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ABSTRACT 

Using four different benchmark sets of molecular crystals we establish the level of 

confidence for lattice energies estimated using CE-B3LYP model energies and experimental 

crystal structures. [See IUCrJ, 2017, 4, 575-587.] We conclude that they compare very well 

with available benchmark estimates derived from sublimation enthalpies, and in many cases 

they are comparable with - and sometimes better than - more computationally-demanding 

approaches, such as those based on periodic DFT plus dispersion methodologies. The 

performance over the complete set of 110 crystals indicates a mean absolute deviation from 

benchmark energies of only 6.6 kJ mol–1. Applications to polymorphic crystals and larger 

molecules are also presented and critically discussed. The results highlight the importance of 

recognizing the consequences of different sets of crystal/molecule geometries when 

comparing different methodologies, as well as the need for more extensive benchmark sets of 

crystal structures and associated lattice energies. 
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1. INTRODUCTION 

The calculation of lattice energies for molecular crystals is central to modern first-principles 

approaches to the prediction and rationalisation of their structure and important chemical and 

physical properties. As a consequence, the computation of organic crystal lattice energies with 

“chemical accuracy” has received increased attention in recent years (up to date summaries of 

the literature can be found in several recent reviews1). For some time now our own research has 

focused on a multi-faceted approach to enhancing our understanding of the interactions between 

molecules and their packing in crystals, principally through the development of new 

computational and graphical tools that can be readily applied to the analysis of experimental 

crystal structures. Elements of this approach include the now commonplace Hirshfeld surface 

analysis,2 characterisation of void space in molecular crystals,3 color mapping on molecular 

surfaces of properties derived from molecular wavefunctions,4 and the calculation of remarkably 

accurate model intermolecular interaction energies, in particular the CE-B3LYP model energies,5
 

along with a graphical representation of their magnitude in the form of ‘energy frameworks’.6 We 

have demonstrated in recent work how this combined approach considerably enhances the 

understanding of the nature of intermolecular interactions in the context of the packing of 

molecules in crystals,7 in particular their relationship with bulk mechanical properties,4b,5a,6,8 and the 

nature of host-guest interactions in clathrates of Dianin’s compound and of hydroquinone.9 In the 

course of that work we reported lattice energies for crystals of formamide, s-triazine, 

hexachlorobenzene, hexabromobenzene, Cr(CO)6 and VO(acac)2, obtained from a converged sum 

of pairwise CE-B3LYP model interaction energies. Those results compared surprisingly well 

with experimental sublimation enthalpies10 or with values obtained by Gavezzotti’s PIXEL 

method,11 prompting us to assess the reliability of these lattice energies applied to a more 

extensive set of crystal structures. 

Here we present a comprehensive, detailed and critical assessment of the performance of CE-

B3LYP lattice energies in comparison with a variety of state of the art computational approaches 

for molecular crystals, using several recently described databases of benchmark experimental 
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lattice energies, and materials ranging from noble gases to large organic molecules such as 

coronene and rubrene. Our principal goal is to establish the level of confidence that can be 

expected for lattice energies computed with the CE-B3LYP model, as well as highlight the way 

in which it can provide useful and reliable estimates for much larger molecular materials than are 

currently tractable with more rigorous computational approaches. In the process we identify 

inconsistencies with some current benchmark data, leading us to make some recommendations 

for future work of this kind. 

2. COMPUTATIONAL METHODS 

It is important to give some perspective on the computational approaches, methodologies and 

benchmarks that are relevant to our goal of making a critical comparison of CE-B3LYP model 

lattice energies with the results from more rigorous computational approaches. We identify four 

broad computational strategies to predicting lattice energies: 

• Ab initio prediction of crystal structure with one level of theory, including space group, cell 

parameters and atomic coordinates; lattice energy computed at the same – or different – level 

of theory.  

• Starting from an experimental crystal structure, cell parameters and atomic coordinates are 

optimized with one level of theory; lattice energy computed at the same – or different – level 

of theory.  

• Using known space group and fixed experimental cell parameters, atomic coordinates are 

optimized with one level of theory; lattice energy computed at the same – or different – level 

of theory.  

• Lattice energy computed using experimental crystal structures, typically with bond lengths to 

H atoms adjusted to standard neutron values.12 This is the strategy pursued in the present work. 

It should be immediately evident that any attempt at a systematic comparison with, or 

between, published lattice energies is not straightforward. Almost every set of published lattice 

energies is based on a different set of crystal structures, with the result that differences between 
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lattice energies are almost always intertwined with differences between chosen geometries. 

Benchmark values for “experimental” lattice energies are typically based on measured 

sublimation enthalpies10 (or, less frequently, vaporization and fusion enthalpies combined with 

heat capacities13), and for organic molecular crystals these are generally acknowledged to have an 

inherent uncertainty of ~5 kJ mol–1.14 Deriving lattice energies from sublimation enthalpies must 

take account of the magnitude (and sign) of the energetic or thermodynamic quantities that are 

implicitly contained in the two quantities. This is typically expressed by a relationship of the 

form:15 

ΔHsub (T ) = (Eel
g
+ Etrans

g
+ Erot

g
+ Evib

g )− (Eel
s
+ Evib

s )+ pV

= (Eel
g
− Eel

s )+ (Evib
g
− Evib

s )+ 4RT

= ΔEel +ΔEvib + 4RT

= −Elat +ΔEvib + 4RT

 (1) 

where ideal gas behavior is assumed, and the last term is 3.5RT for linear molecules and 3RT for 

atoms. (It is worthwhile noting here that eq. (1) defines the lattice energy, Elat, to be a negative 

quantity. Although this convention is used throughout the present work it is not universal; e.g., 

Otero-de-la-Roza and Johnson tabulated positive lattice energies for the C21 crystals15a). Several 

approaches have been used to obtain “experimental” benchmark lattice energies by estimating 

the thermal effects in eq. (1), ΔEvib + 4RT , at different levels of sophistication. The most 

common approximates these two terms by –2RT (–1.5RT for linear molecules), a result that 

assumes no difference between gas and crystal intramolecular vibrations, and the intermolecular 

vibrational energy is at the high-temperature limit of 6RT. These and other assumptions 

underlying this approximation are discussed in detail in several places.15a,b,16 As argued by Maschio 

et al.,17 in some situations the 2RT correction “introduces perhaps more uncertainty than 

accuracy”, as the neglected terms are often of the same order of magnitude as the experimental 

uncertainty in ΔHsub (T ) . More sophisticated approaches to estimating the thermal effects in eq. 

(1) have been reported15a,b and these have contributed to the popularity of the X23 benchmark set 

of experimental lattice energies.  
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2.1. Benchmark data sets. For the present purposes we compare lattice energies computed 

by a converged sum of pairwise CE-B3LYP model energies with ‘experimental’ lattice energies 

derived from observed thermodynamic data, for the following four benchmark sets: 

X23 set.  The original C21 set,15a with hexamine (hexamethylenetetramine) and succinic acid 

added.15b Those publications reported different estimates of ΔEvib + 4RT , as well as using 

different ΔHsub (T )  values for anthracene, and as a consequence the mean absolute deviation 

between the two estimates of C21 benchmark energies is 2.3 kJ mol–1, with a maximum deviation 

of 12.1 kJ mol–1. For our purposes we use the X23 benchmark ‘experimental’ lattice energies 

estimated by Reilly and Tkatchenko15b with updated values for benzene, naphthalene and cytosine 

(see Supporting Information Table S1). The average benchmark lattice energy for the X23 set is 

–85.1 kJ mol–1. 

G60 set.  This set of molecular crystals was originally compiled by Maschio et al.,17 and 

contains “a wide range of chemical functionalities”, more than one-third of which are either 

chloro or nitro  substituents. In that work computed lattice energies were compared directly with 

experimental sublimation enthalpies. More recently Cutini et al.15c corrected those sublimation 

enthalpies by a constant factor of 2RT (i.e. Elat = −ΔHsub − 2RT ), and used those lattice energy 

estimates in their assessment of several computational methods. In what follows we use the 

experimental lattice energy estimates from Cutini et al.15c as benchmark values for the G60 set 

(Table S2). The average benchmark lattice energy for the G60 set is –102.9 kJ mol–1. 

K7 set.  Cutini and co-workers also compiled a smaller set of just seven molecular crystals: 

acetamide, two polymorphs of acetylene, boric acid, HCN, ice XI and propane, with lattice 

energies estimated as for the G60 set, and we use those values in our own benchmarking (Table 

S3). The average benchmark lattice energy for the K7 set is –53.2 kJ mol–1. 

Z20 set.  In their studies of CCSD(T)/CBS fragment-based calculations to predict lattice 

energies and sublimation enthalpies for molecular crystals, Červinka et al. compiled another set 

of 25 molecular crystals that includes noble gases, nonpolar hydrocarbons, N2, F2, CO2, and a 
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number of hydrogen-bonded crystals.13 Experimental lattice energies for benchmarking purposes 

(Table S4) have been obtained from experimental sublimation enthalpies adjusted to 0 K, 

corrected for relaxation and zero-point energies, as described in those publications. For various 

reasons this procedure was not feasible for methane, formaldehyde, ethanol and acetone, and it 

was also evident that the crystal structure used for hydrazine in that work contained errors (see 

Table S4). As a consequence only 20 of the 25 crystal structures of this set, that we have 

designated Z20, have been used in the present analysis. The average benchmark lattice energy 

for the Z20 set is –41.7 kJ mol–1. 

These four benchmark sets contain a total of 101 different materials. Acetic acid and 

formamide are common to X23, G60 and Z20, anthracene, benzene, imidazole, naphthalene, β-

oxalic acid and urea are common to X23 and G60, formic acid is common to G60 and Z20, 

ammonia and CO2 are common to both X23 and Z20, and both K7 and Z20 include propane. 

However, because the benchmark lattice energies have been obtained from experimental data in 

several different ways, and because different crystal structures at different temperatures have 

often been used for the same compound in separate benchmark sets (e.g., ACETAC01 and 

ACETAC05, BENZEN and BENZEN07, UREAXX and UREAXX09), we include calculations 

on duplicate crystal structures in our analyses that follow. This results in a combined set of 110 

CE-B3LYP lattice energies, which includes two polymorphic pairs (oxalic acid and acetylene), 

but conspicuous by their absence are organic molecules containing F, Br, I, P, S or Se, or any 

metal-organic compounds.  

2.2. The CE-B3LYP energy model. Our CE-B3LYP model energies have been described 

in detail elsewhere, but it is worthwhile providing an outline here. Originally devised for organic 

molecular crystals,5b it is based on quantum mechanical charge distributions for unperturbed 

monomers, and has recently been shown to apply equally well to molecular crystals comprising 

metal coordination compounds, organic salts, solvates and open shell molecules (radicals).5a The 

breakdown of the total interaction energy into electrostatic, polarization, dispersion and 

exchange-repulsion terms, 
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Etot = Eele + Epol + Edis + Erep

= kele ʹEele + kpol ʹEpol + kdis ʹEdis + krep ʹErep
 (2) 

is not new, and dates back to energy decomposition methods via variational18 and perturbation 

based19 approaches. In our model ʹEele  is the electrostatic interaction energy between monomer 

charge distributions, and ʹErep , the exchange-repulsion energy, both derived from the 

antisymmetrized product of B3LYP/6-31G(d,p) monomer spin orbitals.20 The polarization energy 

term, ʹEpol , is a simple sum of terms of the kind –½α|F |2, where α are isotropic polarizabilities for 

atoms21 or monatomic ions5a and the electric field F  is computed at each atomic nucleus from the 

B3LYP/6-31G(d,p) charge distribution of the other monomer. ʹEdis  is Grimme’s D2 dispersion 

correction22 summed over all intermolecular atom pairs. Optimum values of the scale factors kele, 

etc. in eq. (2) have been determined by calibration against counterpoise-corrected B3LYP-D2/6-

31G(d,p) interaction energies for 1,794 molecule/ion pairs extracted from 171 crystal structures. 

The mean absolute deviation (MAD) of these CE-B3LYP model energies from the DFT 

benchmark values is 2.4 kJ mol–1 for pairwise energies that span a range of 3.75 MJ mol–1.5a 

Although our approach has much in common with Gavezzotti’s PIXEL method,11 which has 

become popular in applications to organic molecular crystals, there are many significant 

differences between the two. PIXEL employs a fine-grained discrete representation of the 

molecular electron density as a sum of charged volume elements. The electrostatic energy 

between molecular charge densities is fundamentally the same in the two methods (although 

PIXEL commonly uses MP2/6-31G(d,p) monomer electron densities). All other terms in the 

PIXEL approach make use of the same discrete representation of the electron density, and 

incorporate a set of atomic polarizabilities, as well as adjustable parameters to account for short 

separations, damping of dispersion energies and a scale factor and power law dependence for the 

repulsion energy. These parameters were optimized to minimize the deviation between computed 

lattice energies and experimental sublimation enthalpies for a representative set of organic 

crystal structures.  
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2.3. Calculation of lattice energies. CE-B3LYP lattice energies are computed by direct 

summation of interaction energies in CrystalExplorer1723 over molecules B interacting with a 

central molecule A until Elat  is converged to better than 1 kJ mol–1, using a cutoff based on the 

separation of molecular centroids, RAB. Sums over Edis  and Erep  converge rapidly, but the sum 

over Eele  terms is much longer-range, with highly dipolar compounds (e.g., HCN, formamide, 

zwitterionic amino acids) requiring much greater cutoff distances than non-dipolar molecules 

(e.g., anthracene, coronene). For molecules separated by more than 12 Å Eele  is computed using 

a distributed multipole model of the electron density.24 As described in detail elsewhere,17,25 for unit 

cells with non-zero dipole moments (i.e., polar space groups such as P21, Pna21 and Fdd2) the 

lattice summation above is not representative of the entire crystal, and an additional 

consideration is required. The complete term for the lattice energy is 

Elat =
1

2
Etot

AB

RAB<R

∑ + Ecell dipole =
1

2
Etot

AB

RAB<R

∑ −
2π pcell

2

3ZVcell

, (3) 

where the second term is the cell dipole energy correction.25c pcell is the magnitude of the dipole 

moment of the unit cell (obtained here as the vector sum of molecular dipole moments), Vcell its 

volume and Z has its usual meaning. Table S5 provides details of this term for all molecules in 

polar space groups considered in this study. As noted elsewhere,17 this correction is usually quite 

small, often less than 1 kJ mol–1, but it can be substantial and essential when cell dipole moments 

are large (e.g., trioxane, nitroguanidine and acetamide, for which Ecell dipole  is –7.5, –11.6 and –

7.8 kJ mol–1, respectively), and especially when combined with small unit cell volumes (e.g., HF 

and HCN, where Ecell dipole  is –17.9 and –24.6 kJ mol–1, respectively). 

A further consideration is necessary when computing lattice energies by this approach (i.e. 

summation of pairwise interaction energies), as it implicitly assumes molecular geometries in the 

gas phase are unchanged from those in the crystal. Although equating  to  in eq. (1) is 

formally correct, it disguises the fact that ΔEel  necessarily includes intramolecular energies, as 

ΔEel − Elat
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well as the intermolecular interactions included in eq. (3). To shed some light on the missing 

contribution we partition the crystal electronic energy into intramolecular and intermolecular 

contributions, and write 

ΔEel = Eel
g
− Eel

s

= Eel,intra
g

− (Eel,intra
s

+ Eel,inter
s )

= (Eel,intra
g

− Eel,intra
s )− Elat

= ΔErelax − Elat

 (4) 

The molecular relaxation energy in this expression, ΔErelax , is the electronic energy lowering of a 

molecule accompanying relaxation of its geometry in the gas phase. This term is (normally) 

automatically taken into account in quantum mechanical studies that perform geometry 

optimizations for the crystal and isolated molecules, but it is not included in our lattice energy 

estimate, eq. (3), which can compromise comparisons between the results, or with experimental 

sublimation enthalpies. If we ignore the relaxation energy in our lattice energy estimates we will 

systematically overestimate the magnitude of the lattice energy. For molecules that are 

essentially rigid (i.e. possess no internal degrees of freedom) this term is usually negligible, and 

that consideration underlies the choice of most molecules in the benchmark sets described 

earlier.  But there are important instances where ΔErelax  is large and must be accounted for, in 

particular oxalic acid, urea and cytosine in the X23 set. For oxalic acid the lowest energy gas 

phase structure features two cyclic intramolecular hydrogen bonds,26 in contrast to the extended 

conformation in both crystal polymorphs. The N atoms in urea, which are planar in the crystal, 

are known to be pyramidal in the gas phase.27 And for cytosine, the enol-amino forms are known 

to be more abundant in the gas phase than the keto-amino tautomer present in the crystal.28 We 

have estimated relaxation energies for molecules in these four crystal structures by performing 

geometry optimizations at the MP2/6-311G++(d,p) level of theory for appropriate crystal and 

gas-phase structures, using Gaussian09.29 For the oxalic acid polymorphs there is also a small 

intramolecular energy difference for the two forms, and an estimate of this was obtained from 

constrained optimizations of the positions of just the H atoms, as described by Cruz-Cabeza and 
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Bernstein.30 The relaxation energies obtained in this manner (Table S1) are relatively crude 

estimates; they have the correct sign, in all cases improving agreement with benchmark 

experimental lattice energies, but the magnitude of the corrections depends greatly on the level 

of theory and basis set chosen. 

3. RESULTS AND DISCUSSION 

3.1. X23 comparisons. Details regarding the performance of a large number of 

computational sets of lattice energies for X23 crystals are summarized in Table 1, and Figure 1 

provides a graphical comparison between the best performing of those approaches. For all sets of 

literature results the fit statistics have been recalculated against the revised benchmark energies 

in Table S1, and the mean signed deviation (MD) for each model is systematically defined here 

to refer to the mean of model lattice energy minus the benchmark value. For these reasons the 

current statistics may be slightly different from (and MD is often better than) those given in the 

relevant publications. We see from these results that the CE-B3LYP model performs remarkably 

well, with a MD near zero and a mean absolute deviation (MAD) of only 5.1 kJ mol–1, a 

performance of similar quality to the two B3LYP plus dispersion approaches (B3LYP-D*/TZP 

and SP-B3LYP-D*). Figure 1 identifies a number of trends and systematic outliers for several 

models. There is evidence that CE-B3LYP systematically underbinds ‘van der Waals’ solids 

such as anthracene, benzene, naphthalene, pyrazine and triazine, possibly indicative of a 

limitation of the present dispersion energy model. But this behavior is also clearly evident for 

several other models (e.g., vdW-DF2/DZP, B3LYP-D*/TZP and SP-B3LYP-D*), most 

obviously for anthracene and naphthalene. Notable outliers in Figure 1 are cyanamide, urea and 

cytosine. For cyanamide all models in Figure 1 predict a lattice energy greater (more negative) 

than the benchmark value, and even the best performing model, TPSS-D3, overbinds this crystal 

by ~11 kJ mol–1 (13%). A similar observation can be made for urea, suggesting that for this 

molecule the non-planarity of the gas-phase structure may not have been taken into account in 

some of the literature studies. Results for cytosine reveal that a majority of approaches 

significantly underbind the crystal, especially the vdW-DF and vdW-DF2 functionals, and this 
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outcome will be even worse if the different tautomer in the gas phase was accounted for.  In 

summary these results, based on experimental crystal structures, convincingly show that the 

present CE-B3LYP model typically yields lattice energies  within ~5 kJ mol–1 of the well-curated 

X23 benchmark results – provided the relaxation energy is estimated when appropriate. 

 

 
 
Figure 1. Deviation of computational lattice energy estimates from the X23 benchmarks. For 

clarity only a subset of the best performing sets of calculations from Table 1 are displayed for 

comparison with the performance of the CE-B3LYP model (black points and line). Positive 

deviations indicate that a particular model is underbinding for that structure. 
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Table 1. Mean absolute deviation (MAD), mean signed deviation (MD), standard deviation 

from the mean (SD), all in kJ mol–1, and mean absolute percent deviation (MA%D) of 

computational estimates of lattice energies from the X23 benchmarks. As lattice energies are 

negative and MD is defined as model minus X23 benchmark value, then if MD is significantly 

positive the model is systematically underbinding. 

 MAD MD SD MA%D 

TPSS-D3 a 3.4 -0.7 4.3 4.7 

PBE0-MBD b 3.9 -1.3 4.6 5.6 

B86b-XDM/L c 3.9 2.1 4.6 5.4 

PBE-D3 a 4.1 -1.8 5.0 5.5 

vdW-DF2/DZP d 4.2 1.9 5.5 4.8 

vdW-DF/TZP d 4.2 1.4 5.5 4.9 

PBE0-D3 e 4.3 -2.4 4.9 6.0 

HSE06-D3 e 4.5 -2.9 4.3 5.9 

B3LYP-D*/TZP f 4.7 1.9 6.0 5.8 

CE-B3LYP g 5.1 0.1 6.9 6.5 

SP-B3LYP-D* h 5.3 3.0 5.9 6.5 

B86b-XDM i 5.7 1.3 7.3 7.3 

PBEh-3c j 6.0 -0.1 7.1 7.9 

PBE-MBD b 6.0 -4.8 5.1 7.9 

PBE-XDM k 6.4 2.5 8.1 7.9 

PBE-D2 k 7.5 -6.3 7.8 9.6 

B3LYP-D3-gCP/SVP l 7.7 -2.4 8.9 11.1 

HF-3c m 8.1 -5.6 8.6 10.6 

LMP2/p-aug-6-31G(d,p) n 8.7 2.9 10.5 11.1 

FIT o 9.1 7.9 7.7 10.5 

PBE-D3-gCP/SVP l 10.0 4.6 12.3 14.1 

PBE0-TS b 10.0 -9.6 8.0 12.6 
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PBE-TS p 13.5 -13.2 8.2 17.0 

W99rev6311P5 o 14.1 13.9 8.5 15.9 

B3LYP q 28.7 26.3 28.1 35.6 

a Unit cell and atomic positions fully optimized.31 

b Single point energies using PBE-TS optimized crystal geometries.15b 

c C21 set only; unit cell and atomic positions fully optimized; ‘large’ plane wave basis set.32 

d C21 set only; unit cell and atomic positions fully optimized; counterpoise corrected to 
account for BSSE.32 

e Single point energies using TPSS-D3 optimized crystal geometries.31 

f Unit cell and atomic positions fully optimized; counterpoise corrected to account for BSSE.15c 

g Present work; experimental crystal structures at or near room temperature (see Table S1)  

h Single point energies at the B3LYP-D*/TZP level of theory using dispersion-scaled HF-3c 
optimized geometries.15c 

i C21 set only; unit cell and atomic positions fully optimized; similar results to ref. 15c except for 
differences of ~20 kJ mol–1 for oxalic acid polymorphs, suggesting rearrangement energy from 
crystal to gas phase has not been included.15a 

j Anthracene and naphthalene not included because SCF did not converge.33 

k C21 results from ref. 15a and additional results for hexamethylenetetramine and succinic acid 
from refs. 34 Differences for oxalic acid are large (between -15.8 and -26.8 kJ mol–1)  and appear 
not to account for the rearrangement energy from crystal to gas phase. 

l Unit cells kept at experimental values and atomic positions fully optimized; geometric 
counterpoise correction.35 

m Unit cell and atomic positions fully optimized; counterpoise correction implicitly included in 
HF-3c method.15c 

n Single point energies at B3LYP-D*/TZP optimized geometries; BSSE corrected.15c 

o Intermolecular force fields used to optimize unit cells, atomic positions and compute lattice 
energies.36 

p Unit cell and atomic positions fully optimized.15b 

q Unit cell and atomic positions fully optimized.33 
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3.2. G60 and K7 comparisons. The performance of the CE-B3LYP model for the G60 and 

K7 sets of crystals is summarized in Table 2, where comparisons can be made with B3LYP-

D*/TZP (K7 only), SP-B3LYP-D*, HF-3c and S-HF-3c results,15c as well as B3LYP-D*/6-

31G(d,p) and PIXEL results.17 Figure 2 plots deviations from benchmark lattice energies for all of 

these computational approaches, and for all G60 crystals. Note that the G60 and K7 benchmark 

energies derive from experimental sublimation enthalpies back-corrected by ~5 kJ mol–1 (= 2RT 

for polyatomics), and the results from periodic crystal minus molecule approaches implicitly take 

into account a relaxation energy term but, in contrast to the X23 set, this correction has not been 

made to any CE-B3LYP and PIXEL lattice energies for these sets of crystals. For the G60 set the 

CE-B3LYP model performs remarkably well overall and, perhaps surprisingly, better than all 

other methods in Table 2, with a small MD and a MAD of only 8.4 kJ mol–1. This MAD for the 

G60 set is greater than for the X23 set, and slightly larger than expected from the ratio of average 

lattice energies for the two sets. As observed for the X23 set, this performance is of similar 

quality to the two B3LYP plus dispersion approaches. Statistics for the K7 set in Table 2 echo 

the conclusions from the G60 set, but with smaller values of MAD, MD and SD that reflect the 

much smaller average lattice energy for this set. 

Deviations from benchmark experimental lattice energies for the G60 set (Figure 2) reveal 

several trends and systematic anomalies. For example, it is clear from the plot that the HF-3c 

model systematically overbinds many crystals, and although the dispersion-scaled variant S-HF-

3c is an improvement, this refinement tends to do little more overall than displace the HF-3c 

trendline by ~10-15 kJ mol–1. For most of the crystals the CE-B3LYP trendline closely follows 

those for the B3LYP-D* and SP-B3LYP-D* results. Bearing in mind the use of many different 

geometries, several models display overbinding for crystals of melamine (MELAMI04), oxalic 

acid (OXALAC04), urea (UREAXX09) and N,N-dimethylurea (WIFKEB), and we attribute this 

to the lack (or inadequacy) of a relaxation energy correction. 

3.3. Comparison between CE-B3LYP and PIXEL lattice energies. The full set of 

G60 lattice energies obtained by CE-B3LYP and PIXEL approaches, with identical crystal 
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structures used for both calculations (see Table S2), provides a unique opportunity to make a 

quantitative comparison between the two models, and explore how similar – or different – are the 

individual terms in eq. (2). This sort of comparison has so far been limited to energies for small 

numbers of molecular pairs;5a here we have sums over large numbers of molecular pairs, at a wide 

range of mutual orientations and separations, for each of the molecular crystals in the G60 set. A 

simple regression analysis reveals that overall Elat
CE-B3LYP

=1.062Elat
PIXEL , but the differences 

between the two can be as large as +30.7 kJ mol–1 (DIMNAN01) and –25.2 kJ mol–1 

(HCLBNZ11).  The MD of 5.9 kJ mol–1 follows from the values in Table 2, and the MAD 

between the two sets of results is 9.8 kJ mol–1. From this we can conclude that CE-B3LYP lattice 

energies are on average ~6% larger than those from PIXEL, but there can be substantial 

differences between the two.  

To explore further the relationship between CE-B3LYP and PIXEL energies, Figure 3 plots 

individual components of CE-B3LYP lattice energies against the respective PIXEL energies for 

the G60 crystals (i.e., the lattice sums of electrostatic, polarization, dispersion and repulsion 

energies for the two models). Before discussing these plots it is important to recognize that the 

CE-B3LYP energy terms in Figure 3 are unscaled – the primed terms in eq. (3). It is readily seen 

from the figure that electrostatic, dispersion and repulsion energy terms are remarkably close for 

these two models. This is not surprising for the electrostatic energy (even though CE-B3LYP 

uses B3LYP/6-31G(d,p) monomer electron densities, and the PIXEL results are based on MP2/6-

31G(d,p) electron densities), but the close similarity of dispersion and repulsion energy terms for 

the two models is surprising. Given the very different ways in which these two terms have been 

derived in the two models, the close similarity of these energies in Figure 3 strongly supports an 

argument that they both represent realistic models of those phenomena. There are, however, 

some large differences between CE-B3LYP and PIXEL polarization energies. Although the 

majority of these energies for the G60 set are smaller in magnitude than 20 kJ mol–1, PIXEL 

polarization energies are typically more negative than those in the CE-B3LYP model, and often 

much more negative. It is tempting to attribute the largest differences between the two lattice 
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energies to this term, but that is not the case; there is in fact no single factor responsible for these 

differences. For dimethylnitroaniline (DIMNAN01) separate CE-B3LYP and PIXEL lattice 

energy components agree quite well, but the CE-B3LYP scale factors (eq. (3)) lead to a 

substantial difference between the two lattice energies: Elat
CE-B3LYP   = –121.7 kJ mol–1 and Elat

PIXEL  = 

–91.0 kJ mol–1, results that bracket the benchmark value of –107.7 kJ mol–1. The situation for 

hexachlorobenzene (HCLBNZ11) is different; the sum of PIXEL polarization and dispersion 

energy terms is much more negative than from CE-B3LYP, and by nearly 50 kJ mol–1, with the 

result that Elat
CE-B3LYP   = –68.3 kJ mol–1 and Elat

PIXEL  = –93.5 kJ mol–1, the latter being much closer to 

the benchmark value of –93.3 kJ mol–1, which is associated with considerable uncertainty (see 

footnote to Supporting Information Table S2). 

 

 

Figure 2. Deviation of computational estimates of lattice energies from the G60 benchmarks. 

Note that the vertical axis spans more than twice the range of that in Figure 1. 
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Table 2. Mean absolute deviation (MAD), mean signed deviation (MD), standard deviation 

from the mean (SD), all in kJ mol–1, and mean absolute percent deviation (MA%D) of 

computational estimates of lattice energies from the G60 and K7 benchmarks.  

  MAD MD SD MA%D 

G60 set      

 CE-B3LYP a 8.4 2.0 10.9 8.0 

 SP-B3LYP-D* b 9.1 7.7 8.1 8.8 

 B3LYP-D*/6-31G(d,p) c 10.6 5.1 12.5 10.2 

 PIXEL a 10.5 7.9 11.1 10.7 

 S-HF-3c d 12.0 7.6 14.2 10.8 

 HF-3c d 12.1 –3.6 15.0 11.7 

K7 set      

 B3LYP-D*/TZP e 4.0 0.8 4.7 10.7 

 SP-B3LYP-D* b 4.1 1.5 4.3 11.1 

 CE-B3LYP a 4.6 –2.7 5.6 8.3 

 S-HF-3c d 6.2 –3.7 8.5 9.7 

 HF-3c d 8.1 –8.1 9.2 15.0 

a Present work; crystal structures from ref. 17 for the G60 set and from ref. 15c for the K7 set (for 
details see Tables S2 and S3). 

b SP-B3LYP-D* denotes single point B3LYP-D*/TZP energies using optimized crystal 
geometries computed with a dispersion-scaled HF-3c-(0.27 s8) method.15c 

c  Experimental crystal structures.17 

d  S-HF-3c is also denoted HF-3c-(0.7 s8), and is a dispersion-scaled variant of HF-3c; unit 
cell and atomic positions fully optimized.15c 

e  Unit cell and atomic positions fully optimized.15c 
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Figure 3. Comparison between individual CE-B3LYP and PIXEL lattice energy components 

for crystals in the G60 set. Although all plots are the same size, note that the energy scales are 

not all the same, and in particular the scale for the polarization energy is roughly half that for the 

other terms. For electrostatic, dispersion and repulsion components the line of best fit through the 

origin is displayed, with the equation at bottom right, along with the R2 statistic. For the 

polarization energy the dashed line is simply a line of unit slope through the origin.  
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Table 3. Mean absolute deviation (MAD), mean signed deviation (MD), standard deviation 

from the mean (SD), all in kJ mol–1, and mean absolute percent deviation (MA%D) of 

computational estimates of lattice energies from the Z20 benchmarks.  

  MAD MD SD MA%D 

Z20 set      

 CE-B3LYP a 2.8 0.2 3.9 9.2 

 CCSD(T)/CBS fragments b 4.8 4.5 6.1 12.7 

a Present work; based on the same set of experimental crystal structures used in ref. 13a (see 
Table S4). 

b CCSD(T)/CBS fragment-based approach, using experimental crystal structures13a (Table S4). 

 

 

 

 
 
Figure 4. Deviation of computational estimates of lattice energies from the Z20 benchmarks.  
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3.4. Z20 comparisons. This set of crystal structures includes two noble gases, three 

diatomics, small hydrocarbons and organics, and as a consequence the average benchmark lattice 

energy of –41.7 kJ mol–1 is the lowest of the benchmark sets considered here.  As described 

earlier, the lattice energies used as benchmarks here are based on experimental sublimation 

enthalpies carefully adjusted to 0 K, and corrected for computed values of relaxation and zero-

point energies. Table 3 and Figure 4 compare the present CE-B3LYP results (see also Table S4) 

with those obtained from an additive scheme based on CCSD(T) energies of two-, three- and 

four-body interactions, with estimated extrapolation to the complete basis set (CBS) limit.13a Both 

computational estimates of lattice energies are based on the same experimental crystal structures, 

enabling a very direct comparison between the two sets of results. Perhaps surprisingly, given the 

relative computational cost of the two approaches, the statistics in Table 4 show that overall the 

CE-B3LYP model provides better estimates of lattice energies for these crystals, and Figure 4 

identifies the main reason: the CCSD(T)/CBS fragment-based method significantly underbinds 

the organic molecular crystals aminomethane, dimethyl ether, methylhydrazine, formic acid and 

acetic acid. Červinka et al.,13a identified several ways in which their fragment-based model could 

be improved, and concluded that the overall uncertainty of their CCSD(T)/CBS lattice energy 

estimates amounted to 10-20%.  

3.5. Lattice energies for polymorphs and large molecules. In our recent work5a we 

were somewhat pessimistic about the ability of CE-B3LYP or PIXEL model energies to provide 

reliable estimates of lattice energy differences between polymorphs. This was based on the 

conclusion by Nyman and Day37 that “polymorphic lattice energy differences are typically very 

small: over half of polymorph pairs are separated by less than 2 kJ mol–1 and lattice energy 

differences exceed 7.2 kJ mol–1 in only 5% of cases.” Consideration of the MAD, SD and MA%D 

statistics obtained for benchmark crystals above might suggest that our pessimism was justified. 

But those statistics refer to deviations from benchmark values and, although those values are the 

best presently available, there can be no question that they have considerable uncertainty 

associated with them. Computing lattice energy differences between polymorphs avoids some of 
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the problems inherent in comparisons with benchmark values, namely the unavoidable 

uncertainty in  (estimated to be ~5 kJ mol–1) and, for rigid molecules, the need to 

consider the relaxation energy, , in eq. (4). Two examples, 1,4-diiodobenzene and 5-

fluorouracil, provide evidence that CE-B3LYP model energies may in fact be capable of 

providing useful estimates of lattice energy differences in these circumstances.  

1,4-diiodobenzene is known to have two forms: the α-form is stable at room temperature, 

transforming into a high-temperature β-form at ~326 K.38 CE-B3LYP lattice energies, using 

B3LYP/DGDZVP electron distributions, based on two crystal structure determinations of the α-

form (ZZZPRO03, ZZZPRO06) are –86.5 and –87.3 kJ mol–1 (mean = –86.9 kJ mol–1). For two β-

form structures (ZZZPRO04, ZZZPRO07) the lattice energies are –84.9 and –85.3 kJ mol–1 (mean 

= –85.1 kJ mol–1). From these we conclude that a conservative estimate of the lattice energy 

difference between the two forms is –2 ± 1 kJ mol–1, with the α-form lower in energy. This very 

small difference is in excellent agreement with the conclusions from a computationally-intensive 

diffusion Monte Carlo study,39 where the difference was estimated to be between –2 ± 1 and –8 ± 

3 kcal/mol/cell = –2 to –8 kJ mol–1, based on the experimental crystal structures ZZZPRO03 and 

ZZZPRO04. (For reference, the most recent measurement of the sublimation enthalpy of 1,4-

diiodobenzene is 85.4 ± 0.4 kJ mol–1, corrected to room temperature.40 ) 

Two polymorphs of 5-fluorouracil are known: the original form I, with four molecules in the 

asymmetric unit, and form II with one molecule, the latter discovered as the result of an 

extensive computational crystal structure prediction study.41 We have computed CE-B3LYP 

lattice energies for the two forms based on crystal structures at room-temperature and at 150 K. 

At RT the lattice energies of  form I (FURACL; –124.4 kJ mol–1) and form II (FURACL02; –

135.4 kJ mol–1) indicate that form II is more stable by –11.0 kJ mol–1, while at 150 K the lattice 

energies of  form I (FURACL01; –133.5 kJ mol–1) and form II (FURACL03; –137.2 kJ mol–1) 

indicate that form II is more stable by –3.7 kJ mol–1. These results are in excellent agreement with 

ΔHsub (T )

ΔErelax
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the original computational study,41 which obtained lattice energy differences of –9.9 kJ mol–1 

using RT structures and –6.3 kJ mol–1 for 150 K structures. (The most recent measurement of the 

sublimation enthalpy of 5-fluorouracil is 132.5 ± 1.2 kJ mol–1, corrected to room temperature.42) 

The calculation of CE-B3LYP lattice energies using CrystalExplorer1723 is straightforward, 

and because the computation of individual pairwise model energies is much faster than actual 

DFT calculations, the approach can be readily applied to crystal structures of quite large 

molecules. For coronene, C24H12, the CE-B3LYP lattice energy is –134.9 kJ mol–1 based on the RT 

crystal structure CORONE. This result may be compared with theoretical estimates obtained 

using periodic boundary conditions as well as pairwise sums of energies (also using the 

CORONE crystal structure), which yielded a range of values between –133 and –172 kJ mol–1.43 

The recommended value of ΔHsub (RT )  is 142.6 ± 8.7 kJ mol–1,44 and the relaxation energy for 

coronene is expected to be negligible. For the much larger hydrocarbon rubrene, C42H28, the CE-

B3LYP lattice energy is –202.2 kJ mol–1 based on the RT crystal structure QQQCIG11. The 

recommended (and only) value of ΔHsub (RT )  is 180.6 kJ mol–1, which was accompanied by the 

comment “questionable value”.44 For rubrene the relaxation energy is likely to be substantial, so 

we would expect this CE-B3LYP lattice energy to overestimate the sublimation enthalpy. 

CONCLUSIONS 

We undertook the calculations reported here in order to clearly establish the level of confidence 

for lattice energies estimated using the CE-B3LYP model energies. From the results across four 

different benchmark sets of (largely organic) molecular crystals we conclude that CE-B3LYP 

lattice energies – based on experimental crystal structures – compare very well with available 

experimental benchmark estimates derived from sublimation enthalpies, and in many cases they 

are comparable with (and sometimes better than) the results of more computationally-demanding 

approaches based on periodic DFT plus dispersion methodologies. From the statistics in Tables 1 

to 4 the MAD of CE-B3LYP results from experimental benchmark values is in the approximate 
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range 3 to 8 kJ mol–1, with the actual values dependent on the magnitude of energies in each set. 

Mean absolute percentage deviations are in the narrower range of 7 to 9%.  

Perhaps a better way of assessing the overall performance of the CE-B3LYP lattice energies 

is to examine statistics for its performance over the complete set of 110 crystals (i.e., all of X23, 

G60, K7 and Z20): MD = 0.8 kJ mol–1, MAD = 6.6 kJ mol–1, SD from the mean = 9.1 kJ mol–1 and 

MA%D = 8.2%. We believe these figures provide the best available estimate of the level of 

confidence that may be placed on CE-B3LYP lattice energies computed with experimental 

crystal structure geometries. However, it is important to bear in mind that these statistics refer to 

comparisons with experimental benchmark lattice energies, and that there is reason to be more 

optimistic when comparing computed lattice energies for polymorphs, especially for rigid 

molecules. Although the the present methodology lacks a systematic way of estimating the very 

important relaxation energy for molecules with conformational freedom, in separate work we 

have described a successful computational approach to this problem, and demonstrated its 

application to the seven polymorphs of 5-methyl-2-[(2-nitrophenyl)amino]-3-

thiophenecarbonitrile (ROY)�.45 

The results described in this work highlight the need for particular care when interpreting 

differences in performance between various computational methods, especially the need to 

appreciate the consequences of using different sets of crystal/molecule geometries. Even where 

computational approaches make use of experimental crystal structures it is not clear that authors 

are aware of the dependence of results on the temperature of the structure determination (i.e., the 

particular crystal structures chosen), or the need to normalize bond lengths to H atoms, as 

routinely performed in CE-B3LYP and PIXEL calculations. There are many instances in the 

literature where crystal structures based on X-ray diffraction data have been used uncritically, 

and “without further modification”. In Section 2.1 we noted that the combined set of 110 lattice 

energies includes three pairs of duplicate structures, some measured at different temperatures. 

For the two acetic acid structures, ACETAC01 (278 K) and ACETAC05 (4 K), CE-B3LYP 

lattice energies are –70.4 and –75.5 kJ mol–1, respectively. For benzene, BENZEN (218 K) and 
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BENZEN07 (123 K), CE-B3LYP lattice energies are –47.3 and –50.1 kJ mol–1, respectively. And 

for urea, where both structures UREAXX and UREAXX09 refer to room temperature, CE-

B3LYP lattice energies are –104.2 and –111.8 kJ mol–1, respectively. From this the dependence 

on temperature can be seen to be as much as 10%, but there are also systematic errors that may 

be present in any particular crystal structure determination. 

This work has also identified a need for more extensive benchmark sets of crystal structures 

and associated ‘experimental’ lattice energies. In particular, we emphasize the absence in the 

current benchmark sets of organic molecules containing atoms such as B, F, P, S, As, Se, Br and 

I. Compiling a database incorporating molecules containing atoms such as these will require a 

careful assessment of the available sublimation enthalpy (and possibly other phase-change) data 

from the recent compilations of Chickos and Acree,10 preferably for molecules that are essentially 

rigid, and cross-referencing with the availability of crystal structures. Although we have already 

looked into this, we concluded that this will be better undertaken independently of the present 

work; it is not a trivial exercise. The present work has  made it very clear that the most valuable 

benchmark data are those that have been most critically assessed. 
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