
This paper is included in the Proceedings of the
2015 USENIX Annual Technical Conference (USENIC ATC ’15).

July 8–10, 2015 • Santa Clara, CA, USA

ISBN 978-1-931971-225

Open access to the Proceedings of the
2015 USENIX Annual Technical Conference
(USENIX ATC ’15) is sponsored by USENIX.

Accurate Latency-based Congestion Feedback for
Datacenters

Changhyun Lee and Chunjong Park, Korea Advanced Institute of Science and Technology
(KAIST); Keon Jang, Intel Labs; Sue Moon and Dongsu Han, Korea Advanced Institute of

Science and Technology (KAIST)

https://www.usenix.org/conference/atc15/technical-session/presentation/lee-changhyun

USENIX Association 2015 USENIX Annual Technical Conference 403

Accurate Latency-based Congestion Feedback for Datacenters

Changhyun Lee Chunjong Park Keon Jang† Sue Moon Dongsu Han
KAIST †Intel Labs

Abstract
The nature of congestion feedback largely governs the
behavior of congestion control. In datacenter networks,
where RTTs are in hundreds of microseconds, accurate
feedback is crucial to achieve both high utilization and
low queueing delay. Proposals for datacenter congestion
control predominantly leverage ECN or even explicit in-
network feedback (e.g., RCP-type feedback) to minimize
the queuing delay. In this work we explore latency-based
feedback as an alternative and show its advantages over
ECN. Against the common belief that such implicit feed-
back is noisy and inaccurate, we demonstrate that latency-
based implicit feedback is accurate enough to signal a
single packet’s queuing delay in 10 Gbps networks.

DX enables accurate queuing delay measurements
whose error falls within 1.98 and 0.53 microseconds us-
ing software-based and hardware-based latency measure-
ments, respectively. This enables us to design a new
congestion control algorithm that performs fine-grained
control to adjust the congestion window just enough to
achieve very low queuing delay while attaining full utiliza-
tion. Our extensive evaluation shows that 1) the latency
measurement accurately reflects the one-way queuing de-
lay in single packet level; 2) the latency feedback can
be used to perform practical and fine-grained congestion
control in high-speed datacenter networks; and 3) DX
outperforms DCTCP with 5.33x smaller median queueing
delay at 1 Gbps and 1.57x at 10 Gbps.

1 Introduction
The quality of network congestion control fundamentally
depends on the accuracy and granularity of congestion
feedback. For the most part, the history of congestion
control has largely been about identifying the “right” form
of congestion feedback. From packet loss and explicit
congestion notification (ECN) to explicit in-network feed-
back [1, 2], the pursuit for accurate and fine-grained feed-
back has been central tenet in designing new congestion
control algorithms. Novel forms of congestion feedback

have enabled innovative congestion control behaviors that
formed the basis of a number of flexible and efficient
congestion control algorithms [3, 4], as the requirements
for congestion control diversified [5].

With the advent of datacenter networking, identifying
and leveraging more accurate and fine-grained feedback
mechanisms have become even more crucial [6]. Round
trip times (RTTs), which represent the interval of the
control loop, are few hundreds of microseconds, where
as TCP is designed to work in the wide area network
(WAN) with hundreds of milliseconds of RTTs. Preva-
lence of latency-sensitive flows in datacenters (e.g., Parti-
tion/Aggregate workloads) requires low latency while the
end-to-end latency is dominated by in-network queuing
delay [6]. As a result, proposals for datacenter congestion
control predominantly leverage ECN (e.g., DCTCP [6]
and HULL [7]) or explicit in-network feedback (e.g.,
RCP-type feedback [2]), to minimize the queuing delay
and the flow completion times.

This paper takes a relatively unexplored path of identi-
fying a better form of feedback for datacenter networks.
In particular, this paper explores the prospect of using
network latency as congestion feedback in the datacen-
ter environment. We believe latency can be a good form
of congestion feedback in datacenters for a number of
reasons: (i) by definition, it includes all queuing delay
throughout the network, and hence is a good indicator
for congestion; (ii) a datacenter is typically owned by
a single entity who can enforce all end hosts to use the
same latency-based protocol, effectively removing poten-
tial source of errors originating from uncontrolled traffic;
and (iii) finally, latency-based feedback does not require
any switch support.

Although latency-based feedback has been previously
explored in WAN [8, 9], the datacenter environment is
very different, posing unique requirements that are diffi-
cult to address. Datacenters have much higher bandwidth
(10 Gbps to even 40 Gbps) at the end host and very low
latency (few hundreds of microseconds) in the network.

1

404 2015 USENIX Annual Technical Conference USENIX Association

This makes it difficult to measure the queuing delay of
individual packets for a number of reasons: (i) I/O batch-
ing at the end host, which is essential for high throughput,
introduces large measurement error (§2). (ii) Measuring
queuing delay requires high precision because a single
MSS packet introduces only 0.3 (1.2) microseconds of
queuing delay in 40GbE (10GbE) networks. As a result,
the common belief is that latency measurement might be
too noisy to serve as reliable congestion feedback [6, 10].

On the contrary, we argue that it is possible to accu-
rately measure the queuing delay at the end-host, so that
even a single packet queuing delay is detectable. Realiz-
ing this requires solving several design and implementa-
tion challenges. First, even with very accurate hardware
measurement, bursty I/O (e.g., DMA bursts) leads to in-
accurate delay measurements. Second, ACK packets on
the reverse path may be queued behind data packets and
add noise to the latency measurement. To address these
issues, we leverage a combination of recent advances in
software low latency packet processing [11, 12] and hard-
ware technology [13] that allows us to measure queuing
delay accurately.

Such accurate delay measurements enable a more fine-
grained control loop for datacenter congestion control.
In particular, we envision a fine-grained feedback con-
trol loop achieves near zero-queuing with high utilization.
Translating latency into feedback control to achieve high-
utilization and low queuing is non-trivial. We present DX,
a latency based congestion control that addresses these
challenges. DX performs window adaptation to achieve
low queuing delay (as low as that of HULL [7] and 6.6
times smaller than DCTCP), while achieving 99.9% uti-
lization. Moreover it provides advantages over recent
works in that it does not require any switch modifications.

To summarize, our contributions in this paper are the
followings: (i) novel techniques to accurately measure
in-network queuing delay based on end-to-end latency
measurements; (ii) a congestion control logic that exploits
latency-based feedback to achieve just a few packets of
queuing delay and high utilization without any form of in-
network support; and (iii) a prototype that demonstrates
the feasibility and its benefits in our testbed.

2 Accurate queuing delay measurement
Latency measurement can be inaccurate for many reasons
including variability in end-host stack latency, NIC queu-
ing delay, and I/O batching. In this section, we describe
several techniques to eliminate such sources of errors.
Our goal is to achieve a level of accuracy that can dis-
tinguish even a single MSS packet queuing at 10 Gbps,
which is 1.2 µs. This is necessary to target near zero
queuing as congestion control should be able to back off
even when a single packet is queued.

Before we introduce our solutions to each source of

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800

C
D

F

Round-trip time (μs)

Total range: 710μs

Interquartile range: 111μs

Figure 1: Round-trip time measured in kernel

Source of error Elimination technique

End-host network stack
(∼ 100µs) Exclude host stack delay

I/O batching
& DMA bursts

(tens of µs)

Burst reduction
& error calibration

Reverse path queuing
(∼ 100µs)

Use difference
in one-way latency

Clock drift
(long term effect)

Frequent base delay
update

Table 1: Sources of errors in latency measurement and
our techniques for mitigation.

error, we first show how noisy the latency measurement is
without any care. Figure 1 shows the round trip time mea-
sured by the sender’s kernel when saturating a 10 Gbps
link; we generate TCP traffic using iperf [14] on Linux
kernel. the sender and the receiver are connected back
to back, so no queueing is expected in the network. Our
measurement shows that the round-trip time varies from
23 µs to 733 µs, which potentially gives up to 591 pack-
ets of error. The middle 50% of RTT samples still exhibit
wide range of errors of 111 µs that corresponds to 93
packets. These errors are an order of magnitude larger
than our target latency error, 1.2 µs.

Table 1 shows four sources of measurement errors and
their magnitude. We eliminate each of them to achieve
our target accuracy (∼1µsec).

Removing host stack delay: End-host network stack
latency variation is over an order of magnitude larger
than our target accuracy. Our measurement shows about
80µs standard deviation, when the RTT is measured in the
Linux kernel’s TCP stack. Thus, it is crucial to eliminate
the host processing delay in both a sender and a receiver.

For software timestamping, our implementation choice
eliminates the end host stack delay at the sender as we
timestamp packets right before the TX, and right after

2

USENIX Association 2015 USENIX Annual Technical Conference 405

Round
trip time
(t4-t1)

TX (t1)

RX (t4)
TX(t3)
RX(t2)

Host
delay
(t3-t2)

Host A
timeline

Host B
timeline

Figure 2: Timeline of timestamp measurement points

0

0.2

0.4

0.6

0.8

1

0 1 2 3

C
D

F

Inter-packet gap (μs)

Ideal

RX

TX

1.2304μs

Figure 3: H/W timestamped inter-packet gap at 10 Gbps

the RX on top of DPDK [12]. Hardware timestamping
innately removes such delay.

Now, we need to deal with the end-host stack delay at
the receiver. Figure 2 shows how DX timestamps packets
when a host sends one data packet and receives back an
ACK packet. To remove the end host stack delay from the
receiver, we simply subtract the t3 − t2 from t4 − t1. The
timestamp values are stored and delivered in the option
fields of the TCP header.
Burst reduction: TCP stack is known to transmit packets
in a burst. The amount of burst is affected by the win-
dow size and TCP Segmentation Offloading (TSO), and
ranges up to 64 KB. Burst packets affect timestamping
because all packets in a TX burst get the almost the same
timestamp, and yet they are received by one by one at the
receiver. This results in an error as large as 50µs.

To eliminate packet bursts, we use a software token
bucket to pace the traffic at the link capacity. The to-
ken bucket is a packet queue and drained by polling in
SoftNIC [15].

At each poll, the number of packets drained is calcu-
lated based on the link rate and the elapsed time from the
last poll. The upper bound is 10 packets, which is enough
to saturate 99.99% of the link capacity even in 10 Gbps
networks. We note that our token bucket is different from
TCP pacing or the pacer in HULL [7] where each and
every packet is paced at the target rate; our token bucket
is simply implemented with very small overhead. In addi-
tion, we keep a separate queue for each flow to prevent
the latency increase from other flows’ queue build-ups.
Error calibration: Even after the burst reduction, pack-
ets can be still batched for TX as well as RX. Interestingly,
we find that even hardware timestamping is subject to the

N bytes

N bytes

t1

t2
N bytes

N bytes

t1

t2’

t2’ = max(t2, t1 + N / C(link capacity))

time time

Figure 4: Example delay calibration for bursty packet
reception

A timeline B timeline

5
6
7
8
9

1
2
3
4

0 base one-way delay: 1 – 5 = -4

sample one-way delay: 4 – 7 = -3

queuing delay: (-3) – (-4) = 1

Figure 5: One-way queuing delay without time synchro-
nization

noise introduced by packet bursts due to its implementa-
tion. We run a simple experiment where sending a traffic
near line rate 9.5 Gbps from a sender to a receiver con-
nected back to back. We measure the inter packet gap
using hardware timestamps, and plot the results in Fig-
ure 3. Ideally, all packets should be spaced at 1.23µs. As
shown in the figure, a large portion of the packet gaps
of TX and RX falls below 1.23µs. The packet gaps of
TX are more variable than that of RX, as it is directly af-
fected by I/O batching, while RX DMA is triggered when
a packet is received by the NIC. The noise in the H/W
is caused by the fact that the NIC timestamps packets
when it completes the DMA, rather than timestamping
them when the packets are sent or received on the wire.
We believe this is not a fundamental problem, and H/W
timestamping accuracy can be further improved by minor
changes in implementation.

In this paper, we employ simple heuristics to reduce
the noise by accounting for burst transmission in software.
Suppose two packets are received or transmitted in the
same batch as in Figure 4. If the packets are spaced with
timestamps whose interval is smaller than what the link
capacity allows, we correct the timestamp of the latter
packet to be at least transmission delay away from the for-
mer packet’s timestamp. In our measurement at 10Gbps,
68% of the TX timestamp gaps need such calibration.

One-way queuing delay: So far, we have described tech-
niques to accurately measure RTT. However, RTT in-
cludes the delay on the reverse path, which is another
source of noise for determining queuing on the forward
path. A simple solution to this is measuring one-way
delay which requires clock synchronization between two
hosts. PTP (Precision Time Protocol) enables clock syn-
chronization with sub-microseconds [16]. However it
requires hardware support and possibly switch support to

3

406 2015 USENIX Annual Technical Conference USENIX Association

remove errors from queuing delay. It also requires peri-
odic synchronization to compensate clock drifts. Since
we are targeting a microsecond level of accuracy, even a
short term drift could affect the queuing delay measure-
ment. For these reasons, we choose not to rely on clock
synchronization.

Our intuition is that unlike one-way delay, queuing de-
lay can be measured simply by subtracting the baseline
delay (skewed one-way delay with zero queuing) from
the sample one-way delay even if the clocks are not syn-
chronized. For example, suppose a clock difference of
5 seconds, as depicted in Figure 5. When we measure
one-way delay from A to B, which takes one second prop-
agation delay (no queuing), the one-way delay measured
would be -4 seconds instead of one second. When we
measure another sample where it takes 2 seconds due to
queuing delay, it would result in -3 seconds. By subtract-
ing -4 from -3, we get one second queuing delay.

Now, there are two remaining issues. First is obtain-
ing accurate baseline delay, and second is dealing with
clock drifts. The base line can be obtained by picking the
minimum one-way delay amongst many samples. The
frequency of zero queuing being measured depends on the
congestion control algorithm behavior. Since we target
near zero-queuing, we observe this every few RTTs.
Handling clock drift: A standard clock drifts only 40
nsecs per msec [17]. This means that the relative error
between two measurements (e.g., base one-way delay
and sample one-way delay) taken from two clocks during
a millisecond can only contain tens of nanoseconds of
error. Thus, we make sure that base one-way delay is
updated frequently (every few round trip times). One last
caveat with updating base one-way delay is that clock
drift differences can cause one-way delay measurements
to continuously increase or decrease. If we simply take
minimum base one-way delay, it causes one side to update
its base one-way delay continuously, while the other side
never updates the base delay because its measurement
continuously increases. As a workaround, we update
the base one-way delay when the RTT measurement hits
the new minimum or re-observe the current minimum;
RTT measurements are not affected by clock drift, and
minimum RTT implies no queueing in the network. This
event happens frequently enough in DX, and it ensures
that clock drifts do not cause problems.

3 DX: Latency-based Congestion Control
The ability to accurately measure the switch queue length
from end-hosts enables new opportunities. In particu-
lar, DX leverages its power for finer-grained congestion
control.

We present a congestion control algorithm for data-
centers that targets near zero queueing delay based on
implicit feedback, without any form of in-network sup-

port. Because latency feedback signals the amount of
excessive packets in the network, it allows senders to
calculate the maximum number of packets to drain from
the network while achieving full utilization. This section
presents the basic mechanisms and design of our new
congestion control algorithm, DX. Our target deployment
environment is datacenters, and we assume that all traffic
congestion is controlled by DX, similar to the previous
work [3, 5–7, 10].

DX is a window-based congestion control algorithm.
DX’s congestion avoidance follows the popular Additive
Increase Multiplicative Decrease (AIMD) rule. The key
difference from TCP (e.g., TCP Reno) is its congestion
avoidance algorithm. DX uses the queueing delay to make
a decision on whether to increase or decrease congestion
window in the next round at every RTT. Zero queueing
delay indicates that there is still more room for packets
in the network, so the window size is increased by one at
a time. On the other hand, any positive queueing delay
means that a sender must decrease the window.

DX updates the window size using the formula below:

new CWND =

CWND+1, if Q = 0

CWND× (1− Q
V
), if Q > 0,

(1)

where Q represents the latency feedback, that is, the av-
erage queueing delay in the current window, and V is a
self-updated coefficient of which role is critical in our
congestion control.

When Q > 0, DX decreases the window proportional
to the current queueing delay. The amount to decrease
should be just enough to drain the currently queued pack-
ets not to affect utilization. An aggressive decrease in the
congestion window will cause the network utilization to
drop below 100%. For DX, the exact amount depends
on the number of flows sharing the bottleneck because
the aggregate sending rate of these flows should decrease
to drain the queue. V is the coefficient that accounts for
the number of competing flows. We drive the value of V
using the analysis below.

We denote the link capacity (packets / sec) as C, the
base RTT as R, single-packet transmission delay as D,
the number of flows as N, and the window size and the
queueing delay of flow k at time t as Wk

(t) and Qk
(t),

respectively. Without loss of generality, we assume at
time t the bottleneck link fully utilized and the queue
size is zero. We also assume that their behaviors are
synchronized to derive a closed-form analysis and verify
the results using simulations and testbed experiments. At
time t, because the link is fully utilized and the queuing
delay is zero, the sum of the window size equals to the
bandwidth delay product C ·R:

4

USENIX Association 2015 USENIX Annual Technical Conference 407

N

∑
k=1

Wk
(t) =C ·R (2)

Since none of the N flows experiences congestion, they
all increase their window size by one at time t +1:

N

∑
k=1

Wk
(t+1) =C ·R+N (3)

Now all the senders observe a positive queueing delay,
and they respond by decreasing the window size using
the multiplicative factor, 1−Q/V , as in (1). As a result,
at time t + 2, we expect fewer packets in the network;
we want just enough packets to fully saturate the link
and achieve zero queuing delay in the next round. We
calculate the total number of packets in the network (in
both the link and the queues) at time t +2 from the sum
of window size of all the flows.

N

∑
k=1

Wk
(t+2) =

N

∑
k=1

Wk
(t+1)(1− Qk

(t+1)

V
) (4)

Assuming every flow experiences maximum queueing
delay N ·D in the worst case, we get:

N

∑
k=1

Wk
(t+2) =

N

∑
k=1

Wk
(t+1)(1− N ·D

V
)

= (C ·R+N)(1− N ·D
V

) (5)

We want total number of in-flight packets at time t +2
to equal to the bandwidth delay product:

(C ·R+N)(1− N ·D
V

) =C ·R (6)

Solving for V results in:

V =
N ·D

(1− C·R
C·R+N)

(7)

Among the variables required to calculate V, the only
unknown is N, which is the number of concurrent flows.
The number of flows can be estimated from the sender’s
own window size because DX achieves fair-share through-
put at steady state. For notational convenience, we denote
Wk

(t+1) as W ∗ and rewrite (3) as:

N

∑
k=1

Wk
(t+1) = N ×W ∗ =C ·R+N ⇔ N =

C ·R
W ∗ −1

Using (5) and replacing D, single-packet transmission
delay, with (1/C), we get:

V =
R ·W ∗

W ∗ −1
(8)

In calculating V, the sender only needs to know the
based RTT, R, and the previous window size W ∗. No
additional measurement is required. We do not need
to rely on external configuration or parameter settings
either, unlike the ECN-based approaches. Even if the link
capacity in the network varies across links, it does not
affect our calculation of V .

4 Implementation
We have implemented DX in two parts: latency measure-
ment in DPDK-based NIC driver and latency-based con-
gestion control in the Linux’s TCP stack. This separation
provides a few advantages: (i) it measures latency more
accurately than doing so in the Linux Kernel; (ii) legacy
applications can take advantage of DX without modi-
fication; and (iii) it separates the latency measurement
from the TCP stack, and hides the differences between
hardware implementations, such as timestamp clock fre-
quencies or timestamping mechanisms. We present the
implementation of software- and hardware-based latency
measurements and modifications to the kernel TCP stack
to support latency feedback.

4.1 Timestamping and delay calculation
We measure four timestamp values as shown in section 2
Figure 2: t1 and t2 are the transmission and reception time
of a data packet, and t3 and t4 are the transmission and
reception time of a corresponding ACK packet.
Software timestamping: To eliminate host processing
delay, we perform TX timestamping right before pushing
packets to the NIC, and RX timestamping right after the
packets are received, at the DPDK-based device driver.
We use rdtsc to get CPU cycles and transform this into
nanoseconds timescales. We correct timestamps using
techniques described in §2. All four timestamps must be
delivered to the sender to calculate the one-way delay and
the base RTT. We use TCP’s option fields to relay t1, t2,
and t3 (§4.2).

To calculate one-way delay, the DX receiver stores a
mapping from expected ACK number to t1 and t2 when
it receives a data packet. It then puts them in the corre-
sponding ACK along with the ACK’s transmission time
(t3). The memory overhead is proportional to the arrived
data of which the corresponding ACK has not been sent
yet. The memory overhead is negligible as it requires
store 8 bytes per in-flight packet. In the presence of de-
layed ACK, not all timestamps are delivered back to the
sender, and some of them are discarded.
Hardware timestamping: We have implemented
hardware-based timestamping on Mellanox ConnectX-
3 using a DPDK-ported driver. Although the hardware
supports RX/TX timestamping for all packets, its driver
did not support TX timestaming. We have modified the
driver to timestamp all RX/TX packets.

5

408 2015 USENIX Annual Technical Conference USENIX Association

The NIC hardware delivers timestamps to the driver
by putting the timestamps in the ring descriptor when it
completes DMA. This causes an issue with the previous
logic to carry t1 in the original data packet. To resolve
this, we store mapping of expected ACK number to the t1
at the sender, and retrieve this when ACK is received.
LRO handling: Large Receive Offload (LRO) is a widely
used technique for reducing CPU overhead on the receiver
side. It aggregates received TCP data packets into a large
single TCP packet and passes to the kernel. It is cru-
cial to achieve 10 Gbps or beyond in today’s Linux TCP
stack. This affects DX in two ways. First, it makes the
TCP receiver generate fewer number of ACKs, which in
turn reduces the number of t3 and t4 samples. Second,
even though t1 and t2 are acquired before LRO bundling
at the driver, we cannot deliver all of them back to the
kernel TCP stack due to limited space in the TCP option
header. To work around the problem, for each ACK that
is processed, we scan through the previous t1 and t2 sam-
ples, and deliver average one-way delay with the sample
count. In fact, instead of passing all timestamps to the
TCP layer, we only passes one-way delay t2 - t1 and RTT
((t4 − t1)− (t3 − t2))
Burst mitigation: As shown in § 2, burstiness from I/O
batching incurs timestamping errors. To control bursti-
ness, we implement a simple token bucket with burst
size of MTU and rate set to link capacity. SoftNIC [15]
does polling on the token bucket to draw packets and
passes them to the timestamping module or the NIC. If
the polling loop takes longer than the transmission time
of a packet, the token bucket emits more than one packet,
but limits the number of packets to keep up with link
capacity.

4.2 Congestion control
We implement DX congestion control algorithm in the
Linux 3.13.11 kernel. We add DX as a new TCP option
that consumes 14 bytes of additional TCP header. The
first 2 bytes are for the option number and the option
length required by the TCP option parser. The remaining
12 bytes are divided into three 4 byte spaces and used for
storing timestamps and/or an ACK number.

Most of modifications are made in the tcp ack() func-
tion in TCP stack. This is triggered when an ACK packet
is received. An ACK packet carries one-way delay and
RTT in the header that are pre-calculated by the DPDK-
based device driver. For each round trip time, the received
delay samples are averaged and used for new CWND cal-
culation. The current implementation takes the average
one-way delay observed during the last round trip.
Practical considerations: In real-world networks, a tran-
sient increase in queueing delay Q does not always mean
network congestion. Reacting to wrong congestion sig-
nals results in low link utilization. There are two sources

of error: measurement noise and instant queueing due to
packet bursts. Although we have shown that our latency
measurement has a low standard deviation up to about a
microsecond, it can still trigger undesirable window re-
duction as DX reacts to a positive queueing delay whether
large or small. On the other hand, instant queueing can
happen with even very small number of packets. For
example, if two packets arrive at the switch at the ex-
actly same moment, one of them will be served after the
first packet’s transmission delay, hence positive queueing
delay.

To tackle such practical issues, we come up with two
simple techniques. First, we use headroom when deter-
mining congestion; DX does not decrease window size
when Q < headroom.

Second, to be robust against transient increase in delay
measurements, we use the average queueing delay during
an RTT period. In an ideal network without packet bursts,
the maximum queueing delay is a good indication of
excess packets. In real networks, however, taking the
maximum is easily affected by instant queueing. Taking
the minimum removes the burstiness most effectively, but
it detects congestion only when all the packets in the
window experience positive queueing delay. Hence we
choose the average to balance them out.

Note that DCTCP, a previous ECN-based solution, also
suffers from bursty instant queueing and requires higher
ECN threshold in practice than theoretic calculation [6].

5 Evaluation
Throughout the evaluation, We answer three main ques-
tions:

• Can DX obtain the accuracy of a single packet’s
queuing delay in high-speed networks?

• Can DX achieve minimal queuing delay while
achieving high utilization?

• How does DX perform in large scale networks with
realistic workloads?

By using testbed experiments, we show that our noise
reduction techniques are effective and queuing delay can
be measured with an accuracy of a single MSS packet at
10 Gbps. We evaluate DX against DCTCP and verify that
it reduces queuing in the switch up to five times.

Next, we use ns-2 packet level simulation to conduct
more detailed analysis and evaluate DX in large-scale with
realistic workload. First, we verify the DX’s effectiveness
by looking at queuing delay, utilization and fairness. We
then quantify the impact of measurement errors on DX to
evaluate its robustness. Finally, we perform large-scale
evaluation to compare DX’s overall performance against
the state of the art: DCTCP [6] and HULL [7].

6

USENIX Association 2015 USENIX Annual Technical Conference 409

80.7 54.2

2.27 1.98 2.11

0.53

0.1

1

10

100

Kernel DPDK DPDK

+Burst

control

DPDK

+Busrt

control

+Calibration

NIC NIC

+Calibration

S
T

D
E

V
 (

u
s)

Techniques

SW

HW

Figure 6: Improvements with noise reduction techniques

0

0.2

0.4

0.6

0.8

1

0 1 2 3

C
D

F

Inter-packet gap (μs)

Ideal

RX

Cali.

(a) RX Calibration

0

0.2

0.4

0.6

0.8

1

0 1 2 3

C
D

F

Inter-packet gap (μs)

Ideal

TX

Cali.

(b) TX Calibration

Figure 7: Effect of calibration in H/W timestamped inter-
packet gap at 10 Gbps

5.1 Accuracy of queuing delay in testbed
For testbed experiments, we use Intel 1 GbE/10 GbE
NICs for software timestamping and Mellanox ConnectX-
3 40 GbE NIC for hardware timestamping; the Mellanox
NIC is used in 10 Gbps mode due to the lack of 40 GbE
switches.
Effectiveness of noise reduction techniques: To quan-
tify the benefit of each technique, we apply the techniques
one by one and measure RTT using both software and
hardware. Two machines are connected back to back,
and we conduct RTT measurement at 10 Gbps link. We
plot the standard deviation in Figure 6. Ideally, the RTT
should remain unchanged since there is no network queue-
ing delay. In software-based solution, we reduce the mea-
surement error (presented as standard deviation) down
to 1.98 µs by timestamping at DPDK and applying burst
control and calibration. Among the techniques, burst con-
trol is the most effective, cutting down the error by 23.8
times. In hardware solution, simply timestamping at NIC
achieves comparable noise with all techniques applied in
the software solution. After inter-packet interval calibra-
tion, the noise drops further down to 0.53 µs, less than
half of a single packet’s queueing delay at 10 Gbps, which
is within our target accuracy.
Calibration of H/W timestamping: We look further
into how calibration affects the accuracy of hardware
timestamping. Figure 7 shows the CDF of inter packet
gap measurements before and after calibration for both
RX and TX. The calibration effectively removes the inter
packet gap samples smaller than link transmission delay

0.0

0.2

0.4

0.6

0.8

1.0

0 200 400 600 800

C
D

F

Round-trip time (μs)

NIC

(Calibrated)

Kernel

Figure 8: Improvement on RTT measurement error com-
pared to kernel’s

0

10

20

30

40

50

60

70

0 0.05 0.1 0.15 0.2Q
u

eu
ei

n
g

 d
el

a
y

 (
u

s)
Time (s)

Delay (SW)

From Switch

Ping Start
12us

(a) 1 Gbps with software timestamping

0

2

4

6

8

10

0 0.05 0.1 0.15 0.2Q
u

eu
ei

n
g

 d
el

a
y

 (
u

s)

Time (s)

Delay (HW)

From Switch

Ping Start

1.2us

(b) 10 Gbps with hardware timestamping

Figure 9: Accuracy of queuing delay measurement

which originally took up 68% for TX and 32% for RX.
Overall RTT measurement accuracy improvement:
Now, we look at how much overall improvements we
made on the accuracy of RTT measurement. We plot
the CDF of RTT measurement for our technique using
hardware and RTT measured in the Kernel in Figure 8.
The total range of RTT has decreased by 62 times, from
710 µs to 11.38 µs. The standard deviation is improved
from 80.7 µs to 0.53 µs by two orders of magnitude, and
falls below a single packet queuing at 10 Gbps.
Verification of queuing delay: Now that we can mea-
sure RTT accurately, the remaining question is whether it
leads to accurate queuing delay estimation. We conduct a
controlled experiment where we have a full control over
the queuing level. To create such scenario, we saturate a
port in a switch by generating full throttle traffic from one
host, and inject a MTU-sized ICMP packet to the same
port at fixed interval from another host. This way, we

7

410 2015 USENIX Annual Technical Conference USENIX Association

increase the queuing by a packet at fixed interval, and we
measure the queuing statistics from the switch to verify
our queuing delay measurement.

Figure 9 shows the time series of queuing delay mea-
sured by DX along with the ground truth queue occupancy
measured at the switch (marked as red squares). We use
software and hardware timestamping for 1 Gbps and 10
Gbps, respectively. Every time a new ping packet enters
the network, the queueing delay increases by one MTU
packet transmission delay: 12 µs at 1 Gbps and 1.2 µs at
10 Gbps. The queue length retrieved from the switch also
matches our measurement result. The result at 10 Gbps
seems noisier than at 1 Gbps due to the smaller transmis-
sion delay; note that the scale of Y-axis is different in two
graphs.

Overall, we observe that our noise reduction techniques
can effectively eliminate the sources of errors and result
in accurate queuing delay measurement.

5.2 DX congestion control in testbed
Using the accurate queueing delay measurements, we run
our DX prototype with three servers in our testbed; two
nodes are senders and the other is a receiver. We use
iperf [14] to generate TCP flows for 15 seconds. For com-
parison, we run DCTCP in the same topology. The ECN
marking threshold for DCTCP is set to the recommended
value of 20 at 1 Gbps and 65 at 10 Gbps [6]. During the
experiment, the switch queue length is measured every 20
ms by reading the register values from the switch chipset.
We first present the result at 1 Gbps bottleneck link in
Figure 10a. In both protocols, two senders saturate the
bottleneck link with fair-share throughput. The queue
length is measured in bytes and converted into time.

We observe that DX consistently reduces the switch
queue length compared to that of DCTCP. The average
queueing delay of DX, 37.8 µs, is 4.85 times smaller than
that of DCTCP, 183.4 µs. DX shows 5.33x improvement
in median queue length over DCTCP (3 packets for DX
and 16 packets for DCTCP). DCTCP’s maximum queue
length goes up to 24 packets, while DX peaks at 8 packets.

We run the same experiment with 10 Gbps bottleneck.
For 10 Gbps, we additionally run DX with hardware
timestamp using Mellanox ConnectX-3 NIC. Figure 10b
shows the result. DX (HW) denotes hardware timestamp-
ing, and DX (SW) denotes software timestamping. DX
(HW) decreases the average queue length by 1.67 times
compared to DCTCP, from 43.4 µs to 26.0 µs. DX (SW)
achieves 31.8 µs of average queuing delay. The result
also shows that DX effectively reduces the 99th-percentile
queue length by a factor of 2 with hardware timestamp-
ing; DX (HW) and DX (SW) achieve 52 packets and 38
packets respectively while DCTCP achieves 78 packets.

To summarize, latency feedback is effective in main-
taining low queue occupancy than ECN feedback, while

0

0.2

0.4

0.6

0.8

1

0 100 200 300

C
D

F

Queueing delay (μs)

DX (SW)

DCTCP

Median: 5.33x

(a) 1Gbps bottleneck

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

C
D

F

Queueing delay (μs)

DX (HW)

DX (SW)

DCTCP

Median:

1.57x

(b) 10Gbps bottleneck

Figure 10: Queue length comparison of DX against
DCTCP in Testbed

0

5

10

15

20

0 1.2 2.4 3.6 4.8 6

N
u

m
b

er
 o

f
p

a
ck

et
s

STDEV of simulated latency noise (μs)

Required headroom

Avg queue length

Figure 11: Impact of latency noise to headroom and queue
length

saturating the link. DX achieves 4.85 times smaller av-
erage queue size at 1 Gbps and 1.67 times at 10 Gbps
compared to DCTCP. DX reacts to congestion much
earlier than DCTCP and reduces the congestion window
to the right amount to minimize the queue length while
achieving full utilization. DX achieves the lowest queue-
ing delay among existing end-to-end congestion controls
with implicit feedback that do not require any switch
modifications,

In the next section, we also show that DX is even com-
parable to HULL, a solution that requires in-network sup-
port and switch modification.

5.3 Large-scale simulation
In this section, we run DX, DCTCP, and HULL in simu-
lation to observe the performance in larger-scale environ-
ment.

8

USENIX Association 2015 USENIX Annual Technical Conference 411

3.73 8.02 11.02

35.54 38.8
44.28

5.42 8.2 11.45

0

20

40

60

80

10 20 30

Q
u

eu
ei

n
g

 d
el

a
y

 (
u

s)

Number of senders

HULL DCTCP DX

(a) Queueing delay (average)

16.8

31.2
44.4

52.8
64.8

76.8

10.8 15.6 20.4

0

20

40

60

80

10 20 30

Q
u

eu
ei

n
g

 d
el

a
y

 (
u

s)

Number of senders

HULL DCTCP DX

(b) Queueing delay (99th percentile)

90.9 92.2 92.7
99.9 99.9 99.999.9 99.9 99.9

0
20
40
60
80

100

10 20 30U
ti

li
za

ti
o

n
 (

%
)

Number of senders

HULL DCTCP DX

(c) Utilization

Figure 12: Queueing delay and utilization of HULL, DCTCP, and DX

First, we run ns-2 simulation using a dumbbell topology
with 10 Gbps link capacity. Before the main simulation,
we evaluate the impact of latency noise to the headroom
size and average queue length. We generate latency noise
using normal distribution with varying standard deviation.
The noise level is multiples of 1.2 µs, single packet’s
transmission delay. As the simulated noise level increases,
we need more headroom for full link utilization. Figure 11
shows the required headroom for full utilization and the
resulting queue length in average. We observe that even if
the noise becomes as large as 6 µs, DX can sustain noise
error by simply increasing headroom size followed by the
same amount of increase in queue length. Note that the
standard deviation of our hardware timestamping is only
0.53 µs.

For scalability test, we now vary the number of simulta-
neous flows from 10 to 30 as queuing delay and utilization
are correlated with it; the number of senders has a direct
impact on queueing delay as shown in DCTCP [6]. We
measure the queuing delay and utilization, and plot them
in Figure 12.
Queueing delay: Many distributed applications with
short flows are sensitive to the tail latency as the slowest
flow that belongs to a task determines the completion time
of the task [18]. Hence, we look at the 99th percentile
queuing delay as well as the average queueing delay. On
average, DX achieves 6.6x smaller queueing delay than
DCTCP with ten senders, and slightly higher queuing de-
lay than HULL. At 99th percentile, DX even outperforms
HULL by 1.6x to 2.2x. The reason that DX achieves such
low queuing is because of the immediate reaction to the
queuing whereas both DCTCP and HULL uses weighted
averaging for reducing congestion window size that takes
multiple round trip times.
Utilization: DX achieves 99.9% of utilization which is
comparable to DCTCP, but with much smaller queuing.
HULL sacrifices utilization to reduce the queuing delay
achieving about 90% of the bottleneck link capacity. We
note that low queueing delay of DX does not sacrifice the
utilization.
Fairness and throughput stability: To evaluate the
throughput fairness, we generate 5 identical flows in the

0

2

4

6

8

10

0 1 2 3 4 5 6 7 8 9

T
h

ro
u

g
h

p
u

t
(G

b
p

s)

Time (s)

(a) DCTCP

0

2

4

6

8

10

0 1 2 3 4 5 6 7 8 9

T
h

ro
u

g
h

p
u

t
(G

b
p

s)

Time (s)

(b) DX

Figure 13: Fairness of five flows with DCTCP and DX

10 Gbps link one by one with 1 second interval and stop
each flow after 5 seconds of transfer. In Figure 13, we
see that both protocols offer fair throughput to exiting
flows at each moment. One interesting observation is
that DX flows have more stable throughput than DCTCP
flows. This implies that DX provides higher fairness than
DCTCP in small time scale. We compute the standard de-
viation of throughput to quantify the stability; 268 Mbps
for DCTCP and 122 Mbps for DX.

To understand the performance of DX in a large-scale
data center environment, we perform simulations with
realistic topology and traffic workload. The network con-
sists of 192 servers and 56 switches that are connected
as a 3-tier fat tree; there are 8 core switches, 16 aggrega-
tion switches, and 32 top-of-rack switches. All network
links have 10 Gbps bandwidth, and the path selection is
done by ECMP routing. The network topology we use is
similar to that of HULL [7]. Once the simulation starts,
the flow generator module selects a sender and a receiver
randomly and starts a new flow. Each new flow is gener-
ated following Poisson process to produce 15% load at
the edge. We run simulation until we have 100,000 flows
started and finished. To test realistic workload, we choose
flow size according to empirical workload reported from
real-world data centers. We use two workload data: web
search [6] and data mining [19].

Web search workload: The web search workload mostly
contains small and medium-sized flows from a few KB
to tens of MB; more than 95% of total bytes come from
the flow smaller than 20MB, and the average flow size is
654KB [20]. In Figure 14, we present the flow comple-

9

412 2015 USENIX Annual Technical Conference USENIX Association

0.175
0.126 0.097

0.549

0.218

0.113

0

0.1

0.2

0.3

0.4

0.5

0.6

DCTCP HULL DX

F
C

T
 (

m
s)

Avg 99th

(a) 0KB-10KB

0.396
0.314 0.253

1.383

0.761

0.486

0

0.5

1

1.5

DCTCP HULL DX

F
C

T
 (

m
s)

Avg 99th

(b) 10KB-100KB

7.068 8.579 7.738

40.554

48.743
43.741

0

10

20

30

40

50

DCTCP HULL DX

F
C

T
 (

m
s)

Avg 99th

(c) 100KB-10MB

52.117
68.313 63.056

141.938

180.842
165.862

0

50

100

150

200

DCTCP HULL DX

F
C

T
 (

m
s)

Avg 99th

(d) 10MB-

Figure 14: Flow completion time of search workload

0.059
0.026 0.023

0.459

0.15

0.077

0

0.1

0.2

0.3

0.4

0.5

DCTCP HULL DX

F
C

T
 (

m
s)

Avg 99th

(a) 0KB-10KB

0.191 0.098 0.084

1.658

0.837

0.498

0

0.5

1

1.5

2

DCTCP HULL DX

F
C

T
 (

m
s)

Avg 99th

(b) 10KB-100KB

1.745 1.238 0.995

27.184
25.424

20.377

0

5

10

15

20

25

30

DCTCP HULL DX

F
C

T
 (

m
s)

Avg 99th

(c) 100KB-10MB

130.13 170.33 156.558

2821.282

3478.742
3239.785

0

1000

2000

3000

4000

DCTCP HULL DX

F
C

T
 (

m
s)

Avg 99th

(d) 10MB-

Figure 15: Flow completion time of data mining workload

tion time (FCT) in four flow-size groups: (0KB,10KB),
[10KB,100KB), [100KB,10MB), and [10MB,∞).

For the flows smaller than 10KB, DX significantly re-
duces the 99th percentile FCT; it is 4.9x smaller than
DCTCP and 1.9x smaller than HULL. DX also achieves
minimal flow completion time in the 10KB-100KB group.

In larger flow size group, the performance of DX falls
between DCTCP and HULL. DX achieves 7.7% lower
average flow completion time compared to HULL and
20.9% higher than DCTCP for flows of size 10 MB and
greater. This is because when ACK packets from other
flows share the same bottleneck link, the queuing delay
increases slightly. As a result, DX senders respond to the
increased queuing delay. This is a side effect of targeting
zero queueing. Because ACK packets are small and often
piggy-backed on data packets we believe this is not a
serious problem, but leave this as future work.

Data mining workload: The data mining workload is
comprised of tiny and large-sized flows from hundreds of
bytes to 1GB. The flow size is highly skewed that 80%
of flows are smaller than 10KB [20] so 95% of bytes
come from flows larger than 30MB; the average flow size
is 7,452KB. The flow completion time of data mining
workload is presented in Figure 15.

The performance improvement of DX is more outstand-
ing for data minining workload than for search workload.
In the three flow groups up to 10MB, DX flows finish early
in every case. The biggest benefit comes from the small-
est flow group as tail FCT is 6.0x smaller than DCTCP
and 1.9x than HULL. For the largest flow group, DX
suffers the same problem from the search workload but
still shows shorter completion time than HULL’s.

6 Discussion

NIC support for latency measurements: Current com-
modity NICs’ support for timestamping is primarily for
IEEE 1588 PTP, a hardware-based time synchronization
protocol, designed to achieve sub-microsecond accuracy.
While we leverage this functionality in DX, it is not per-
fectly suitable for our network latency measurements as
explained in §2. In particular, it timestamps TX packets
after completing DMA, and it does not support recording
the TX time directly on the packets at the time of trans-
mission. Although, our implementation works around
these issues in software to reduce measurement errors,
we believe changes in hardware will be more effective,
especially for 10G/40G networks. If the hardware times-
tamps packets as it sends them out in the wire, the errors
from NIC queueing and DMA bursts would be eliminated.
Also, if it allows us to directly write timestamps on the
packet header, this can shorten the feedback loop of DX
by an RTT.

Deployment and co-existence with TCP: DX strictly
targets datacenter networks for deployment. Datacenter
environment favors DX deployment in that 1) it belongs
to a single administration domain that can readily adopt
a new protocol, and 2) network structure is more homo-
geneous and static than WAN, which helps latency mea-
surement stability. As DX does not require any changes
to the existing network switches, we can deploy DX with
only end-host modification. Software-based solution can
be deployed on existing machines, and hardware-based
solution requires timestamping-enabled NICs. IEEE 1588
PTP-enabled NICs are already popular [21], and we envi-
sion timestamping-enabled NICs become more popular
in the near future.

10

USENIX Association 2015 USENIX Annual Technical Conference 413

DX is specifically designed for handling only internal
datacenter traffic, not external traffic to WAN. Separation
between internal and external traffic is attainable by using
load balancers and application proxies in existing data-
centers [6]. We do not claim that DX can operate with
conventional TCP sharing the same queue at network
switches; a single TCP flow can cause a switch queue to
overflow, which is directly against DX’s goal. Our best
resort to co-existing with TCP flows is to exploit priority
queues at the switch and separate DX traffic from other
TCP traffic. How to design such network efficiently is out
of this paper’s scope and we leave it as future work.

7 Related Work
Latency-based feedback in wide area network: There
have been numerous proposals for network congestion
control since the advent of the Internet. Although the
majority of proposals use packet loss to detect network
congestion, a large body of work has studied latency feed-
back. Latency-based TCP all agree on latency being
more informative source of measuring congestion level,
but the purpose and control mechanism is different in
each protocol. TCP Vegas [8] is one of the earliest work
and aims at achieving high throughput by avoiding loss.
FAST TCP [9] is designed to quickly reach the fair-share
throughput and uses latency for an equation parameter.
TCP Nice [22] and TCP-LP [23] operate in low prior-
ity minimizing interference with other flows. So far, the
latency-based approach has only been used in wide area
network, and no protocol is known to target zero queueing
delay.
ECN-based feedback in datacenter networks: Moni-
toring congestion level at the switch can help controlling
the rate of TCP to minimize queuing. ECN marking
in the TCP header has received much attention recently.
DCTCP [6] uses a predefined threshold, and end-nodes
then count the number of ECN marked packets to deter-
mine the degree of congestion and decrease the window
size accordingly. HULL [7] is a similar to DCTCP, but
sacrifices a small portion of the link capacity with phan-
tom queue implemented at switches to detect congestion
early and to achieve lower queueing delay than DCTCP.
D2TCP [24] also follows the same line of idea as DCTCP,
and it uses gamma correction function to take into ac-
count each flow’s deadline when adjusting the window
size. As another variant of DCTCP, L2DCT [25] consid-
ers flows’ priority when reducing window size, and the
priority is determined by the scheduling policy used in
the network. ECN* [26] proposes dequeue marking for
ECN to work effectively in datacenters. The aforemen-
tioned ECN marking approaches require modification of
the TCP stack in end-node OS as well as minor parameter
tunings at switches.
In-network feedback in datacenter networks: A few

approaches have proposed to modify network switches
in a way that TCP senders or middle switches can learn
congestion status more quickly and accurately. D3 [3]
employs similar mechanism to RCP so that it can con-
trol flow rates to implement deadline based scheduling.
DeTail [27] has implemented a new cross-layer network
stack so that flows can avoid congested paths in the net-
work, and PDQ [28] proposes distributed scheduling of
flows that posses different priorities. These solutions are
much harder to deploy than end-to-end solutions.

Flow scheduling in datacenter networks: Finally, we
note that flow scheduling approaches, such as pFabric,
PDQ, Varys, and PASE, also offer low flow completion
times using prioritization and multiple queues. While
some solutions intermix the congestion control and flow
scheduling [29], we believe that congestion control and
flow scheduling are largely orthogonal. For example,
PASE adopts a DCTCP-like rate control scheme for lower
priority queues [29] to ensure fairsharing and low queuing
delay. Thus, in general, our latency-based feedback is
orthogonal to flow scheduling approaches.

8 Conclusion

In this paper, we explore latency feedback for conges-
tion control in data center networks. To acquire reliable
latency measurements, we develop both software and
hardware level solutions to measure only the network-
side latency. Our measurement results show that we can
achieve sub-microseconds level of accuracy. Based on the
accurate latency feedback, we develop DX that achieves
high utilization and low queueing delay in datacenter net-
works. DX outperforms DCTCP [6] with 5.33x smaller
queueing delay at 1 Gbps and 1.57x at 10 Gbps in testbed
experiment. The queueing delay reduction is comparable
or better than HULL [7] in simulation. Our prototype
implementation shows that DX has much potential to be
a practical solution in the real-world datacenters.

Acknowledgements

We thank our shepherd Edouard Bugnion and anonymous
reviewers for their valuable comments. We also thank
Keunhong Lee for providing his own implementation of
Mellanox NIC driver and Sangjin Han for the SoftNIC
implementation. This research was supported in part
by Cisco Research Center (No. 576768), Basic Science
Research Program through the National Research Foun-
dation of Korea (NRF) funded by the Korean government
(MSIP) (No. 2014007580), and an Institute for Informa-
tion communications Technology Promotion (IITP) grant
funded by the Korean government (MSIP) (No. B0126-
15-1078).

11

414 2015 USENIX Annual Technical Conference USENIX Association

References
[1] Dina Katabi, Mark Handley, and Charlie Rohrs.

Congestion Control for High Bandwidth-delay Prod-
uct Networks. In Proceedings of the ACM SIG-
COMM conference, 2002.

[2] Nandita Dukkipati, Masayoshi Kobayashi, Rui
Zhang-shen, and Nick Mckeown. Processor Sharing
Flows in the Internet. In Proceedings of the Inter-
national Workshop on Quality of Service (IWQoS),
2005.

[3] Christo Wilson, Hitesh Ballani, Thomas Karagian-
nis, and Ant Rowtron. Better Never than Late: Meet-
ing Deadlines in Datacenter Networks. In Proceed-
ings of the ACM SIGCOMM conference, 2011.

[4] Alan Shieh, Srikanth Kandula, Albert Greenberg,
and Changhoon Kim. Sharing the Data Center Net-
work. In Proceedings of USENIX NSDI conference,
2011.

[5] Dongsu Han, Robert Grandl, Aditya Akella, and
Srinivasan Seshan. FCP: A Flexible Transport
Framework for Accommodating Diversity. In Pro-
ceedings of the ACM SIGCOMM conference, 2013.

[6] Mohammad Alizadeh, Albert Greenberg, David A.
Maltz, Jitendra Padhye, Parveen Patel, Balaji Prab-
hakar, Sudipta Sengupta, and Murari Sridharan.
Data Center TCP (DCTCP). In Proceedings of the
ACM SIGCOMM conference, 2010.

[7] Mohammad Alizadeh, Abdul Kabbani, Tom Edsall,
Balaji Prabhakar, Amin Vahdat, and Masato Yasuda.
Less Is More: Trading a Little Bandwidth for Ultra-
Low Latency in the Data Center. In Proceedings of
USENIX NSDI conference, 2012.

[8] Lawrence Brakmo and Larry Peterson. TCP Ve-
gas: End to End Congestion Avoidance on a Global
Internet. IEEE Journal on Selected Areas in Com-
munications, 13:1465–1480, 1995.

[9] David X. Wei, Cheng Jin, Steven H. Low, and San-
jay Hegde. FAST TCP: Motivation, Architecture,
Algorithms, Performance. IEEE/ACM Trans. Netw.,
14(6):1246–1259, December 2006.

[10] Haitao Wu, Zhenqian Feng, Chuanxiong Guo, and
Yongguang Zhang. ICTCP: Incast Congestion Con-
trol for TCP in Data Center Networks. In Proceed-
ings of the ACM CoNEXT, 2010.

[11] Mario Flajslik and Mendel Rosenblum. Network In-
terface Design for Low Latency Request-Response
Protocols. In Proceedings of the USENIX ATC,
2013.

[12] Intel DPDK: Data Plane Development Kit. http:
//dpdk.org/.

[13] Highly Accurate Time Synchronization with
ConnectX-3 and TimeKeeper, Mellanox. http:
//www.mellanox.com/related-docs/
whitepapers/WP_Highly_Accurate_
Time_Synchronization.pdf.

[14] Iperf - The TCP/UDP Bandwidth Measurement Tool.
http://iperf.fr/.

[15] Sangjin Han, Keon Jang, Aurojit Panda, Shoumik
Palkar, Dongsu Han, and Sylvia Ratnasamy. Soft-
NIC: A Software NIC to Augment Hardware. Tech-
nical Report UCB/EECS-2015-155, EECS Depart-
ment, University of California, Berkeley, May 2015.

[16] IEEE 1588: Precision Time Protocol (PTP).

[17] Christoph Lenzen, Philipp Sommer, and Roger Wat-
tenhofer. Optimal Clock Synchronization in Net-
works. In Proceedings of ACM SenSys Conference,
2009.

[18] Mosharaf Chowdhury and Ion Stoica. Coflow: A
Networking Abstraction for Cluster Applications.
In Proceedings of ACM HotNets, 2012.

[19] Albert Greenberg, James R. Hamilton, Navendu
Jain, Srikanth Kandula, Changhoon Kim, Parantap
Lahiri, David A. Maltz, Parveen Patel, and Sudipta
Sengupta. VL2: A Scalable and Flexible Data Cen-
ter Network. In Proceedings of the ACM SIGCOMM
conference, 2009.

[20] Mohammad Alizadeh, Shuang Yang, Milad Sharif,
Sachin Katti, Nick McKeown, Balaji Prabhakar, and
Scott Shenker. pFabric: Minimal Near-Optimal
Datacenter Transport. In Proceedings of the ACM
SIGCOMM conference, 2013.

[21] Jonathan Perry, Amy Ousterhout, Hari Balakrish-
nan, Devavrat Shah, and Hans Fugal. Fastpass: A
Centralized Zero-Queue Datacenter Network. In
Proceedings of the ACM SIGCOMM conference,
2014.

[22] Arun Venkataramani, Ravi Kokku, and Mike Dahlin.
TCP Nice: A Mechanism for Background Transfers.
In Proceedings of USENIX OSDI conference, 2002.

[23] Aleksandar Kuzmanovic and Edward W Knightly.
TCP-LP: A Distributed Algorithm for Low Priority
Data Transfer. In Proceedings of IEEE INFOCOM
Conference, 2003.

12

USENIX Association 2015 USENIX Annual Technical Conference 415

[24] Balajee Vamanan, Jahangir Hasan, and T.N. Vijayku-
mar. Deadline-aware Datacenter TCP (D2TCP). In
Proceedings of the ACM SIGCOMM conference,
2012.

[25] Ali Munir, Ihsan Qazi, Zartash Uzmi, Aisha Mush-
taq, Saad Ismail, M. Iqbal, and Basma Khan. Mini-
mizing Flow Completion Times in Data Centers. In
Proceedings of IEEE INFOCOM Conference, 2013.

[26] Haitao Wu, Jiabo Ju, Guohan Lu, Chuanxiong Guo,
Yongqiang Xiong, and Yongguang Zhang. Tuning
ECN for Data Center Networks. In Proceedings of
the ACM CoNEXT, 2012.

[27] David Zats, Tathagata Das, Prashanth Mohan,
Dhruba Borthakur, and Randy Katz. DeTail: Reduc-
ing the Flow Completion Time Tail in Datacenter
Networks. In Proceedings of the ACM SIGCOMM
conference, 2012.

[28] Chi-Yao Hong, Matthew Caesar, and P. Brighten
Godfrey. Finishing Flows Quickly with Preemptive
Scheduling. In Proceedings of the ACM SIGCOMM
conference, 2012.

[29] Ali Munir, Ghufran Baig, S Irteza, I Qazi, I Liu, and
F Dogar. Friends, not Foes Synthesizing Existing
Transport Strategies for Data Center Networks. In
Proceedings of the ACM SIGCOMM conference,
2014.

13

