
Accurate Latency Estimation in a Distributed Event

Processing System

Badrish Chandramouli†, Jonathan Goldstein‡, Roger Barga†, Mirek Riedewald∗, Ivo Santos†

†Microsoft Research ‡Microsoft Corporation ∗Northeastern University

{badrishc, jongold, barga}@microsoft.com, mirek@ccs.neu.edu, ivosan@microsoft.com

Abstract—A distributed event processing system consists of one
or more nodes (machines), and can execute a directed acyclic
graph (DAG) of operators called a dataflow (or query), over long-
running high-event-rate data sources. An important component
of such a system is cost estimation, which predicts or estimates
the “goodness” of a given input, i.e., operator graph and/or
assignment of individual operators to nodes. Cost estimation is
the foundation for solving many problems: optimization (plan
selection and distributed operator placement), provisioning, ad-
mission control, and user reporting of system misbehavior.

Latency is a significant user metric in many commercial real-
time applications. Users are usually interested in quantiles of
latency, such as worst-case or 99th percentile. However, existing
cost estimation techniques for event-based dataflows use metrics
that, while they may have the side-effect of being correlated with
latency, do not directly or provably estimate latency. In this paper,
we propose a new cost estimation technique using a metric called
Mace (Maximum cumulative excess). Mace is provably equivalent
to maximum system latency in a (potentially complex, multi-node)
distributed event-based system. The close relationship to latency
makes Mace ideal for addressing the problems described earlier.
Experiments with real-world datasets on Microsoft StreamInsight
deployed over 1—13 nodes in a data center validate our ability
to closely estimate latency (within 4%), and the use of Mace for
plan selection and distributed operator placement.

I. Introduction

Many established and emerging applications can be natu-

rally modeled using event-based dataflows; examples include

network monitoring [11, 15] and real-time delivery of Web

advertisements [5]. Users register dataflows in the form of

continuous queries (CQs) with the event processing system

(EPS). CQs typically run on an EPS for long periods (weeks

or months) and continuously produce incremental output in

real time for newly arriving input events.

A CQ is usually specified declaratively using a higher-level

language such as LINQ, Esper, or StreamSQL. The CQ is

converted into a dataflow plan which consists of a directed

acyclic graph (DAG) of operators connected by queues of

events. There may be many equivalent plans for a CQ,

with different performance characteristics. Furthermore, in a

distributed system, the operators may themselves be distributed

amongst the available nodes (machines) in different ways.

With the advent of many commercial event-based systems

(e.g., StreamInsight, Oracle CEP, Streambase), the EPS is

faced with a need for solutions to several related problems:

• Query Optimization: For a given set of CQs, we seek to

find the best dataflow plans and/or assignment of operators

to nodes. A closely related problem is re-optimization,

which is the periodic adjustment of the CQs on the basis

of detected changes [22] in input behavior.

• Admission Control: When we try to add or remove a CQ

from the system, we need to quickly and accurately predict

the corresponding impact on the system.

• System Provisioning: The system administrator must de-

termine the effect of making more or fewer CPU cycles or

nodes available to the system under its current CQ load.

• User Reporting: Users need a meaningful estimate of the

behavior of their CQs. Such an estimate should be based

on a metric that is relevant to users. This could also be used

as a basis for performance guarantees from the system.

A common requirement of each of the above problems

is a good cost metric, and a corresponding estimation (i.e.,

prediction) technique. Our experience with commercial event-

based applications indicates that latency — the time taken

for an input event to produce a result — is one of the most

important cost metrics to end users in a real-time system.

Users are interested in quantiles such as worst-case, average,

and 99.9th percentile of latency [17]. Thus, latency is an ideal

starting point as a metric to solve the above problems.

Challenges Consider the following commercial event-based

application in the context of real-time Web advertising.

Example 1 (Real-Time Targeted Advertising [5]). Consider

an event processing system that processes complex CQs over

URL clickstreams. Here, each event may be a user click that

navigates the browser from one page to another. Associated

with each event is user-specific demographic data. Such a

system could answer multiple real-time CQs whose results

could be used to display user- or URL-tailored targeted

Web advertisements, or report interesting real-time statistics.

Figure 1 depicts the input event rates seen in such an event

click-stream, that we derived using actual data collected on

an advertisement delivery system over a period of 84 days.

There are several points worth noting from this example.

1) Latency is important: A fast (low latency) response to

incoming events is important to avoid stale decisions such

as the choice of targeted ads (or stock trades). Low worst-

case latency is crucial for applications that monitor critical

infrastructure, as well as for fraud, intrusion, and anomaly

Fig. 1. Input load distribution for click-stream data.

detection, where the harmful activity needs to be discovered

quickly. Further, we see that system behavior, in terms of input

event rate, is relatively predictable over long periods of time

(such as the marked 17 day period). This indicates that we

can highly benefit from an optimizer that produces a lowest-

latency dataflow plan and/or assignment of operators to nodes.

On the other hand, there are periodic shifts, where system

characteristics change significantly, motivating the need for

query re-optimization, updating latency estimates reported to

end users, and re-provisioning for the changed load — again

requiring the ability to estimate latency a priori.

2) Prediction has to be quick: An optimizer needs to

quickly evaluate the merit of a plan, while searching through

a vast space of possible plans, during plan selection. Further,

when we run the dataflow on multiple nodes in a data center,

the optimizer also needs to perform operator placement, i.e.,

choose the “best” assignment of operators to nodes that min-

imizes latency. Thus, we need the ability to quickly evaluate

and compare the merit (in terms of latency) of many different

choices without being able to actually run them.

3) Latency is hard to predict: Even during the stable period

marked in Figure 1, there are short-term variations in event

rates (e.g., due to diurnal trends), that make it difficult to

estimate the latency of a particular plan/assignment. Latency

is challenging to predict reliably, because of the complexity

of the dataflow plan and the non-trivial interactions between

components of a distributed system. Note that we cannot

simply measure latency at runtime, as it is not possible to

run all possible plans/placements for a query. Further, system

provisioning requires that we be able to predict the effect of

changes such as the availability of more nodes. It is usually

unfeasible to try out such new deployments without procuring

the additional cycles/cores/machines a priori.

4) We need to predict actual latency: Given the difficulty of

predicting latency, we may wish to consider the use of existing

commonly used metrics such as resource usage [10], number

of intermediate tuples [19], load correlation [33], and feasible

set size [34] as a “proxy” for latency. Some of these metrics

are correlated with latency (in other words, minimizing such

a metric reduces latency). However, a proxy metric cannot

be used for provisioning, admission control, or user reporting

based on latency — such a number cannot detect that a specific

constraint (e.g., worst-case latency should be less than 10 secs)

may be violated, nor can users derive any meaning out of the

number beyond the ability to compare two values in a relative

sense. Thus, we need a technique to directly predict latency

in seconds.

In summary, we seek a latency estimation technique with

these desirable properties: (1) it directly estimates latency, an

intuitive and meaningful metric for a distributed EPS; (2) it

is easy and quick to compute without introducing complexity

into the system; (3) it is generally applicable for multi-node

operator placement as well as for comparing plans on a single

machine; (4) it corresponds precisely to actual latency, on a

provable theoretical basis (beyond intuition).

Contributions We make the following contributions.

• We describe (§ III, IV, and VI) a novel solution for cost

estimation, and the associated cost metric called Mace

(Maximum cumulative excess). Mace is based on a unique

variation of amortized analysis, and satisfies all the desir-

able properties outlined earlier.

• We propose a low-overhead scheduling policy and show

(§ V) that with this scheduling policy, Mace provably

corresponds closely to worst-case latency. Our solution

can also be used to estimate latency beyond worst-case,

including average and 99th percentile (cf. § V-B).

• Recognizing that an EPS may wish to use a different

scheduling policy for other reasons, a tuning parameter w

allows us to trade-off latency estimation accuracy while

allowing such variations (§ VII-A). We focus on data

centers, with the extension to general networks in § VII-B.

• We evaluate our solution (§ VIII) with real data on Mi-

crosoft StreamInsight [5] deployed over 1—13 nodes in

a data center. Results validate the equivalence (within 4%

error) between Mace and latency in all cases.

• Our solution is general. We describe two applications in

§ IX — plan selection and distributed operator placement,

for which we propose a new algorithm called Mace-HC.

We evaluate the optimizer’s ability to perform good plan

selection, and also demonstrate, with a simulation of 400

nodes, that Mace-HC is an order-of-magnitude quicker than

competing schemes at finding lower-latency placements.

We cover several extensions in [13], including handling

multi-cores and handling query priorities. Mace and its re-

lation to latency is applicable to any distributed queue-based

workflow with well-understood operators (tasks) and control

over the scheduling policy. However, we present our findings

in the context of distributed event processing systems.

II. Preliminaries

A. The Distributed Event-Based Dataflow Model

Each dataflow or CQ plan, similar to a database query plan,

consists of a DAG of operators. Each operator consumes events

from one or more input queues, performs computation, and

produces new events to be output or placed on the input queue

of other operators. Operators generate load on their host nodes

by consuming CPU cycles. We target the important practical

scenario where all nodes are located in a data center having

one or more shared-nothing nodes with a high-bandwidth fast

interconnect. Our experiments (cf. Section VIII) using a real

data center validate the expectation that network link costs

are relatively insignificant in such a cluster deployment of an

EPS; an extension to handle high-latency or low-bandwidth

networks is discussed in Section VII-B. As is common in data

center deployments [9], we assume that clocks are synchro-

nized using standard protocols such as NTP [30].

Definition 1 (EPS and Query Graph). An EPS consists of a

set of n nodes N = {N1,N2, . . . ,Nn}, a set of m operators

O = {O1,O2, . . . ,Om}, and a partitioning of the m operators

into n disjoint subsets S = {S 1, . . . , S n} such that S i is the set

of operators assigned to node Ni. The assignment of operators

to nodes is called the operator placement. Note that each of

the m operators may belong to a different CQ.

The query graph G is a DAG over O where the roots of the

graph are referred to as sources, and the leaves of the graph

are referred to as sinks. The operators that an operator O j is

reachable from (in G) are said to be upstream of O j. Let each

node Ni have a total available CPU of Ci cycles per time unit.

For example, Figure 3(a) shows an EPS query graph with 3

nodes (N1, N2, and N3), each having available CPU of Ci = 1

cycle/second. The partitioning is S i = {Oi} ∀1 ≤ i ≤ 3.

B. Latency

Latency denotes the delay that is introduced by the EPS from

the point of event arrival to result generation. We observe that

no matter how quickly the EPS processes events, an operator

cannot produce an event e before all its “contributing” events

(or punctuations [28]) have arrived from sources outside the

EPS. Latency is intuitively the time interval from this point

of time until the time when e is actually produced by the

operator. As in data warehousing [16], we refer to the set of

contributing source events for event e as the lineage of e.

We focus on worst-case latency as our estimation goal

(other quantiles and averages are covered in Section V-B).

Worst-case metrics are popular in applications with strict real-

time needs, since they provide an upper bound on system

misbehavior, which is often more useful than averages. For

example, users may not want stock trades, fraud/intrusion

detection, or anomaly detection in critical infrastructure, to

be delayed by more than a specified time. It is also common

practice in large systems [17] to optimize for the worst-case

or 99.9th percentile rather than the average case.

C. System Architecture

Figure 2 shows our system architecture. The cost estima-

tor uses statistics measured by the event processor, such

as selectivity and input event rates. Statistics are based on

historical observations or trial runs on a small input sample.

The estimator accepts a specification of a query graph and

an operator placement, and outputs a latency estimate. The

estimate is used as part of solving problems such as plan

selection, operator placement, provisioning, etc. Figure 2 also

provides a referenced overview of our solutions in this paper.

�

�

�

COST

ESTIMATOR

Query Graph

Node Assignment

Statistics

Event

Processor

Plan Selection
Operator Placement
Admission Control
System Provisioning
User Reporting

Our Contributions

Stimulus Time
Scheduling
(Sec. III-A/D,
VI)

- Selectivity
- Cycles/sec
- Arrival TS
(Sec. III-B/C, VI)

Deterministic
Load Time-
Series
(Sec. III-C, VI)

Maximum
cumulative excess
(Sec. IV, V, VI)

Solutions in Sec. IX

Cost Estimate

(Mace)

Fig. 2. Cost estimation architecture.

III. Latency Estimation in a Distributed EPS

We now present our new building blocks for latency estima-

tion. In Section IV, we will define Mace and leverage these

building blocks to show the equivalence of Mace to latency.

A. Handling Events Deterministically

Each source event (i.e., from sources outside the EPS) has a

well-known timestamp, the wall-clock time at the instant it

arrives at the EPS. However, intermediate and output events

may be produced at arbitrary wall-clock times, depending on

when individual operators process their input queues. We use

event lineage from Section II to formalize the notion of a

deterministic stimulus time for events.

Definition 2 (Stimulus Time). Each source event is assigned

a new field called stimulus time, which is the wall-clock time

of its arrival at the EPS from outside. The stimulus time of an

event e produced by an operator O j is the maximum timestamp

across all source events in the lineage of e (i.e., the moment

all source events in its lineage have arrived at the EPS).

In practice, stimulus times can easily be set by an operator

(when it generates a new event), to be the stimulus time of

the associated latest incoming event. Note that this new field

does not affect existing event timestamps or CQ processing

semantics, and is only used to compute latency. We can now

define latency precisely in a distributed EPS.

Definition 3 (Latency). For each output event e produced by

a sink in query graph G, its latency is the difference between

the event’s egress time (the wall-clock time when it exits the

EPS) and its stimulus time.

We collect and compute statistics by dividing time into

equal-width segments. More precisely, a time interval [t1, td+1)

is partitioned into d discrete subintervals (or buckets)

[t1, t2), . . . , [td, td+1) each of width w time units. For brevity,

we will refer to a particular subinterval [tp, tp+1) simply by

its left endpoint tp. Thus, time is represented as a set of

subintervals τ = {t1, . . . , td}. Figure 3(b) shows an example

set of subintervals, each of width w = 2 seconds.

An event with stimulus time t ∈ [tp, tp+1) is said to belong

to subinterval tp. Note that each incoming event (and its “child

events” spawned by operators) belongs to a unique subinterval.

We are interested in the maximum latency over all events

belonging to a subinterval. This results in a time-series of

Fig. 3. (a) An example CQ plan on 3 nodes. (b) DLTS for each of the nodes, over 5 subintervals. Here, subinterval width is w = 2 secs and CPU on each
node is Ci = 1 cycle/sec. (c) CE for each of the nodes, with CE at subinterval t2 highlighted. Worst-case CE (MaceWC) is shown. (d) Lifetime of an event e

which enters EPS at the end of subinterval t2 . Latency of e = MaceWC = 5 secs.

such maximum latency values, that we formalize next.

Definition 4 (Maximum Latency). Maximum latency is a

time-series Lat1...d defined over the set of discrete subintervals.

The maximum latency Latp for subinterval tp is the maximum

latency across all output events which belong to subinterval

tp, i.e., whose stimulus times lie in tp. The overall worst-case

latency LatWC is simply the maximum latency seen over the

entire time period. More formally, LatWC = maxtp∈τ Latp.

B. Modeling Operators

In between the re-optimization points of Figure 1, we model

our dataflow operators similarly to prior work [34], with two

parameters maintained per single-input operator O j:

• Selectivity (σ j), the average number of events generated by

the operator in response to each input event to the operator.

• Cycles/event (ω j), the average CPU cycles consumed by

the operator, for each input event to the operator.

In case of operators with q inputs, we maintain these

parameters separately for each input, as σ j,1...q and ω j,1...q.

Note that this model assumes that operators have a linear

relationship between input and output. The generalization to

non-linear operators is covered in Section VI-C.

C. Handling Load Deterministically

The input (from outside) to a EPS is one or more sources of

events, each with time-varying event rates. The event arrival

time-series of source Z is a time-series whose value at each

subinterval tp is simply the number of Z events arriving

between time tp and tp+1. The event arrival time-series may

be known in advance, or we can measure it using observed

data, e.g., during periods of repeatable load in between query

re-optimizations as in Figure 1.

The actual CPU load imposed by operators during execution

is difficult to model accurately because it is dependent on

various factors including actual queue lengths, scheduling

decisions, and runtime conditions. For example, the intro-

duction of a new query can change the actual load time-

series imposed by existing operators. This dynamic and hard-

to-control nature makes maintaining them or using them to

provide hard guarantees difficult. Moreover, such variability

and system dependence makes our goal of estimating latency

accurately difficult. We therefore adopt an alternate definition

called deterministic load time-series (DLTS). Surprisingly,

this definition not only makes computation of Mace (in

Section IV) easier, but is also crucial in provably establishing

the equivalence of our Mace metric to latency.

Definition 5 (Operator DLTS). The DLTS of an operator O j is

a time-series l j,1...d whose value l j,p at each subinterval tp ∈ τ

equals the total CPU cycles required to process exactly all

input events to O j that belong to subinterval tp, i.e., whose

stimulus times lie within subinterval tp.

We can view the DLTS of an operator O j as the load

imposed by O j assuming perfect upstream, i.e., assuming that

all operators upstream of O j process events and produce results

instantaneously. Intuitively, we can interpret this assignment of

load to deterministic buckets based on event lineage, as a novel

form of amortized analysis for our estimation problem.

DLTS is (by design) typically very different from the actual

load pattern imposed by O j during runtime; we will later show

how DLTS can nevertheless be used to accurately estimate the

actual latency. In practice, we can regard l j,p as the product

of (1) the cycles/event parameter (ω j), and (2) the number of

input events to O j that belong to tp. Thus, DLTS is independent

of runtime system behavior. We now define node DLTS.

Definition 6 (Node DLTS). The DLTS of a node Ni is a time-

series Li,1...d, whose value Li,p at each subinterval tp is the

sum of the deterministic load (at tp) of all operators assigned

to that node. More formally, Li,p =
∑

O j∈S i
l j,p.

Again, note that node DLTS is defined assuming a perfect

upstream, and is typically different from the actual load pattern

imposed on the node during runtime. Figure 3(b) shows

the DLTS time-series for three nodes (subintervals are also

indicated). In case of node N2, for example, we have L2,1 = 3,

L2,2 = 6, and so on.

D. Stimulus Time Scheduling

We propose a low-overhead operator scheduling policy for

the EPS. An EPS typically has one scheduler per core, that

schedules operators to process events according to some pol-

icy. For example, the scheduler may maintain a list of operators

with non-empty queues and use heuristics like round-robin or

longest-queue-first to schedule operators for execution.

Our scheduling policy is called stimulus time scheduling.

The basic idea is that each operator is assigned a priority based

on the earliest stimulus time amongst all events in its input

queue. The scheduler always chooses to execute the operator

having the event with earliest stimulus time.

Definition 7 (Stimulus Time Scheduling). Each node Ni

may execute one operator from S i at a time, and has a

scheduler which schedules operators amongst S i for execution

according to stimulus time scheduling: At any given moment,

the executing operator is processing the event with earliest

stimulus time amongst all input events to operators in S i.

Stimulus time scheduling ensures that the events which have

older stimuli get priority over events with newer stimuli. Note

that since stimulus times become deterministic at the point of

entry into the system, scheduling is no longer dependent on

more operational characteristics such as queue lengths.

As the following theorem shows, stimulus time scheduling

is usually an improvement, in terms of latency, over the round

robin based approaches often used in practice.

Theorem 1. On a single node EPS, stimulus time scheduling is

the optimal scheduling policy to minimize worst-case latency.

Proof: (Intuition) At any given time t, an event with

stimulus time t′ has already incurred a latency of t − t′. Thus,

the event (say e) with earliest stimulus time is the one with

highest as-yet incurred latency. Scheduling any event other

than e only serves to increase the total latency of e, and hence

the worst-case system latency.

We find that in practice, stimulus time scheduling also works

very well in multi-node deployments. It does not require global

knowledge that can be difficult to identify and maintain, but

is necessary for optimal multi-node scheduling for worst-case

latency. Crucially, we will see in Section VI-A that stimulus

time scheduling can be implemented very efficiently, with

constant time event enqueue and dequeue.

IV. Mace: Maximum Cumulative Excess

We now present Mace, our proposed cost metric for an EPS.

We assume the use of stimulus time scheduling in the EPS

(Section VII-A discusses how this assumption can be relaxed).

Recall that every subinterval tp is associated with Ci · w

cycles of CPU capacity on node Ni. Further, assuming a perfect

upstream, each subinterval is associated with Li,p cycles of

work to be performed. We define ideal excess for subinterval

tp as the excess cycles of work assigned to tp beyond the CPU

capacity (Li,p − Ci · w).

Excess work beyond the CPU capacity for a subinterval,

will spill over to the next subinterval. The cumulative excess

(CE) for a node at subinterval tp is the cumulative amount of

pending cycles of work associated with subinterval tp in the

perfect upstream case. We formalize this concept below.

Definition 8 (CE). Cumulative Excess (CE) of a node Ni is a

time-series CEi,1...d whose value CEi,p at each subinterval tp

is defined iteratively as follows: CEi,0 = 0;

CEi,p = max{0,CEi,p−1 + Li,p − Ci · w} ∀1 ≤ p ≤ d

In other words, CE tracks the cumulative pending work

over the DLTS and gets reset to 0 when there is no excess. It

reflects the amount of work that node Ni would be “behind” at

subinterval tp if the load imposed by Ni were the node DLTS.

It is important to note that we use DLTS (which is based on

the perfect upstream assumption) to compute CE—thus, CE

does not (by design!) refer to the actual overload experienced

by the node during operation.

Figures 3(b) and 3(c) illustrate the relationship between

DLTS, CPU capacity, and CE for 3 nodes. For example, in case

of N2, we have CE2,1 = CE2,0+L2,1−C2 ·w = 0+3−2 = 1, while

CE2,2 = CE2,1+L2,2−C2 ·w = 1+6−2 = 5. In other words, N2

has 5 cycles worth of work associated with subinterval t2, and

will need CE2,2/C2 = 5secs to process this old work before it

can process newer events associated with the next subinterval1.

We now formalize the notion of maximum cumulative excess.

Definition 9 (Mace). Mace is a time-series Mace1...d whose

value Macep at each subinterval tp is the greatest cumulative

excess (normalized by node CPU capacity) across all nodes

for that subinterval, i.e., Macep = maxNi∈N CEi,p/Ci. The

overall worst-case Mace (MaceWC) is the greatest Mace

across subintervals, i.e., MaceWC = maxtp∈τMacep.

Observe that Mace is a deterministic function of the CPU

capacity and DLTS of all nodes. In Figure 3(c), we see that

the Mace time-series is {Mace1 = 1,Mace2 = 5,Mace3 =

3,Mace4 = 2,Mace5 = 4}, while MaceWC = 5.

A. On MaceWC and Worst-Case Latency

Surprisingly, it turns out that MaceWC computed using DLTS

is provably almost equal to the actual worst-case latency

LatWC experienced by the distributed EPS during operation,

regardless of the actual loads imposed by individual operators

and nodes at runtime. The following theorem formalizes this

relationship. The proof (in Section V) is interesting in and

of itself and provides fundamental clarity to the subtle inter-

node and inter-operator interactions in an EPS. A stronger

version extending the relation beyond worst-case (to averages

and quantiles across time) is also covered in Section V.

Theorem 2 (MaceWC ≈ LatWC). Given an EPS which executes

the query graph G according to stimulus time scheduling, and

assuming that the clocks at all nodes are synchronized,

MaceWC ≤ LatWC ≤ MaceWC + w + ǫ

where ǫ is a small number (see proof in Section V for details).

1Note that processing the new events earlier is worse for latency, because
older events are delayed even longer.

We now develop some intuition behind this result, for a

simple example scenario. Assume that there are three nodes

(N1,N2,N3) and three operators (O1,O2,O3) in the EPS, with

each operator Oi assigned to node Ni as in Figure 3(a). Let the

CPU capacity of each node be Ci = 1 cycle per second, and

the subinterval width be w = 2 seconds. Thus, the available

CPU at each subinterval is Ci · w = 2 cycles. The DLTS and

CE of each node are shown in Figures 3(b) and 3(c).

For subinterval t2, note that the cumulative excess (CE) for

nodes N1, N2, and N3 are 2, 5, and 3 cycles respectively. Thus,

N2 has the maximum CE of Mace2 = CE2,2/C2 = 5 seconds.

Let an event e arrive from outside at the end of subinterval

t2 (i.e., stimulus time is t3). Figure 3(d) shows the progress

of event e through the operators. We consider two phases

separately (since Ci = 1, we drop this term below for clarity):

N2 and upstream node N1: Event e will normally get

processed at N1 and reach N2 at time t3 + CE1,2. In general,

if there were more nodes upstream, e will reach N2 at time

≤ t3 + CE2,2 since CE2,2 ≥ CE∗,2. Further, due to stimulus

time scheduling, we know that as long as the e reaches N2

at or before t3 + CE2,2, it will get processed at N2 at time

t3 + CE2,2 = t3 + 5. This is because scheduling at N2 depends

only on e’s stimulus time and not the time when e actually

reaches N2.

N2 and downstream node N3: Event e will get processed at

N2 and reach N3 at time t3+CE2,2 = t3+5. Since CE2,2 ≥ CE∗,2,

we know that at N3 (and further downstream nodes if any), this

event is guaranteed to have the earliest stimulus time (because

CE2,2 is maximum). Due to stimulus time scheduling, e will

get processed at N3 immediately and will be output at time

t3 + CE2,2 = t3 + 5. We see that e’s latency (which is LatWC)

of 5 seconds corresponds exactly to CE2,2 and MaceWC.

V. Mace’s Equivalence toMaximum Latency

We prove that using DLTS and stimulus time scheduling,

MaceWC equals LatWC to within a small margin of error. The

main theorem is stated and proved in Section V-A, followed

by a stronger version of the theorem which can be proved in

a similar manner. Table I summarizes our notations. We make

the following assumptions:

(A-1) Without loss of generality, t1 = 0 and Ci = 1 ∀i. Hence,

all loads can be described directly in time units. During

each subinterval, a node may perform w units of work.

(A-2) For each input source, within each subinterval tp, we

assume that events have a constant inter-arrival time α,

where the first event arrives at tp, and the last event

arrives at tp+1 − α.

(A-3) Within a particular subinterval, each operator O j re-

quires a constant amount of load (ω j,q cycles) to process

each event from its qth input queue, which belongs to

that subinterval.

Before stating the theorem, we introduce two lemmas:

Lemma 1 (Single Node Case). Given the most latent event e

with stimulus time tp and latency Latp in a system with one

node Ni,

0 ≤ Latp ≤ CEi,p−1 + Li,p.

Also, if CEi,p−1 + Li,p − w > 0,

CEi,p−1 + Li,p − w ≤ Latp.

Proof: (Sketch) We explain the bounds in the lemma:

Lower Bound If CEi,p−1 + Li,p − w > 0, then we are unable

to fully process the input during tp. This implies that the most

latent event, if it arrived at the last possible instant, could

have as little latency as the amount of work left after tp is

over. This quantity is the previous excess (CEi,p−1), plus the

time to process the new load (Li,p), minus the processing time

(w) consumed during the current time interval.

Upper Bound In the worst case, the most latent event is

guaranteed to have latency less than the latency it would have

had if all input events belonging to tp arrived at tp. In this

situation, the latency would be the time it takes to process the

previous excess (CEi,p−1), plus the time to process the new

load (Li,p).

Lemma 2 (Bottleneck Lemma). Given a particular subinter-

val tp, an operator O j, the only operator running on node

Ni, with q input queues and their associated load per event

quantities (see A-3) for that subinterval ω j,1...q, if the operators

which feed and consume events from O j all reside on nodes

with CE ≥ CEi,p, then O j introduces at most:

λ =
∑

c=1...q ω j,c

additional latency to the most latent event belonging to tp.

Proof: (Intuition) Due to the constant inter-arrival time

assumption (A-2), on an individual input queue basis, work

associated with processing that input is equally spread across

each time interval. If this work was scheduled to execute in

a perfectly spread out fashion, no additional latency would be

introduced by O j since (1) any upstream operator (all residing

on nodes with CE ≥ CEi,p) would feed work to O j no faster

than O j could process it, and (2) all downstream operators

(also all residing on nodes with CE ≥ CEi,p) would be unable

to process their load faster than O j could deliver work.

However, since events are scheduled to execute at discrete

times, and fully utilize the processor while executing, events

may execute till a slightly later time than they would in the

more continuous model described above. More specifically,

in the worst case, each input other than the one with the

most latent event e might process an event just prior to the

proper processing time for e. Each of these events would then

monopolize the CPU while being processed, following which

event e gets processed. This sequence of actions results in

the bound in the proof. Note that this sum λ is a very small

number, as the typical time for an operator to process an event

is on the order of microseconds.

A. Statement and Proof of Theorem 2

Given an EPS which executes the query graph G according to

stimulus time scheduling, and assuming that the clocks at all

nodes are synchronized,

MaceWC ≤ LatWC ≤ MaceWC + w + ǫ.

Symbol Description Reference

{N1, . . . ,Nn} Set of nodes (machines) in the EPS Def. 1

{O1, . . . ,Om} Set of operators in the EPS Def. 1

Ci Available CPU cycles per time unit, on node Ni Def. 1

{t1, . . . , td } Division of time into segments Sec. III-A

Lat1...d Max. latency across events in each subinterval Def. 4

LatWC Worst-case latency in EPS Def. 4

σ j,1...q Selectivity of operator O j , qth input queue Sec. III-B

ω j,1...q Cycles/event imposed by operator O j , qth input Sec. III-B

l j,1...d Deterministic Load Time-Series for operator O j Def. 5

Li,1...d Deterministic Load Time-Series for node Ni Def. 6

CEi,1...d Cumulative Excess (cycles) time-series for node Ni Def. 8

Mace1...d Maximum cumulative excess time-series Def. 9

MaceWC Worst-case Maximum cumulative excess Def. 9

TABLE I
Summary of main terminology.

where ǫ is a small number which will be precisely specified

later in the proof.

Proof: (By Contradiction) Assume the existence of an

event with maximum latency LatWC s.t. LatWC < MaceWC or

LatWC > MaceWC + w + ǫ.

Part 1 (Assume that LatWC < MaceWC)

Let Ni to be the node with highest Mace (MaceWC). Further,

assume that all other nodes process their input instantly, and

therefore introduce no latency beyond that introduced by Ni.

We may now treat the EPS as a single-node system, where

all operators on other nodes have been moved to Ni and have

zero latency. Note that the latency experienced by any event

on such a system will at most be equal to the worst-case

latency on the original multi-node system, although MaceWC

is unchanged. As a result, a contradiction to our assumption

(LatWC < MaceWC) on this system implies a contradiction on

our original multi-node EPS.

Let e be the event with stimulus time tp = time of worst-case

Mace with highest latency Latp:

CEi,p = max{0,CEi,p−1 + Li,p − w} (by Definition 8)

Therefore, if (CEi,p−1 + Li,p − w) ≤ 0 then

CEi,p = 0, Latp ≥ 0 =⇒ Latp ≥ CEi,p = MaceWC

Otherwise, if (CEi,p−1 + Li,p − w) > 0 then

CEi,p = CEi,p−1 + Li,p − w,

Latp ≥ CEi,p−1 + Li,p − w (by Lemma 1) =⇒

Latp ≥ CEi,p = MaceWC

Combining the above with Definition 4, we get:

LatWC ≥ Latk ≥ MaceWC

A contradiction has been reached.

Part 2 (Assume that LatWC > MaceWC + w + ǫ)

Let e be the event with maximum latency LatWC >

MaceWC + w + ǫ. Let tp be the stimulus time for e. Also,

let Ni be the node with maximum CE at time tp. If all nodes

other than Ni introduced no latency (the operators had zero

latency), this would be equivalent to a single-node EPS with

node Ni and with worst-case latency at most that of the original

system. For this alternate system, we have

LatWC ≤ CEi,p−1 + Li,p (by Lemma 1) =⇒

LatWC − w ≤ CEi,p−1 + Li,p − w =⇒

LatWC − w ≤ max{0,CEi,p−1 + Li,p − w} =⇒

LatWC − w ≤ CEi,p (by Definition 8) =⇒

LatWC ≤ CEi,p + w

Note that since MaceWC ≥ CEi,p, we have

LatWC ≤ MaceWC + w.

We now begin a process of “activating” nodes other than Ni

by allowing them and their associated operators to contribute

to worst-case latency. To avoid a contradiction, the accumu-

lated latency from activating these nodes must exceed some

small value ǫ. Therefore, if we specify a small value ǫ which

is guaranteed to bound this added latency, we have reached a

contradiction.

Consider that, without affecting latency, we may treat all

operators on a given node as a single operator with many

inputs and many outputs. In this fashion, this “fused” operator

may be considered a single operator running exclusively on its

associated node. Note that this is a precondition for Lemma 2.

Now, consider activating the nodes in descending CE order.

Note that this implies that at the time a node is activated, all

inputs and outputs go to nodes with equal or higher CE, and

Lemma 2 informs us that activating the node may not introduce

more than some small amount (λ) of latency. This amount is

accumulated as all nodes are activated, and ǫ assigned the

result. We have reached a contradiction.

B. Estimating Latency Averages/Quantiles

Theorem 3 (Stronger Version of Theorem 2). Given an EPS

which executes a query graph G according to stimulus time

scheduling, assuming synchronized clocks at all nodes, and

assuming that Latp is the highest latency of any output with

stimulus time tp,

Macep ≤ Latp ≤ Macep + w + ǫ.

Proof: Omitted for brevity. Since CE is self-containing

(i.e., each subinterval incorporates the effects of earlier subin-

tervals), the proof uses a similar reasoning as in Theorem 2.

In other words, if we divide output events into sets based

on the subinterval they belong to, we can accurately estimate

the maximum latency for each set (subinterval). Thus, we can

estimate the average and quantiles (across time) of maximum

latency. Note that if stimulus times are unique, as w gets

smaller, the above estimates of average and quantiles (across

time) of maximum latency converge to the actual average and

quantiles (across events) of latency.

VI. Implementation Details

A. Stimulus Time Scheduling

An EPS scheduler typically runs on a single thread per CPU

core, and chooses operators for execution on that core. When

an event enters the EPS from outside, we attach the current

wall-clock time to the event as its stimulus time. When an

operator receives an event or punctuation with stimulus time

t, any output produced by the operator as a consequence is

attached a stimulus time of t. Note that stimulus times are

retained without modification across machine boundaries.

Efficient Implementation The naive method of achieving

stimulus time scheduling is to use priority queues (PQs)

ordered by stimulus time, to implement event queues. This

gives O(lg n) enqueue and dequeue, where n is the number of

events in the queue. We reduce the cost to a constant using

the following technique. Each event queue is implemented

as a collection of k FIFO queues, where k is the number of

unique paths from this queue (edge) to the sources in the query

graph. Note that k is at most a small constant known at plan

compilation time. Event enqueue translates into an enqueue

into the correct FIFO queue (based on the event’s path), while

dequeue is similar to a k-way merge over the head elements of

the k FIFO queues. Both are O(lg k) operations using a small

tree and min-heap respectively. Correctness follows from the

fact that operators process input in stimulus time order, causing

each FIFO queue to always be in stimulus time order.

The scheduler maintains a priority queue (ordered by earli-

est event stimulus time) of active operators. When invoked, the

scheduler schedules the operator having the event with lowest

stimulus time in its queue. Batching of events amortizes the

scheduler cost incurred at the time of selecting an operator for

execution, without causing our latency estimate to diverge by

a significant amount.

B. Computing Statistics

We first derive the external event arrival time-series; this can

be obtained by observing event arrivals in the past or may be

inferred based on models of expected input arrival distribution.

We also maintain statistics for each operator O j in the query

graph as follows. Operator cycles/event (ω j) is determined by

measuring the time taken for each call to the operator and num-

ber of events processed during the call. Scheduling overhead is

incorporated into the operator cost. Operator selectivity (σ j) is

measured by maintaining counters for the number of input and

output events. Note that all our parameters are independent

of the actual operator-node mapping and node CPU cost,

which makes them particularly suited to operator placement,

system provisioning, and user reporting. We cover the details

of estimating operator parameters for unseen dataflow plans

(during plan selection) in Section IX-A.

C. Computing DLTS and Mace

Let us first assume that each operator has only one input

queue. For each operator O j, we first derive the input stimulus

time-series A j,1...d — the value A j,p at each subinterval tp

is simply the number of input events to O j that belong to

(i.e., have stimulus time in) subinterval tp. We compute A j,1...d

in a bottom-up fashion starting from the source operators.

For a source operator Os, As,1...d is simply the corresponding

external event arrival time-series. For an operator O j whose

upstream parent operator is O j′ , we have A j,1...d = A j′,1...d ·σ j′ .

Now, the DLTS of any operator O j is easy to calculate as

l j,1...d = A j,1...d ·ω j. Once we have the DLTS for each operator,

CE and Mace are easy to compute by directly applying

Definitions 6, 8, and 9. The overall complexity of these

computations is O(d · m), for d subintervals and m operators.

In case of an operator with multiple inputs, statistics are

maintained for each input separately; we use a function (usu-

ally a linear combination) to derive the DLTS of the operator

and the input stimulus time-series for its child operators.

Note that the model presented here assumes, for each

operator, linearity in both the output rate and CPU load relative

to input rates. Clearly this is a poor choice for some opera-

tors (e.g. joins can be quadratic [32]). For these operators,

more complex models involving non-linear terms are needed.

Fortunately, since we are basing the fitting of these models

on a great deal of input data, there is no risk of overfitting.

Note that assigning these models to relational operators is a

well-researched area in database query optimization.

VII. Extensions

A. Incorporating Other Scheduling Policies

We use stimulus time scheduling to establish the equivalence

of Mace to latency. While this scheduling policy is very

attractive (as discussed in Section III-D), we recognize that

an EPS may wish to use different policies to achieve other

system properties (e.g., taking operator priorities into account).

We can extend the Mace-Lat relationship so that: (1) we

enforce stimulus time scheduling only across subintervals, i.e.,

all events in subinterval ti are scheduled before any event

in subinterval t j, ∀ j > i; (2) for events within the same

subinterval, we can use any scheduling policy.

In this case, Lemma 2 guarantees a higher λ (and hence

ǫ). Specifically, we have λ =
∑

c=1...q Li,p. Thus, by making

the subinterval width w larger, we can incorporate other

scheduling policies. In practice, no scheduling policy would

delay event processing beyond some reasonable time, so w

does not have to be arbitrarily large. The tradeoff is a looser

bound for latency. Thus, w serves as a tuning parameter

to balance latency predictability against any advantages that

another scheduling policy might give the EPS.

B. Handling Low-Bandwidth & High-Latency Network Links

In this paper, we have focused on EPSs running inside data

centers with high-bandwidth and low-latency interconnects.

Our experiments in Section VIII using a real data center

deployment validate this assumption in practical scenarios. We

now extend our solution to relax these assumptions.

Link Capacity Link capacity is just another resource that

introduces latency due to queuing of events. In network-

constrained scenarios, we treat link capacity (bytes/sec) like

CPU capacity, and take into account how load (bytes) accu-

mulates at network links when computing Mace. Thus, the

techniques work unmodified, except for the addition of new

nodes corresponding to network links in the query graph.

Propagation Delay Refer to Definition 1. Let the machine

graph be a graph over S; it is derived from the query graph

by merging all operators S i on the same machine Ni into one

vertex. We set the weight of an edge from S i to S j in the

machine graph to the propagation delay (PD) between nodes

Ni and N j. For each machine N j, we pre-compute P
j

min
and

P
j
max as the minimum and maximum cost paths, over all paths

in the graph from a source to a sink, that contain vertex S j.

During estimation, we calculate Mace for each machine using

our techniqes, taking PD into account when computing DLTS.

Fig. 4. Estimated vs. actual LatWC, increasing
training size.

Fig. 5. Latency and Mace for the entire time-series. Fig. 6. Latency and MaceWC for different data
chunks.

The adjusted Mace (called Mace′) for a node N j has bounds

Mace + P
j

min
≤ Mace′ ≤ Mace + P

j
max. These per-machine

Mace′ bounds are used to modify the LatWC bounds of Thm. 2;

the lower bound for LatWC uses the maximum (across nodes)

lower bound of Mace′, while the upper bound for LatWC uses

the maximum (across nodes) upper bound of Mace′.

VIII. Evaluation

We now show that despite using a seemingly simple system

model, we achieve highly accurate latency estimation results

in practice. This validates our provable result for real datasets

using a commercial EPS running in a multi-node data center.

Setup We use StreamInsight [5] to run all experiments. We

modified the EPS as described in Section VI. Single-node

experiments (the default) were performed on a 3.0GHz Intel

Core 2 Duo PC with 3GB of main memory, running Windows

Vista. Multi-node experiments were performed on a cluster of

13 2.33GHz Intel Xeon machines with 4GB memory, running

Windows Server 2008 and connected over Gigabit Ethernet.

Event Workload We use real Web clickstream data (see

Example 1) as input to our experiments. Each event is a report

including the timestamp of the click, source and destination

URLs, and other information including user demographics

(gender, age, etc.). The data is partitioned by source URL

domain, giving five datasets each with around 200k events. In

order to show the effects of different event arrival patterns,

we feed events to the system using a load generator motivated

by the popular On-Off model [3]. Briefly, events are generated

as a sequence of high and low load periods. The ratio between

average high load and average low load is set to 100 (to model

burstiness), while the ratio between the average durations of

high and low load is set to 0.33. The duration of each period

is drawn from an exponential distribution. During each period,

events are generated with exponentially distributed inter-arrival

times. Results using the original arrival patterns directly were

identical and slightly less insightful; they are omitted for space.

Query Workload We use a set of one to five queries. Each

query outputs results for a particular domain, indicating the

percentage of male and female visitors. We use a sliding

window with results reported periodically. The query has 14

operators, including projects, joins, selects, windowing, input,

output, and custom operators such as those to extract parts

of the URL and perform user-defined computations. Such a

query is useful for demographic targeting in Web advertising.

1) Varying Amount of Training Data We run a single query

with 14 operators over a small number of events (training data)

to estimate operator statistics of selectivity and cycles/event.

We then use these statistics to compute MaceWC for a dataset

of 75k events, for a particular event arrival pattern generated by

our workload generator. Subinterval width is set to 1 second.

We compare our MaceWC to the measured worst-case latency

(LatWC) incurred by actually executing our EPS for that event

workload. Figure 4 shows the quality of our cost estimate as

we increase the number of events used to compute statistics.

We see that with as few as 6k events (8% of total events), our

computed metric of MaceWC estimates LatWC with an error of

less than 3%.

2) Estimating Latency Across Time We use the same

setup as before and first compute the operator statistics. We

then compute the DLTS for a generated event arrival pattern,

which is used to compute the entire Mace time-series. We then

execute the query to measure the actual latency for each output

event. In Figure 5, we plot both the Mace time-series and the

measured latencies as a function of event stimulus time. We

see that latency rises and falls with time, but Mace for each

subinterval tracks the highest latency within that subinterval

very closely. For simplicity, we will focus on worst-case Mace

(MaceWC) for the remaining experiments.

3) Predicting MaceWC for Different Data Chunks We split

the event dataset into three parts corresponding to different

time chunks. We use the first chunk to compute operator

statistics. We then compute MaceWC assuming a different

event arrival pattern applied to each of the three chunks.

Figure 6 shows the computed MaceWC and the actual measured

latency variations with time, for each portion of the dataset. We

see that using our techniques, MaceWC estimates worst-case

latency accurately (within 4%) for different portions of the

workload experiencing different event arrival patterns, given

knowledge of only the original operator statistics and the

expected event arrival workload.

4) Scale-Up to Multiple Operators We increase the number

of operators running on a single node from 14 to 70, by

running multiple query instances. Each query uses a dataset

for clicks from a different domain, and a different event

arrival pattern. We divide the dataset into two portions, derive

operator statistics using the first portion, and make estimations

for the second portion. Figure 7 reports the estimated and

actual worst-case latencies as we increase the number of

Fig. 7. Increasing number of
simultaneous CQs.

Fig. 8. Increasing number of
nodes in cluster.

Fig. 9. Three CQ plans (only 5 of 14
operators shown for brevity).

Fig. 10. Estimated vs. actual latency,
increasing training size.

operators. Even with 70 operators, our estimate of worst-case

latency closely matches the measured value.

5) Scale-Up to Multiple Nodes We increase the number

of nodes in the cluster from 4 to 13. For each setting, we

choose a random partitioning of 42 operators (running queries

on the real dataset) across the machines. We first estimate

worst-case latency for that partitioning using our technique,

and then measure the actual worst-case latency on the cluster.

Figure 8 shows that our estimate of worst-case latency closely

matches the measured value (with less than 3% error) even in

the highly distributed scenario.

IX. Applications of Latency Estimation

We discuss how Mace can be used for the applications

of plan selection and operator placement. We assume that

latency is the metric to be minimized during selection and

placement. It is important to note that if the EPS wishes to

optimize for other metrics in combination with latency (e.g., a

combination of throughput, resiliency, and latency), this could

easily be incorporated during the optimization process. Other

applications such as admission control, system provisioning,

and user reporting are covered in our technical report [13].

A. Plan Selection

Our goal during plan selection is to choose the plan with

lowest worst-case latency. Based on Theorem 2, we can

formulate plan selection as the optimization problem: Find

the plan that minimizes MaceWC. We can formulate similar

problems for other latency goals too, e.g., Find the plan that

minimizes average or 99th percentile (across time) of Mace.

Parameter Estimation In order to predict latency for a

plan, we need to estimate selectivity and cycles/event for each

operator. One alternative is to adapt techniques from traditional

databases, such as building statistics on incoming event data

and estimating statistics using knowledge of operator behavior.

For example, we can estimate the selectivity of a filter using a

histogram on the column being filtered. Another approach that

works well in an EPS is to actually execute the plan over a

small subset of incoming data, and measure the statistics. Our

experiments below show that the latter approach works very

well for plan selection, finding the best plan using a sample

of just 500 events (< 1% of the total events).

Navigating the Search Space We have a search space of

CQ plans obtained using techniques such as query rewriting,

reordering joins and predicates, operator fusing (replacing

inter-operator queues with function calls), etc. Navigating this

search space can use traditional schemes like branch-and-

bound or dynamic programming [27].

We can estimate the “goodness” of a plan by assuming

a single node2 and computing MaceWC using the techniques

described in Section VI, in time O(d ·m). Note that due to the

long-running nature of CQs and the potentially high reward of

good plans, an EPS can adopt an iterative approach of periodic

re-optimization, similar to techniques proposed for traditional

databases [25]. Re-optimization can be performed when the

statistics have been detected to have changed significantly

(e.g., using techniques proposed in [22]) — for instance, at

the re-optimization points indicated in Figure 1.

A.1) Evaluation of Plan Selection

We wish to validate our hypothesis that operator statistics

derived using a small portion of events can be used for accurate

latency prediction by an optimizer. We use a single machine in

conjunction with synthetic data (75k events) on stock trades.

Each event contains a price, volume, and review. Prices are

modeled as a random walk with 80% probability of increasing,

while volumes are drawn from a truncated uniform random

distribution. We use the following CQ: Apply a user-defined

select (UDS) to the reviews of pairs of falling trades (i.e.,

trades with price lower than the immediately preceding trade)

within a one minute window, which have similar volumes.

The optimizer explores three alternate CQ plans for this

query (see Figure 9). It first measures statistics using a small

sample of events, and then computes MaceWC for comparing

the plans. In Figure 10, we show MaceWC for each plan, as

we increase the event sample size. We also execute each of the

alternate plans and show the measured worst-case latency in

the figure. We note that: (1) using just 500 events to compute

statistics gives enough accuracy to differentiate between the

plans, and (2) the best plan is one where the expensive filter

is neither at the source nor at the sink of the CQ.

B. Operator Placement

Given a query graph G, we wish to find an assignment

of operators in G to nodes, that minimizes worst-case la-

tency. As before, we can formulate operator placement as

an optimization problem, e.g., “Find the operator placement

that minimizes MaceWC”. Operator placement is a dominant

2While the best plan could depend to a limited extent on the operator
placement in a distributed setting, we treat these independently for simplicity,
and discuss operator placement in Section IX-B.

Mace-HC(time-budget b) begin1

s← CurrentTime() ; // start time2

m← ∞ ; // Worst-case Mace3

while CurrentTime() − s < b do4

p← random placement;5

Hill-climb p to local optimum;6

m′ ← MaceWC(p);7

if m′ < m then m← m′;8

if insignificant improvement for many9

iterations then break;

return m;10

end11

Fig. 11. Operator placement algorithm Mace-HC.

parameter value

independent sources 5

Prob. operator is anti-correlated 0.1

Ratio avg. rate high / low load 10

Ratio avg. duration high / low load 0.25

Skew for #ops per independent source 1.0

Min/Max operator selectivity 0.2/2

Skew for operator selectivity 1.5

Number of selectivity ranges 20

Avg. system load (idealistic) 0.75

Max. #hill-climb steps per iteration 10, 000

Fig. 12. Summary of parameters. Fig. 13. Mace-HC vs. other placement schemes.

[33, 34] form of query optimization in an EPS.

We can show that operator placement to minimize MaceWC

is NP-hard, by a reduction from vector scheduling [14] (our

technical report [13] has the details). However, it turns out

that a simple probabilistic placement algorithm that assigns

each operator uniformly at random to a node achieves a

very good approximation ratio, is very fast, and does well

when there are many more operators than nodes. Based on

this observation, we propose an algorithm called Mace-HC

(see Figure 11) that repeatedly performs randomly seeded

hill-climbing until a time budget is exhausted or there is

insignificant improvement after many iterations. Since the goal

is to minimize MaceWC, each hill-climbing step starts from

a random operator placement and greedily moves operators

away from the bottleneck node (one with the highest Mace),

such that overall MaceWC improves.

Runtime Complexity Assume that we have m operators, n

nodes, and d subintervals. Random placement has complexity

O(m). The complexity of hill climbing depends on the number

of successful operator migration steps. During each step, it

costs O(n · d) to find the bottleneck node and the target node.

In the worst case, the algorithm has to try all operators on the

node, giving a total runtime complexity of O(m · n · d).

B.1) Evaluation of Operator Placement

We evaluate our placement algorithm that directly minimizes

worst-case latency, against the following:

• Baseline, a simple randomized algorithm that places oper-

ators uniformly at random without hill-climbing. Baseline

was run 10,000 times to obtain the distribution of runtime

and result quality for simple random operator placements.

• Random, which is an advanced version of Baseline. It per-

forms several rounds of random placements and remembers

the best placement (with lowest MaceWC) seen so far.

• Corr, the load correlation based placement algorithm [33].

It seeks to minimize load variance on each node and

maximize correlation of the load time-series between dif-

ferent nodes, while balancing average load across nodes.

Note that Corr optimizes for a different metric; thus, the

primary intention of comparing to Corr is to validate our

expectation that by not optimizing directly for latency, we

may produce placements that are suboptimal for latency.

Setup We simulate the event arrival pattern at each operator,

and only compare the placement algorithms (run at a central

server) in terms of convergence speed and the MaceWC value

of the best placement found. MaceWC is a reasonable basis for

comparison since it was shown to be equivalent to worst-case

latency. We simulate up to 400 nodes in our experiments. Our

server is an Intel Core 2 Duo 2.4GHz PC with 2GB of main

memory running Windows Vista.

Workload We generate multiple event sources as in Sec-

tion VIII. Operators are assigned to the sources using a

Zipf distribution with parameter 1.0. To model the effect of

upstream operators, we multiply load by an operator-specific

selectivity factor, drawn uniformly from a range that is chosen

out of several predefined ranges using a Zipf distribution.

The default parameters are shown in Figure 12. To make the

algorithms comparable, we give them the same time budget,

determined by the runtime of Corr until an average load

correlation of θ = 0.8 (used in [33]) is reached.

Increasing Network Nodes and Operators We increase the

number of nodes and operators, and compare the algorithms.

Scale factor X corresponds to 20·X nodes and 200·X operators.

Figure 13 shows MaceWC for each algorithm, for scale factors

1, 5, and 20. We see that Baseline and Random perform badly.

Corr is better than the simpler schemes, while Mace-HC gives

the lowest worst-case latency.

Runtime and Result Quality We studied how fast Mace-

HC converges to a good operator placement, and found that

across the various scale factors, Mace-HC quickly converges

and produces low-latency placements at least an order of

magnitude faster than simpler schemes (see [13] for details).

X. RelatedWork

Cost Metrics Many cost metrics have been proposed in the

past for event-based systems. Intermediate tuples [19] tries to

find a plan that reduces the number of tuples flowing between

join operators. Feasible set size [34] tries to maximize the

set of input rate combinations that do not result in overload.

Load correlation [33] tries to reduce average latency indirectly

by minimizing load variance and maximizing load correlation

across nodes. Other metrics proposed include resource us-

age [10] and output rate [32, 6]. SBON [26] and SAND [4] use

network bandwidth-delay product as the metric. We observe

that each solution excels in particular areas.

On the other hand, Mace has the unique property of being

a provably accurate estimator of latency, an intuitive and

significant user metric for many applications. We show how

our solution can be used as a cost model for plan selection,

placement, admission control, provisioning, and user reporting.

Interestingly, the above systems can leverage Mace to either

incorporate system latency into their optimization goal, or

provide accurate latency reporting alongside their own metric.

Queuing Systems Queuing theory [20] has provided valu-

able insights into scheduling decisions in multi-operator and

multi-resource queuing systems, but results are usually limited

by high computational cost and strong assumptions about

underlying data and processing cost distributions. We make no

assumptions about the underlying distribution, with a provable

latency result while remaining in the discrete domain, which

makes our solution efficient and practical to implement.

Traditional Solutions Query optimization in databases is

a well-studied problem [25, 27]. In addition, there have been

studies on load balancing in traditional distributed and parallel

systems [18, 23]. These techniques do not carry over directly

to event processing [1, 7, 15], because our queries are long

running, disk I/O is not the bottleneck, operator scheduling

is different, there is greater value to periodic re-optimization,

and per-tuple load balancing decisions are too costly.

Scheduling and QoS Classic scheduling schemes such

as FIFO and SJF generally do not focus on the problem

of continuously scheduling rapidly arriving short jobs to

achieve predictable and low worst-case latency. Some pro-

posed scheduling techniques for EPSs [8, 12] may have a

side-effect of improving latency. Scheduling schemes in real-

time and main-memory databases [2, 21, 24] are related, but

deal with a different scenario and do not usually focus on

worst-case latency. QoS-aware load shedding [29] has been

proposed, while Tu et al. [31] handle QoS using adaptation and

admission control. Our work is complementary — we propose

a cost estimation solution with a provably close relation to

latency, and use it to solve important applications.

XI. Conclusions

Latency is a metric that is significant to users in many com-

mercial real-time applications. In this paper, we first suggest

a stimulus time based scheduling policy that works very well

for such applications. We propose a new latency estimation

technique that produces a metric called Mace. We show that

Mace is provably equivalent to maximum system latency

in a complex distributed event processing system. Mace is

intuitive, easy to compute, and applicable to problems such as

optimization, placement, provisioning, admission control, and

user reporting of system misbehavior. Experiments using real

datasets and a cluster deployment with StreamInsight validate

our ability to estimate latency at high accuracy, and the use

of Mace in applications such as plan selection and distributed

operator placement. Finally, we note that Mace’s relation to

latency is more generally applicable to any event-queue-based

distributed workflow with control over scheduling.

References

[1] D. Abadi et al. The design of the Borealis stream processing
engine. In CIDR, 2005.

[2] R. Abbott and H. Garcia-Molina. Scheduling real-time transac-

tions: A performance evaluation. ACM TODS, 1992.
[3] A. Adas. Traffic models in broadband networks. IEEE Comm.,

1997.
[4] Y. Ahmad and U. Çetintemel. Network-aware query processing

for stream-based applications. In VLDB, 2004.
[5] M. Ali et al. Microsoft CEP Server and Online Behavioral

Targeting. In VLDB, 2009 (demonstration).
[6] A. Ayad and J. Naughton. Static optimization of conjunctive

queries with sliding windows over infinite streams. In SIGMOD,
2004.

[7] B. Babcock et al. Models and issues in data stream systems.
In PODS, 2002.

[8] B. Babcock et al. Chain: Operator scheduling for memory
minimization in data stream systems. In SIGMOD, 2003.

[9] M. Balazinska et al. Fault-tolerance in the Borealis distributed
stream processing system. In SIGMOD, 2005.

[10] M. Cammert et al. A cost-based approach to adaptive resource
management in data stream systems. IEEE TKDE, 2008.

[11] D. Carney et al. Monitoring streams — a new class of data
management applications. In VLDB, 2002.

[12] D. Carney et al. Operator scheduling in a data stream manager.
In VLDB, 2003.

[13] B. Chandramouli et al. Accurate latency estimation in a dis-
tributed event processing system. Technical report, Microsoft
Research (MSR-TR-2010-146).

[14] C. Chekuri and S. Khanna. On multi-dimensional packing
problems. In SODA, 1999.

[15] C. Cranor et al. Gigascope: A stream database for network
applications. In SIGMOD, 2003.

[16] Y. Cui, J. Widom, and J. Wiener. Tracing the lineage of view
data in a warehousing environment. ACM TODS, 2000.

[17] G. DeCandia et al. Dynamo: Amazon’s Highly Available Key-
Value Store. In SOSP, 2007.

[18] M. Garofalakis and Y. Ioannidis. Multi-dimensional resource
scheduling for parallel queries. In SIGMOD, 1996.

[19] L. Golab and M. T. Ozsu. Processing sliding window multi-
joins in continuous queries over data streams. In VLDB, 2003.

[20] D. Gross and C. Harris. Fundamentals of Queueing Theory.
Wiley-Interscience, 1998.

[21] J. Haritsa, M. Livny, and M. Carey. Earliest deadline scheduling
for real-time database systems. In IEEE RTSS, 1991.

[22] D. Kifer, S. Ben-David, and J. Gehrke. Detecting change in
data streams. In VLDB, 2004.

[23] D. Kossmann. The state of the art in distributed query process-
ing. ACM Computing Surveys, 2000.

[24] S. Listgarten and M. Neimat. Modelling costs for a MM-DBMS.
In RTDB, 1996.

[25] V. Markl et al. Robust Query Processing Through Progressive
Optimization. In SIGMOD, 2004.

[26] P. Pietzuch et al. Network-aware operator placement for
stream-processing systems. In ICDE, 2006.

[27] P. Selinger et al. Access path selection in a relational database
management system. In SIGMOD, 1979.

[28] U. Srivastava and J. Widom. Flexible time management in data
stream systems. In PODS, 2004.

[29] N. Tatbul et al. Load shedding in a data stream manager. In
VLDB, 2003.

[30] The Network Time Protocol. http://www.ntp.org/.
[31] Y. Tu, Y. Xia, and S. Prabhakar. Quality of service adaptation

in data stream management systems: A control-based approach.
In VLDB, 2004.

[32] S. Viglas and J. Naughton. Rate-based query optimization for
streaming information sources. In SIGMOD, 2002.

[33] Y. Xing, S. Zdonik, and J.-H. Hwang. Dynamic load distribution
in the Borealis stream processor. In ICDE, 2005.

[34] Y. Xing et al. Providing resiliency to load variations in dis-
tributed stream processing. In VLDB, 2006.

