1: for j = 1 to L do
2: 1 ← location of junction Jlist[j];
3: for k = 1 to L do
4: 2 ← location of junction Jlist[k]
5: if ‖p1 − p2‖2 ≤ rd[1] and M1 < M2 then
6: remove Jlist[j], then break;
7: end if
8: end for
9: end for

Procedure 5 Computing all ǫ-meaningful junctions

for each junction  : {p, r, {θmk
}Mk=1}, with index(m1) < · · · < index(mM ) and t() =

υ(index(mM )) do
Compute log NFA() by using Equation (24);
if log NFA() ≤ log ǫ then

Accept the junction proposal : Jlist← .
end if

end for

4 Implementation

The goal of this section is to provide all necessary informations for the practical implementation of
junction detection. First, the setting of parameters is addressed in Section 4.1. An optional refinement
step to improve the accuracy of the detected branch directions is described in Section 4.2. A pre-
selection of the junction candidates for speeding up the method is detailed in Section 4.3. Eventually,
the complete detection algorithm pipeline is given in Section 4.4. A practical issue regarding the
numerical computation of the NFA is also given in Appendix A.
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4.1 Parameter choices

Recall that in the definition of discrete junctions, K(r), the number of possible directions for junction
branches as defined by Formula (3), was chosen as K(r) = ⌊2πr⌋, in order to have a precision
of roughly one pixel along the circle of radius r. The choice of the precision ∆(r) relies on similar
considerations. Visual experiments show that the perceived precision of an angle between two crossing
segments in an image is better for long segments than short ones. Now, recall that 2∆(r) is the angle
of a branch (or sector) in a junction at scale r. We consider that the length of the arc defined by this
sector should be a constant w and should not depend on r. This length is exactly 2∆(r)× r, which
implies that ∆(r) should be chosen as inversely proportional to r. In practice, we choose w = 5.
Thus

2∆(r) =
w

r
=

5

r
. (17)

Figure 9 illustrates the corresponding angular sectors for two different scales.
It follows that for a given order M , the number of tests #J (M) can be computed as

#J (M) =
N

M !

rmax∑

r=rmin

M∏

m=1

⌊2πr⌋
(

1− 5(m− 1)

rπ

)
, (18)

where N is the total number of pixels in the image. In the experimental section, the maximum order
of junctions will be M = 4 and the smallest possible radius is rmin = 3 for all experiments. The
maximal scale rmax is chosen as 5% of the diagonal of the image. The threshold on the minimum
scale of detection is set to rgap = 12 for all experiments in this paper.

Figure 9: ∆(r) = ω/r for two distinct r values. Observe that the length of the arc defined by a sector,
w, is a constant and does not depend on r

4.2 Optional direction refinement

Since directions in a junction are bisectors of angular sectors (see Equation (4) for the definition of
Sp(r, θ)) and since the set of possible directions is discrete, it may happen that the directions of some
branches in a detected junction remain slightly imprecise. In the following, we describe a simple
refinement in the computation of junction directions.
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For a branch of direction θ centered at p, a refined direction θ̂ is computed as follows

θ̂ = arctan
Oy

Ox

, (19)

with Ox =
∑

q∈Sp(r,θ)

γp(q) cosψq;

Oy =
∑

q∈Sp(r,θ)

γp(q) sinψq;

and ψq =

{
φq if d2π(φq, θ) <

π
2

φq + π otherwise.
(20)

Notice that after this refinement, two branches in a given junction may intersect. If this happens,
the detected junction is removed. The refinement process is described in Algorithm 6.

Algorithm 6 Direction refinement

Input: A junction  : (p, r, {θk}Mk=1)
1: (1) Refinement of junction branches :
2: for k = 1 to M do
3: Ox = 0,Oy = 0;
4: for q ∈ Sp(r, θk) do
5: Compute γp(q) using Equation (6);
6: Compute ψq using Equation (20);
7: end for
8: Ox ← Ox +

∑
q∈SBk

γp(q) cosψq;

9: Oy ← Oy +
∑

q∈SBk

γp(q) sinψq;

10: Update the branch direction θk = arctan
Oy

Ox
.

11: end for
12: (2) Check that branches are still disjoint.
13: for m = 1 to M do
14: for k = m+ 1 to M do
15: if d2π(θm, θk) < ∆(r) then
16: Remove , then break;
17: end if
18: end for
19: end for

4.3 Speed up

In order to speed-up the algorithm, and following [51, 54, 53, 55], we propose to apply a pre-processing
step to select potential junction candidates.

We take advantage of a fast segment detector, the Line Segment Detector (LSD) as introduced
in [60] 1, whose complexity is linear in the size of the image. In order to make sure that we won’t
miss some junction candidates, the detection threshold λ of the LSD is set to a large value. The value
λ = 104 has been used for all experiments in this paper. Once all possible line segments have been
found, potential junction locations are restricted to a small neighborhood around each endpoint of
those line segments. Figure 10 displays all line segments detected with λ = 104 for a given image and
shows the corresponding junction candidates in red.

Table 2 shows the number of detections and the running time of the complete junction detection
procedure, with and without use of the LSD preprocessing. The comparisons are implemented on three
types of images: images containing both geometry and texture, images containing mostly textures

1The code of LSD can be downloaded from the IPOL website: http://www.ipol.im/pub/algo/gjmr_line_segment_

detector/.
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Figure 10: Junction candidates using LSD. Left: the input image; Mid: all line segments detected
with λ = 104; Right: all junction candidates.

Figure 11: Test images for the speed up evaluation. Top: house, Lena and window; Mid: autumn,
park and branches; Right: images of geometric paintings: Geometric by John Cooper, Composition

by Charmion von Wiegand, and Suprematism by Kazimir Severinovich Malevich.
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Table 2: Number of detections and running time when using or not the LSD pre-selection. The
comparisons are implemented on three types of images: images with a strong geometrical content,
images containing mostly textures and photographs of abstract paintings. Num (L/T/X) stands
for the numbers of detected L/T/X junctions respectively. The experiments are implemented on a
computer with a 2.0GHz Intel Core 2 Duo Processor and 2 GB RAM.

Image Using LSD candidates Using all candidates
class name size Num (L/T/X) Time (s) Num (L/T/X) Time (s)
geometry house 256× 256 28/21/3 2.17 29/21/3 8.16
and texture Lena 256× 256 79/44/12 3.90 81/44/12 9.77

window 768× 576 120/224/51 10.36 122/230/52 64.72

texture
autumn 576× 768 52/25/8 38.52 54/27/8 62.07
park 576× 768 97/98/15 37.20 100/100/15 62.18
branches 536× 819 78/100/18 35.97 80/101/19 62.08

geometry
geometric 655× 518 27/17/2 1.48 28/17/2 44.19
composition 413× 300 3/60/36 1.94 3/62/37 17.46
suprematism 400× 640 40/33/5 1.57 42/34/5 34.66

and photographs of abstract paintings (see Figure 11). Using candidates from LSD clearly reduces the
computing time, while the quantity of detections is not affected. Notice that this reduction strongly
depends on image structures. The simpler the structures contained within the images, the larger the
achieved reduction.

4.4 Algorithm pipeline

The pipeline of the whole a contrario junction detection algorithm is summarized in Algorithm 7.
Remark that the parameters to be set in this algorithm are: the detection threshold ǫ, the maximum
order of junctions M ′ and the radiuses rmin, rmax, rgap (see Section 4.1).

Algorithm 7 Complete junction detection procedure

Input: Image I, threshold ǫ, maximal order M ′, parameters rmin, rmax, rgap.
(1) Use LSD to preselect junction candidates C;
(2) Detect ǫ-meaningful junctions for all orders smaller than M ′ and for all scales between rmin

and rmax by using Algorithm 2. Store junctions of order M in a list Jlist(M).
(3) For each M ≤M ′, refine all junctions in Jlist(M) by using Algorithm 6.
(4) Keep only maximal junctions in the lists Jlist(M) by using Algorithm 3 and 4.

In the rest of the paper, we refer to this algorithm by the acronym ACJ (for A Contrario Junction
detection).

5 Experimental Analysis

This section gathers experiments illustrating the performances of the a contrario junction detection
(ACJ). When possible, performances will be compared with the classical Harris detector [21] and the
recent “Pj on gPb” method [49]. For Harris, the cornerness is defined as det(H)− k · Tr(H)2, where
H is the Harris matrix and the default value k = .04 is chosen. For “Pj on gPb”, the code kindly
provided by M. Maire is used.

Section 5.1 illustrates the stability of the detection for different images. We then investigate the
invariance properties of the method: scale and contrast changes are respectively studied in Sections 5.2
and 5.3. In particular, we show the ability of the method to accurately detect both the scale and the
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position of a junction. Evaluation on a benchmark is given and discussed in Section 5.4 and some
more results are displayed in Section 5.5.

5.1 Stability and choice of ǫ

One great quality of a contrario detection methods relies in the fact that the threshold ǫ has an
intuitive meaning: it is an upper bound of the average number of false detections in an image following
H0. This makes the setting of ǫ quite easy in practice: by default, and unless otherwise indicated, ǫ
is set to 1 in all experiments. We checked that, on the average, less than one false detection occur in
a Gaussian white noise image. This could be expected since such images almost follow the hypothesis
H0.

Now, the real strength of the ACJ approach comes from the fact that the value ǫ = 1 also
yields very satisfying detections in natural images, whatever their content, size or resolution. In
contrast, other approaches such as Harris or “Pj on gPb” tend to strongly over-detect in textured
areas when using a fixed parameter, see Figure 12. This stability property is all the more interesting
as it remains valid through scales. For a given choice of ǫ, Formula (13) yields different thresholds
t(r, ǫ) that adapt to the scales of the junctions. As a consequence, by choosing ǫ = 1, results are
simultaneously satisfying at all scales. This would not be possible with a fixed threshold on junction
strengths.

Figure 12: Junctions obtained by ACJ (top row), Harris (mid row) and “Pj on gPb” (bottom row).
Parameters are fixed for the three images, yielding the same number of detections on the house image
(this correspond to ǫ = 1). Observe that only ACJ prevent from over-detection in textured areas. The
color of the junction depends on the NFA value (red corresponds to small values, i.e. very meaningful
junctions and blue corresponds to high values).
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5.2 Scale Invariance

This section focus on the behavior of our approach with respect to scale changes. Recall that the scale
of a junction is defined as the scale at which the junction is most meaningful and therefore strongly
differs from classical approaches relying on the linear scale space. In Section 5.2.1, we show that such
scales change linearly with the resolution of images, a clearly desirable property. In Section 5.2.2, we
discuss the interpretation of these scales in images. Finally, Section 5.2.3 demonstrates that the ACJ
approach has a better spatial precision through resolution changes than other classical approaches.

5.2.1 Scale and resolution

In order to investigate the coherence of detections through scale changes, we apply the proposed
junction detection algorithm to a sequence of images with different resolutions. An original image
I is resized with 8 different zoom factors s0 > · · · > s7, using a bilinear interpolation. The set of
factors is chosen as {1, 0.9, 0.8, 0.7, 0.6,
0.5, 0.4, 0.3}. Algorithm 7 is then applied to each image siI of the sequence and yields a junction
list Jsi

. Then, each junction 0 of Js0
is tracked through resolutions. For this purpose, we define an

angular distance between two junctions:

S(, 0) = max
θ∈{θm}M

m=1

min
θ′∈{θ0

m}M0

m=1

d2π(θ, θ′). (21)

A junction 0 in Js0
is then matched with ji in Jsi

if they have the same order M0, if their centers
are close enough, in the sense that ‖p− si · p0‖2 < 3, and if their angular distance S(0, ) is smaller
than π

20 . If several junctions in Jsi
satisfy these properties, 0 is matched with the one minimizing

the angular distance S(0, ). If there is no junction in Jsi
satisfying these properties, no junction in

Jsi
is matched with 0. For each junction 0 in the original image, we call trajectory the list of its

corresponding junctions through the different resolutions.
Several such trajectories are shown on Figure 13 (b). In this experiment, we only consider junctions

potentialy having complete trajectories in the scale space. Therefore, the maximal scale considered
in the coarsest image is rmax × 0.3 = 30 × 0.3 = 9. The red curves show the scales of junctions
along all the trajectories as functions of si/0.3. The baselines {y = r · si}, where r changes from
1 to 90, are displayed in blue. These correspond to an ideal behavior with respect to resolution
changes. Notice that the red curves remain close to the baselines: this implies that the scales of
maximal meaningful junctions are quite robust to resolution changes. Figure 14 (a) gives some
concrete examples of junctions detected by the ACJ algorithm along their trajectories. Once more,
their scales increase linearly with resolution. To the best of our knowledge, the only approaches
which permit to obtain a similar coherence between scale detection and resolution are those which
rely on linear scale-spaces [63, 64]. However, it should be underlined that the use of linear scale-space
inevitably leads to poor location precisions at large scales. This aspect will be further developed in
Section 5.2.3. Figure 14 (b) illustrates the aforementioned dilemma (see Section 3.4) to detect or not
a junction in the presence of nearby edges. In these examples, junctions are not detected at large
scale because of the constraint rgap (see Section 3.5). This behavior seems consistent with human
perception: when several edges meet around a large gap, we probably disregard it as a junction.

In a second experiment, shown on Figure 13 (c), we compute the repeatability rate of detections
with respect to image resolution. More precisely, if we note Js0

(s0I → siI) the list of junctions that
are matched for all intermediate resolutions between s0I and siI, the repeatability rate is defined as

R(si) =
#Js0

(s0I → siI)

#Js0

. (22)

Observe that, for the three images, the repeatability rate always remains above 60%.

5.2.2 How to interpret the detected scales ?

Most of the junction detection approaches in the literature do not provide characteristic scales for
their junctions. One notable exception is the Harris-Laplace interest point detector, which makes
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(a) original images
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(b) junction scales as a function of the zoom factor si
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(c) Repeatability rate as a function of the zoom factor si

Figure 13: Illustration of the scale invariance along the scale space. The first row shows the tested
images. The second row shows the scales of junctions detected by ACJ along all the trajectories
(curves in red) as a function of the zoom factor si (the abscissa is si/0.3). The baselines {y = r · si},
where r changes from 1 to 90, are displayed in blue. The bottom row presents the repeatability rate
of the junctions as a function of the zoom factor.

use of a linear scale space in order to detect keypoints at different scales. Detected points are those
which maximize the Laplacian of Gaussian (LoG) in the scale-space and the Harris corner measure in
a local space neighborhood. Some results of this detector on a synthetic and a real image are given in
Figure 15 (b) and (d). Observe that the scales of junctions do not have a clear interpretation in these
images. In contrast, the scales detected by ACJ (see Figure 15 (a) and (c)) arguably correspond to
the optimal size at which one can observe the junction in the image. For instance, the scale of the
L-junctions located at the corner of a rectangle is generally chosen as the length of the smaller side
of the rectangle, see Figure 15 (a). More generally, we observed that the scale of a junction usually

corresponds to the length of its shortest branch. The fact that the use of the NFA as a tool to select
the most proheminent scale yields such simple geometric behavior is a strong asset of the proposed
approach. The same coherence between the characteristic scales of junctions and the sizes of local
structures can be observed in the examples of Figure 14.
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(a)

(b)

Figure 14: Examples of detected junctions along several junction trajectories: each row shows a list of
junctions detected at the same relative locations in images, from the coarsest to the finest resolution.
(a) In these examples, junctions can be followed along complete trajectories, and their scales remain
roughly proportional to the image resolution. (b) These two examples illustrate the difficulty of
junction detection in the presence of nearby edges.

5.2.3 Scale and spatial precision

We have shown that the ACJ approach permits to detect scales that behave correctly when images are
zoomed. We now show that the location of the junction is accurate and stable when performing such
resolution changes, in contrast to linear scale space approaches. We compare ACJ with two classical
methods, Harris-Laplace and the “Pj on gPb” detector proposed by Maire et al. [49]. To this aim,
we build in the same way as before a sequence of images composed of one image at full resolution
(the one displayed on Figure 15 (a)) and 7 sub-sampled versions with zoom factors {0.9, 0.8, 0.7, 0.6,
0.5, 0.4, 0.3}. The original image is made of simple geometrical patterns, which permit to easily create
a ground-truth of junctions. Gaussian noise and blur are added to the original image before creating
the sequence. For a given image and a given method, the detected junctions are matched to the
junctions of the ground truth in the same way as in Section 5.2.1. The average location error is then
defined (for this image and this method) as the average squared Euclidean distance between detected
junctions and their corresponding groundtruth junctions.

The average location errors of the different methods are shown in Figure 16 (b). We can see that
ACJ has the smallest errors, followed by the Laplace-Harris detector and “Pj on gPb”.
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(a) scale of L-,Y- and X-junctions with our approach (b) scale with Harris-Laplace

(c) scale of L-,Y- and X-junctions with our approach (d) scale with Harris-Laplace

Figure 15: Scale selection. (a) shows the characteristic scale of L-, Y- and X-junctions given by the
proposed approach, and (b) shows the characteristic scale of junctions given by Harris-Laplace on a
synthetic image. (c) and (d) show the same comparison on the house image. The location of each
junctions is indicated by a red cross and circles have a radius equal to the corresponding scale. Refer
to the text for more explanations.
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Figure 16: Average location error for different approaches: the proposed ACJ, “Pj on gPb” and the
Harris detector. The comparison is led on a sequence of images with different resolutions, starting
from the image displayed in Figure 15 (a).

5.3 Contrast Invariance

The goal of this section is to evaluate the robustness to contrast changes of different junction detection
approaches. To this aim, we create a sequence of images by applying different gamma corrections to
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an original image I, with γ in { 1
4 ,

1
3 ,

2
5 ,

1
2 ,

2
3 , 1, 1.5, 2, 2.5, 3, 4}. For each image in the sequence, we

detect junctions with

• our ACJ approach, with ǫ = 1,

• Harris corner detector, with a threshold 0.06 on local maxima,

• Maire’s approach using “Pj on gPb” [49],

• a totally contrast invariant version of ACJ (denoted TACJ), obtained by removing the normal-
ized gradient amplitudes in the definitions (5),(6) of the branch strength 2.

In order to evaluate the different results, we compute the repeatability rate of each method on the
image sequence. More specifically, if J0 is the list of junctions in the original image (γ = 1), and Ji

the list of junctions in the i-th image, we note J0 ∩Ji the set of junctions in Ji that can be matched
with junctions in J0, where the matching criterion is the one defined in Section 5.2.1. Following the
same protocol as in [32], the repeatability rate of the i-th image is then calculated as

Repeat(i) =
#{J0 ∩ Ji}

#J0
. (23)

The curves of repeatability rates for the different methods are shown on Figure 17. We can see
that the Harris detector has the worst performance with respect to contrast changes, which could be
expected since it is the most contrast dependent. Maire’s approach [49] gives better results, possibly
because it relies on an edge detector that is tuned to match boundaries annotated by humans, which
may somehow eliminates contrast variations. Both ACJ and TACJ perform better than the other
ones, TACJ providing (as could be expected) slightly better results than ACJ. This could advocate
for the choice of TACJ in practice. However, we observed that this totally contrast invariant approach
appears to be less robust than ACJ to small image modifications, such as those created by JPEG
compression. The choice of ACJ results in a compromise between contrast invariance requirements
and robustness.
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Figure 17: Repeatability rate of different approaches regarding contrast changes. The curves are
averaged over 9 image sequences. Each sequence is obtained by applying different gamma corrections
(as specified in the text) to a test image. The 9 test images are those presented in Figure 11.

2This boils down to replace the distribution of the strength at a pixel with µ =
1

2
δ0 + 2

π
1√

2−z2
H(z)dz in Equa-

tion (10).The resulting junction detection algorithm is similar to Algorithm 7.
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5.4 Junction benchmark

A practical way to evaluate the consistency of our approach with human perception would be to rely
on a human annotated junction database. To the best of our knowledge, such a database does not
exist. Nevertheless, the well known Berkeley segmentation dataset3 has been used by the authors
of [49] in order to evaluate different junction detectors. In their paper, Maire et al. use the human
annotated boundaries to create a ground truth of junctions in the following way: L-junctions are
locations of high curvature along these boundaries and Y -junction are locations where more than
three regions intersect.
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Harris           [F=0.28]

(a) Precision-Recall curves of different methods

Figure 18: The precision-recall curves of different methods on the BSDS-based junction benchmark.

As mentioned before, they also propose a procedure called Pj to detect junctions from any given
set of boundaries. This procedure is applied to the results of different edge detectors, including their
detectors Pb and gPb. The quality of the resulting junctions is assessed by comparing them to the
previously created ground truth. We applied the same protocol to the ACJ method proposed in this
paper. In order to overcome the strong compression artifacts of the Berkeley database, to which we
are sensitive because of strong contrast robustness, we apply a small amount of blur and noise to
images before proceeding. Figure 18 presents the results for several junction detection algorithms
on the benchmark. The ACJ approach yields a performance of F= 0.38 4, which is better than the
baseline Harris detector (F=0.28) and Pj on Canny (F=0.35) but remains below the performance of
Pj on Pb (F=0.38) and Pj on gPb (F=0.41). The human agreement on the database yields F=0.47.
The performance of our approach in comparison to Pj on gPb has to be tempered by two facts.
First the junctions of the ground truth stem from a set of human annotated boundary, and the
junctions detected by Pj stem from a computer segmentation. Therefore, both are boundary-based.
It is likely that any detector using a more local junction definition (including ACJ or even Harris)
will be penalized in the benchmark. As explained in the introduction and shown by psychophysical
studies [4], both local and global cues are at play for the perception of junctions. Second, and most
important, the parameters of Pb and gPb are optimized in order to match human detected edges on
the same database, which introduces a bias in favor of these methods.

3The Berkeley segmentation dataset can be downloaded from www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/.
4 F is defined as the highest value of the quantity 2 Precision·Recall

Precision+Recall
along the curve.
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5.5 More Results

This last section aims at illustrating the proposed approach with several more visual experiments.
Figure 19 presents all the junction detected on a synthetic image. We can observe that the junctions
are found with high accuracy and are mostly correctly classified. Figures 20 and 21 present the
results on two natural images. Observe that junctions are accurately characterized through their
type, localization and scale. Again, we emphasize that the proposed ACJ algorithm yields very litlle
detections in textured areas, see Figure 21.

Figure 19: Some results of the proposed ACJ approach, with ǫ = 1. From left to right: L-, Y- and
X- junctions. On this simple synthetic image (from E. H. Adelson), junctions are well detected and
classified. The color of the junction depends on the NFA value (red corresponds to small values, i.e.
very meaningful junctions and blue corresponds to high values).

6 Conclusion and perspectives

In this work, we have introduced a generic and principled approach for the detection and characteri-
zation of junctions in digital images. The proposed procedure is able to inhibit junction detection in
textured areas, in contrast with classical approaches. Junctions are accurately characterized through
their type, localization and scale. In particular, the method does not rely on the linear scale-space
for scale computation, permitting geometric precision.

This works opens several perspectives. First, the accuracy of junction characterization is of im-
portance for depth recovery or motion interpretation. The characterization of junction’s type, the
difference between T- and Y- junctions or their precise localization claim to be tested in the framework
of such applications. Second, and as advocated in the introduction, several psychophysical studies
show that the perception of junctions relies on both local and global cues. Therefore the proposed,
local, procedure for junction detection could benefit from more global image analysis schemes. The
modeling of interactions between junction detection and segmentation procedures is far from triv-
ial, but similar principled approaches could be applied to junction definitions building from color
and textured-based region analysis. In the opposite direction, segmentation methods can benefit
from meaningful junction detections. Preliminary tests show that the boundary saliency, as for in-
stance defined in [65], can benefit from a meaningful detection of junctions, in particular by solving
ambiguities in boundary connections near these junctions.

A Appendix: Computing NFA in practice

The NFA of a junction  :
{
p, r, {θm}Mm=1

}
has been defined as NFA() := #J (M) · F(t()), where

F(t) =

M∏

m=1

∫ +∞

t

J(r,θm)
⋆

j=1
µ(dz),

with

µ(z) =
1

2
δ0(z) +H(z) · 1√

π
e−

z2

4 · erfc(z
2
)dz.
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(a) original image (b) L-junctions

(c) Y-junctions (d) Detailed junctions ranked according to their
NFA

Figure 20: Specific junction detections on a natural image. The color of the junction depends on the
NFA value (red corresponds to small values, i.e. very meaningful junctions and blue corresponds to
high values).

In practice, the numerical values taken by F(t()) can become smaller than the precision of the
computer when the strength t() is too high. For this reason, we write the distribution µ as

µ(z) =
1

2
δ0(z) +

1

2
R(z)dz,

where

R(z) = 2H(z) · 1√
π
e−

z2

4 · erfc(z
2
).

When this distribution is convolved k times with itself, it becomes

k
⋆

j=1
µ =

(
1

2

)k

·


δ0 +

k∑

j=1

(
k

j

)
(
j
⋆R)


 .

By integrating this function between t > 0 and +∞, we obtain

∫ ∞

t

k
⋆

j=1
µ =

(
1

2

)k

.

k∑

j=1

(
k

j

) ∫ +∞

t

(
j
⋆R).
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(a) original image (b) all junctions

(c) L-junctions (d) Y-junctions

(e) X-junctions (f) Detailed junctions ranked according to their NFA

Figure 21: Specific junction detections on a natural image. The color of the junction depends on the
NFA value (red corresponds to small values, i.e. very meaningful junctions and blue corresponds to
high values).

Since
(

1
2

)k
and the integral are both very small, we compute instead

log

∫ ∞

t

k
⋆

j=1
µ = −k log(2) + log




k∑

j=1

(
k

j

) ∫ +∞

t

(
j
⋆R)


 .
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Finally,

log NFA() = log(#J (M))− log 2

M∑

m=1

J(r, θm)

+
M∑

m=1

log




J(r,θm)∑

j=1

(
J(r, θm)

j

) ∫ +∞

t()

(
j
⋆R)


 . (24)

This formula is used in practice and compared to log(ǫ) in order to select ǫ-meaningful junctions.
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