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Introduction

Periodic  density  functional  theory  (DFT)
calculations have wide applications in the field
of solid-state chemistry, e.g. the computation of
structural,  chemical,  optical,  spectroscopic,
vibrational  and  thermodynamic  properties  of
crystalline materials.1 Recently, crystal structure
prediction  approaches  to  suggest  possible
crystal packings from only individual molecular
structures to identify the most stable structure
or  to  screen  for  other  possible  polymorph
candidates  have  become  feasible.2 Besides
structural  refinement,  ab  initio quantum
chemistry  methods  are  shown  to  be  able  to
compute  the  thermochemistry  of  crystalline
solids with increasing accuracy. 

The major contribution to the phase transition
thermodynamics  from  the  gas  to  the  solid
phase is the lattice energy Elatt.

 It is the energy difference between the isolated
molecule  in  the gas  phase and its  crystallized
form in a three-dimensional infinite solid. 

Advances  in  computer  technology  and
algorithm enable more and more reliable  and
fast calculations of the lattice energy of organic
compounds.3 Nowadays, lattice energies can be
calculated with DFT-based methods in the sub-
kilojoule range as recently shown for benzene.4

Calculations of larger benchmark sets of small
molecules also give an accuracy of better5,6 or
equal7 to ~5 kJ mol-1 compared to experimental
data.  This  is  assumed  to  be  within  the
experimental  uncertainty  of  measurements  of
sublimation  enthalpies,8 the  experimental
counterpart to the computed lattice energies. 

For the development of novel drug molecules,
isolation and separation of chiral molecules is of
critical  scientific and industrial  relevance since
the  1992  FDA  guideline  requires  new  chiral
drugs to be marked as single enantiomers.9 The
separation of enantiomers from their mixtures -
especially  difficult  from  the  racemic  (50:50)
mixture  -  is  most  economically  done  by
crystallization.  Such  a  process  design  requires
an accurate knowledge of the thermochemistry
of the crystalline forms of the pure enantiomers
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ABSTRACT

Accurate  lattice  energies  of  organic  crystals  are  important  i.e.  for  the  pharmaceutical  industry.
Periodic DFT calculations with atom-centred Gaussian basis functions with the Turbomole program
are used to calculate lattice energies for several non-covalently bound organic molecular crystals. The
accuracy  and  convergence  of  results  with  basis  set  size  and  k-space  sampling  from  periodic
calculations is evaluated for the two reference molecules benzoic acid and naphthalene. For the X23
benchmark set of small molecular crystals accurate lattice energies are obtained using the PBE-D3
functional. In particular for hydrogen-bonded systems, a sufficiently large basis set is required. The
calculated lattice energy differences between enantiopure and racemic crystal forms for a prototype
set of chiral molecules are in good agreement with experimental results and allow the rationalization
and computer-aided design of chiral separation processes.



and their mixtures.10 Sometimes, the molecular
association in solution does not correspond to
that in the crystal.11 Computational methods are
of  increasing  practical  use  here  as  their
accuracy  is  converging  to  reproduce  small
enantiopure/racemic  energy  differences.  For
example the lattice energy differences between
different  polymorphs  of  the  same  compound
are  usually  below  4  kJ∙mol-1 (in  80%  of  the
cases),12 which  is  in  the  same  range  as  the
energy  difference  between  homochiral  and
racemic crystals.13 

With  increasing  accuracy  of  computational
methods  new  fields  of  applications  are  being
explored. Computed lattice energies have been
used  to  calculate  intrinsic  solubilities  from
energies  of  the  crystal  structure.14 Lattice
energy calculations have also been shown to be
able  to  be  able  to  resolve  energy  differences
between  crystals  of  the  crystallized  pure
enantiomer and the racemate.15-17 These lattice
energy differences can be calculated accurately
enough to be able to predict relative solubilities
and  thus  the  eutectic  composition  of  a
compound-forming  system  in  solution.18,19

However,  it  was  recently  shown  that  solely
focussing  on  energy  differences  of  the  static
lattice is not always sufficient for modelling the
thermochemistry  of  molecular  crystals  at
ambient  temperature  and  in  solution  but
thermal corrections and solubilisation need to
be considered.19

The  quantum  chemical  characterization  of
periodic  systems  can  be  done  with  many
different  approaches.  Periodic  boundary
conditions are applied to describe a 3D infinite
system.  The  description  of  this  three-
dimensional  systems  can,  in  principle,  be
performed  using  plane-wave  (PW)  basis
functions  with  pseudo-potentials,20 a  linear
combination  of  atom-centered  Gaussian  basis
functions21 (e.g.  in  CRYSTAL22),  a  linearized
augmented  plane-wave  ansatz  (LAPW)23 or  a
hybrid Gaussian and plane-wave scheme.24 For
a  review  of  computational  methods  see  for
example refs.1,25 The computational efficiency of

PW-DFT for homogeneous systems like metals
and  inorganic  solids  has  recently  been
challenged by advances in computing hardware
to  enable  periodic  calculations  with  atom-
centred  basis  functions  for  inhomogeneous
systems  such  as  molecular  crystals.  For  a
comparison  of  results  from  PWDFT  vs.  all-
electron Gaussian atomic orbitals see ref.26

Information  about  crystals  structures
are  most  commonly  obtained  from  single-
crystal  X-ray  crystallography.  The  unit  cell  is
replicated  in  three  directions  to  form  the
crystal.  In  88  %  of  the  cases  the  number  of
symmetry independent molecules, Z’, is smaller
or equal to one27 but the absolute number,  Z,
can be significantly  larger  and thus affect  the
computational  time  especially  when  space
group symmetry cannot be explored.

We here present the first evaluation of
the accuracy of periodic DFT calculations with
Turbomole  for  a  set  of  organic  molecular
crystals. The use of atom-localized GTOs allows
an  elegant  and  consistent  treatment  of
molecules  and  periodic  system  of  any
dimensionality on equal footing.28,29 For sparsely
packed  systems,  here  organic  crystals,  GTOs
were  shown  to  provide  a  high  computational
efficiency. 28,29

In  this  work  all-electron  fully  atomistic
computations of the lattice energies of various
molecular crystals are presented and compared
to  experimental  lattice  energies.  Initial
calculations  were  performed  for  crystals  of
naphthalene and benzoic acid in order to assess
the sensitivity  of  results  in  terms of  basis  set
convergence and k-point sampling. Results for
the  larger  X23  benchmark  set  of  molecular
crystals  are  compared  to  experiment  and
previous computational work. For the prototype
set  of  chiral  molecules  (D,L)-lactide,  (R,S)-
naproxen  and  (R,S)-3-chloromandelic  acid
(3CLMA)  subtle  lattice  energy  differences
between the enantiopure and racemic crystals
are  calculated  and  compared  to  experimental
results.
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Methods 

Definition of the Lattice Energy and Thermal 
Corrections
The lattice energy, Elatt, is defined as the energy
needed for breaking up the static crystal lattice.
More  specifically  it  is  defined  as  the  energy
difference  between  a  static  perfect  infinite
crystal  (ideal  static  solid  – iss)  and its  related
ideal  static  gas  (isg)  of  non-interacting
molecules in their lowest energy conformation
both at 0 K (eq. (1) where Z is the number of
molecules in the unit cell)

Elatt=
Eiss

Z
−Eisg

 (1)

For a comparison to experimental  sublimation
enthalpies  at  finite  temperature,  thermal
corrections  to  the  static  crystal  have  to  be
added. The correction terms are comprised of
the zero-point  vibrational  energy  and  thermal
corrections  between  0  K  and  the  reference
temperature. The zero-point vibrational energy
difference  between  the  ideal  solid  and  gas

( ΔEZPE=EZPE
g −EZPE

s
)  is  the  first  term.  In

combination with the integral of the difference

in  heat  capacities  ( ΔCP=CP
g−CP

s
)  between

gas  and  crystal  the  calculated  sublimation
enthalpy  at  the  reference  temperature  is
obtained by introducing ΔHcorr (eq. (2))

ΔH subl=−E latt+ΔHcorr=−Elatt+ΔEZPE+∫
0K

T

ΔC Pdt

(2)

A  simplified  expression  to  model  the  thermal
correction  to  the  lattice  energy,  ΔHcorr,  is  the
molecule  and  crystal  structure-independent
2RT-approximation  which  is  often  used  in
computational chemistry (see eq. (3)).3

ΔH subl=−E latt−2RT  (3)

It  is  based on the assumption that  zero-point
vibrational  energy  differences  between  the

crystal and gas can be neglected (ΔEZPE=0) and
that  molecular  vibrations  are  identical  in  the
crystal  and  in  the  gas  phase.  It  additionally
assumes that intermolecular vibrations can be
treated at the high-temperature limit. Then, the
heat capacity of the solid can be approximated

by CP
s

 = 6 R.3 For the ideal gas, translational (
CP,trans

g  =  5/2  R)  and  rotational  (CP, rot
g =  3/2  R)

degrees of freedom are considered which gives
a thermal correction of ΔHcorr = (5/2 R – 3/2 R –
6 R) = – 2RT.

Computational Details

For  the  computation  of  lattice  energies,  Elatt,
periodic  DFT calculations are  performed using
Turbomole30 version  7.1.31 The  periodic  ‘riper’
module  is  an  implementation  of  Kohn-Sham
DFT  using  atom-centred  Gaussian-type  basis
functions to model periodic systems in one to
three dimensions. A detailed description of its
implementation  is  provided  in  refs.32-35 Since
space group symmetry cannot be exploited, the
computational  effort  is  directly  related  to  the
number of atoms per molecules as well as the
total  number  of  molecules,  Z,  within  the  unit
cell  (see  eq.  1).  The  largest  system,  (R,S)-
naproxen, has 248 atoms in the unit cell  with
total  of  4888  contracted  basis  functions  (see
below).

For  all  calculations  the  “def2”  basis  sets  by
Ahlrichs  and  coworkers36 were  used.  In  this
work the performance of three different GGAs
is compared, the BP8637,38, the BLYP38,39 and the
PBE40 density  functionals.  The  latter  and  the
closely  related  hybrid  PBE0  functional  are
frequently  used  for  periodic  calculations  of
organic crystals.41 Furthermore, for some cases
the  B97-D  functional  was  tested  which  was
shown  to  be  superior  in  comparison  to  the
other  pure  GGA  functionals.42 Dispersion
interactions  were  considered  through  the
Grimme43 correction in  all  calculations.  This  is
essential for obtaining reliable lattice energies
of  molecular  crystals.44 All  calculations  were
performed  with  the  default  m3 grid  but
increased  to  m5 in  case  of  difficulties  in  SCF
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convergence. The energy difference was found
to be negligible. 

Molecular Crystals

Periodic  DFT  calculations  of benzoic  acid,
naphthalene  and  the  six  enantiopure  and
racemic  crystals  from  (D,L)-lactide,  (R,S)-
naproxen  and  (R,S)-3ClMA  started  from
experimental  crystal  structures  from
crystallographic information files (CIF) from the
Cambridge  Structural  Database  (CCSD).
Fractional  coordinates  were  transformed  into
molecular  coordinates  using  MERCURY  V2.4.45

All unit cell parameters are given in Tables S1 to
S3 in the ESI.

For benzoic acid two different crystal structures
from  CCSD  entries  BENZAC0146 and  the  later
refined  BENZAC0247 (Z’=0,  Z=4,  P21/c)  were
used which only differ marginally in their  unit
cell  parameters.  For  naphthalene,  also  two
different  structures  from  NAPHTA0448 and
NAPHTA2349 (Z’=0, Z=2, P21/a) with only small
differences in unit cell parameters were used to
assess the energy difference between crystals. 

For  (S)-  and  (RS)-lactide  the  NAHNOZ50 (Z=3,
Z=12, P212121) and BICVIS51 (Z=1, Z=4 P21/c)
structures were retrieved, respectively. For the
pure enantiomer of 3-chloromandelic acid, (S)-
3ClMA, the TUYBIA11 (Z=2, Z=4, P21) and for the
racemic  molecular  compound (R,S)-3ClMA the
FIZPEL0311 (Z’=1, Z=4, P21/c) crystal  structures
were used. Even though, (S)-3ClMA was shown
to  have  a  2:1  disorder  in  the  phenyl  ring
orientation  only  the  pre-dominant  (S)-3ClMA
orientation  was  used.  The  (S)-  and  (R,S)-
naproxen  crystal  structures  were  taken  from
the  COYRUD52 (Z=1,  Z=2,  P21)  and  PAPTUX17

(Z=1, Z=8, Pbca) entries. 

Initial  crystal  and  gas  phase  structures  of  the
X23 benchmark set were taken from Reilly53 and
unit  cell  parameters  from  Otero-de-la-Roza.7

For hexamine and succinic acid CCDC structures
HXMTAM0954 and SUCACB0255 were used.

Results and Discussion

Naphthalene  and  benzoic  acid  benchmark
calculations

Accurate  lattice  energies  were  calculated  for
the two well-characterized, crystallized organic
molecules naphthalene and benzoic acid as an
initial benchmark. The two compounds differ in
the  type  of  intermolecular  interaction  that
dominates.  In  case  of  benzoic  acid,  cyclic
hydrogen-bonds  between  the  carboxylic  acid
groups  form  strong  dimeric  structures.56 In
contrast,  the  intermolecular  energies  of
naphthalene  in  the  crystal  are  dominated  by
weak  van-der-Waals  interactions.57

Experimental  sublimation  enthalpies  were
measured  extensively  for  both  crystalline
compounds  and  result  in  approximately  50
published  values  between  1925  and  today.58

The sublimation enthalpy in eq. (2) is a function
of  temperature.  Data  have been measured at
different  temperature  (ranges)  or  even  lack
information  about  this  essential  parameter.
Here,  the  ten  most  recent  experimental
sublimation  enthalpies  with  specified
temperature  have  been  used  to  extrapolate
from  the  experimental  temperature  to  zero
Kelvin using integrals of experimental solid state
thermodynamics59,60 and  calculated  ideal  gas
heat  capacities.  Three  popular  density
functionals were used (BP86, B3LYP and MO6)
in  combination  with  the  def2-TZVP  basis  set
(see  Table  1).  The  difference  between  those
was  used  as  the  standard  deviation.  Raw
sublimation enthalpy data were extrapolated to
standard  298  K  to  obtain  ΔHsubl,exp (298  K).
Additional  enthalpic  corrections,  ΔHcorr,  and

zero-point  energy  corrections,  ΔEZPE ,  were
then added to obtain the experimental  lattice
energy,  Elatt,exp  (see Table 1). Assuming that the
vibrational lattice and molecular modes are 

4



decoupled,  ΔEZPE  in  eq.  (2)  can be derived
from the lattice phonon modes as differences in
molecular vibrations of isolated and crystallized
compound  would  cancel  out.  In  very  flexible
systems,  this  assumptions  may  not  always
hold.19 Experimental  vibrational  lattice

frequencies  were  used  to  calculate  ΔEZPE
ΔEZPE=h/2∑ νi .  This  ZPE  is  in  excellent

agreement  with  calculated  ZPEs  for
naphthalene62 and benzoic acid.63,64 When using
the  2RT-approximation  from  eq.  (3),  Elatt,exp is
underestimated  by  0.7  to  1.4  kJ  mol-1 for
benzoic acid and naphthalene, respectively. 

For  naphthalene and benzoic  acid crystals,  an
exhaustive  k-point  sampling  was  performed
from  k =  1  to  k =  21  in  order  to  assess  the
convergence of lattice energies. This was done
using  uniform  k-points  in  all  three  directions
and  no  significant  change  for  k >  3  was
observed (see ESI Table S4 for details). Hence,
subsequent  lattice  energies  were  calculated
using a uniform k-points mesh of  k = 3x3x3 for
all  calculations.  Figure  1 (a)  and (b)  show the
absolute  deviations  from  the  ‘experimental’
lattice energies of Table 1.  For both molecules
there is a large increase in accuracy when using
the larger triple-zeta (def2-TZVP) basis set 

Figure 1.  Basis set dependence of deviation of
calculated lattice energies from experiment for
(a) naphthalene  (NAPHTA04) and  (b) benzoic
acid  (BENZAC02) using BLYP (■), BP86 (▲) and
PBE  (◆).  The  dashed  grey  line  indicates  the
uncertainty  of  the  “experimental”  lattice
energy.  (c) and  (d) show  the  lattice  energy
differences between different crystal structures
(NAPHTA04  and  NAPHTA23) and  (BENZAC01
and BENZAC02), respectively.

compared to split-valence basis  sets def-SV(P)
and def2-SVP. An additional set of polarization
functions  for  hydrogen  atoms  (def2-TZVPP)
does not significantly improve the results. The
same trend is observed for all three functionals
(BLYP, BP86 and PBE). For both molecules, the
PBE functional performs best whereas the BLYP
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Table 1. Thermal and zero-point corrections to obtain an “experimental” lattice energy, Elatt,exp, from experimental sublimation 
enthalpies, ΔHsubl,exp.

Calculated
gas phase enthalpies

Experimental
solid state enthalpies

Energies (kJ mol-1) BP86 B3LYP MO6 Average ± std. dev

Naphthalene 21.01 20.45 20.56 20.67 ± 0.30 24.79
Benzoic Acid 21.74 21.18 21.32 21.41 ± 0.29 24.03

ΔHsubl,exp[a] ∆ EZPE
g-s [b]  ∫ ∆CP

❑dT  [c]

ΔHcorr[d] Elatt,exp[e]

Naphthalene 73.0 ± 1.7 -2.30 -4.10 ± 0.27 -6.42 ± 0.30 79.41 ± 1.69
Benzoic Acid 90.6 ± 2.9 -2.75 -2.46 ± 0.23 -5.37 ± 0.29 96.00 ± 2.91

[a] Experimental data taken from ref.61 

[b] Calculated from experimental lattice vibrational frequencies via 
ΔEZPE=h/2∑ νi . 

[c] Calculated. enthalpic corrections of the crystalline solid59,60 and the ideal gas. 

[d] Sum of 
ΔEZPE  and ∫ΔCP dt  according to eq (2). 

[e] Difference between ΔHsubl,exp and ΔHcorr. Uncertainties were calculated from the square root of the sum of squares of the individual
uncertainties.



functional  leads  to  the  largest  deviation from
experiment.  In  case  of  the  weakly  interacting
naphthalene,  the  differences  between  the
functionals are significantly larger than for the
hydrogen-bonded  benzoic  acid.  This  is
surprising  as  non-covalent  dispersion
interactions have been shown to be modelled
with  similar  accuracy  by  all  three  functionals
when  combined  with  the  D3  dispersion
correction,  in  fact  with  a  slightly  superior
performance for BP86 and BYLP over PBE was
reported.65 The  lattice  energy  dependence  on
basis  set size is  more pronounced for benzoic
acid.  This  can  be  attributed  to  the  strongly
anisotropic interactions of the hydrogen bonds
between the proton and the oxygen lone pair
electrons.  These  can  be  more  precisely
modelled  with  more  basis  functions  for  the
valence  electrons  as  discussed  later  for  the
larger set of molecular crystals.

In  order  to  study  the  sensitivity  of  the
calculated  lattice  energy  to  the  unit  cell
parameters, lattice energy differences between
different  crystals  structures  of  the  same
compound  were  calculated:  for  naphthalene
(NAPHTA04  and  NAPHTA23;  Figure  1c)  and
benzoic acid (BENZAC01 and BENZAC02; Figure
1d). The differences in unit cell parameters are
only very minor (see ESI  Table S1 for details).
For both molecules the energy differences are
below 1.3  kJ  mol-1 and only slightly  larger  for
naphthalene.  The  energy  differences  are  less
dependent on the size of the basis set but vary
slightly  between  three  functionals.  The
calculated  crystal  energies  with  the  PBE
functional are the least sensitive with regard to
unit cell parameters while the calculations with
the BLYP functional are the most effected. An
optimization of unit cell parameters is expected
to minimize these energy differences between
differently refined structures even further.

Results for the X23 benchmark set

The  PBE  functional  was  chosen  for  further
investigations of a larger and more diverse set
of molecular crystals. Recently Otero-de-la-Roza

et.  al.7 suggested  the  C21  benchmark  set  for
studying  non-covalent interactions in  solids  of
21 crystal structures containing two polymorphs
of oxalic acid (α- and β-oxalic acid). This set was
extended  to  include  hexamine  (HXMTAM0954)
and succinic acid (SUCACB0255) by Reilly et. al.53

and  named  the  ‘X23  benchmark’  set.  All
molecular  structures  within  the  X23  set  are
depicted  in  Figure  2  and  classified  by  their
dominant type of intermolecular interaction in
the crystal.

Figure 2  Molecular structures of the molecules
within the X23 benchmark set for non-covalent
interactions in solids.7 53

Both  benchmark  sets  refer  to  re-calculated
‘experimental’ values for the lattice energy that
have  been  extracted  from  experimental

6



sublimation enthalpies using different methods
to model thermal and zero-point contributions
to  the  binding  energies  (see  eq.  (2)).  A
comparison  of  the  suggested  thermal
corrections  to  the  frequently  used  structure
independent  2RT-approxmation  of  eq.  (3)
reveals significant differences with RMSEs of 1.3
and 2.3  kJ  mol-1. 7,53 Here,  the average of  the
suggested experimental  lattice energies of  the
two studies7,53 was used while their differences
give  an  estimate  of  the  experimental
uncertainty of  Elatt,exp. The final values and their
corresponding  uncertainty  are  summarized  in
Table S5 in the ESI.

Turbomole calculations were performed on the
set of 23 organic molecular structures in the gas
phase  and  in  the  crystal.7,53 The  number  of
molecules within the unit cell varies between 2
≤  Z ≤  8  which  significantly  influences  the
computational time of the periodic calculations.
The  molecular  structures  within  the  unit  cell
and for the isolated molecules in the gas phase
were  optimized  with  the  PBE-D3  density
functional.  The  absolute  deviation  of  our
calculations from experimental lattice energies
is  depicted  in  Figure  3.  For  anthracene,  the
standard  TZP  basis  set  was  used  to  avoid
convergence  difficulties  with  the  too  diffuse
triple-zeta valence basis sets.  The results are in
excellent  agreement  with  experiment  and
within  the  range  of  experimental  uncertainty.
There is a clear increase in accuracy when using
the larger basis set TZVP in comparison to the
SVP results (see Figure 3).  We also evaluated
the convergence of the lattice energy with basis
set size (see ESI Fig S7). It is consistent with the
previously  discussed  results  for  benzoic  acid
and naphthalene (see Figure 1) in that the def2-
TZVP  basis  provides  reliable  results.
Furthermore,  there  is  a  clear  tendency of  the
def2-SVP  basis  set  to  overestimate  calculated
lattice  energies  in  particular  for  hydrogen-
bonded systems. The strong dependence on the
size  of  the  basis  set  to  accurately  model
hydrogen  bonding  interactions  is  consistent
with  previous  findings66,67 and  due  to  a  large
BSSE. Results with the def2-TZVP basis set are in

much  better  agreement  with  other
computations (light grey area in Figure 3) and
experiment  (Figure  3).  The  light  grey  area
indicates the standard deviation of ten different
theoretical  methods  to  calculate  lattice
energies.7,53 Primary  data  for  the  average
computational value are given in Table S6 in the
ESI. The dark grey area gives the uncertainty of
Elatt,exp when  recalculated  from  sublimation
enthalpies  via  eq.  (2).  The  deviations  from
experiment are largest for the extreme cases of
strong H-bonding and those dominated by van-
der-Waals interactions. The overall trend of our
work  is  in  agreement  with  previous
computations and the results for the different
models  and  the  various  types  of  molecular
crystals. Our work gives a RMSE of 10.5 kJ·mol-1

compared  to  a  RMSE  of  9.2  kJ·mol-1 for  an
average  of  other  computations  and  is  well
within the standard deviation of those methods
(light grey shaded area).7,53

All  computational  methods  consistently
overestimate  the  lattice  energies  and  show
largest deviations for molecular crystals that are
dominated either by mere hydrogen bonding or
van  der  Waals  interactions.  We  additionally
show the  result  of  the  EPBE0+MBD36 method
which gives the best overall  representation of
Elatt,exp.  The EPBE0+MBD method has an overall
RMSE of 5.8 kJ mol-1 but also displays the same
compound-dependent  trend  compared  to  the
other computational methods. We investigated
whether  this  effect  was  due  to  a  large
difference in packing for hydrogen-bonded, van-
der-Waals  bonded  or  compounds  with  mixed
intermolecular interactions in the crystal. 

We  emphasize  this  by  plotting  the  absolute
deviation of computational lattice energies from
experiment  (in  kJ  mol-1)  versus  the density  of
the crystal ρcryst. in g cm-3 (Figure 4) which ranges
from  0.6  g·cm-3 to  2.0  g·cm-3.  There  is  no
obvious direct relation between the deviation of
calculations from experiment and the density of
the molecular  crystal  for  neither  the  EPBE0 +
MBD or the PBE-D3/def2-TZVP calculations.
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Figure 3. Lattice energies for molecules from X23 benchmark set. PBE-D3 results are compared with
experimental values and averaged computational values from various methods from literature 7,53.  The
light grey area indicates the standard deviation between the ten different computational methods (see
Table S6). Results from the well-performing EPBE0+MBD53 method are also included. The dark grey are
indicates experimental uncertainties in obtaining lattice energies from sublimation enthalpies.
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Figure 4. Error of calculated lattice energies of
the X23 benchmark set and the density of the
molecular crystals. PBE-D3 results are compared
to  the  average  of  computational  values  (see
Table S6) and the EPBE0+MBD calculations from
ref.53

It can be concluded that the errors in calculated
lattice  energies  are  very  specific  to  the
molecular  structure  and  thus  the  type  of
intermolecular  interaction  (H-binding  vs.  van-
der-Waals  interactions)  that  is  dominating  in
the crystal rather than to the density of packing
and the specific crystal structure. If the error is
only  dependent  on  the  structure  of  the
molecular compounds, such a systematic error
may be advantageous when calculating energy
differences between  polymorphs  of  the  same
compound  or  different  forms  of  chiral
substances  in  a  crystal  –  for  example  an
enantiopure  crystal  and  a  racemic  molecular
compound. Absolute errors that are specific to
each type of molecule in a lattice might cancel
out when aiming for energy differences. This is
shown here for a prototype set of three chiral
model substances.

Lattice  energy  differences  for  chiral  model
substances

Until  this  point  absolute  lattice  energies  of
molecular organic crystals and their deviations
from experiment have been discussed. We here
assess  whether  molecule-specific  systematic
errors  in  computed  lattice  energies  would
cancel  when  looking  at  differences  in  lattice
energies between polymorphs or chiral crystals.
Recent  studies  show  that  an  accurate

determination of lattice energy differences can
be exploited to model solution phase equilibria
of  mixtures  of  enantiopure  and  racemic
crystals.18,19 We  here  investigate  the  energy
differences between the enantiopure (ep)  and
its  corresponding  racemic  (rac)  molecular
crystal  for  three  chiral  model  substances,
namely lactide, naproxen and 3-chloromandelic
acid  (3ClMA)  for  which  there  are  sufficient
experimental  and  computational  data
available.19 The molecular structures (see Figure
5)  of  the  three  prototypic  molecules  differ  in
their  hydrogen  bonding  capability  and  in  the
degree  of  molecular  flexibility.  For  all  three
molecules the periodic  Turbomole calculations
can  be  compared  to  previously  published
computations  from  ref.  19 where  DMACRYS68

and  HF-3c69 were  used  to  calculate  absolute
lattice  energies  and  their  differences.  As
reference  data  experimental  lattice  energies,
Elatt,exp,  have been extracted from experimental
sublimation  enthalpies  for  lactide70 and
naproxen71 using  the  suggested  thermal  and
zero-point  corrections  from  ref.19 For  3ClMA,
experimental sublimation data are not available
since  the  compound  decomposes  before
evaporation but absolute and relative energies
can be estimated from experimental solubilities
instead.19 

Figure  5 Lowest  energy  conformations  of  the
gas phase molecular structures of (a) the rigid
lactide (b)  moderately  flexible  naproxen17 and
(c) highly flexible 3ClMA. 11

Table 2 gives the  PBE-D3 and B97-D  calculated
lattice  energies  for  racemic  and  enantiopure
crystals  of  (D,L)-lactide,  (R,S)-naproxen  and
(R,S)-3ClMA  together with experimental lattice
energies and previous calculations.19 

9



Table 2: Calculated lattice energies, Elatt, in kJ mol-1 for racemic and enantiopure crystals compared 
to experiment. Data19 from DMACRYS and HF-3c calculations are also given.

Lactide Naproxen 3CLMA RMSD
c

Rac. Enant. Diff. Rac. Enant. Diff Rac. Enant. Diff
Method
def2-SVP/
PBE-D3

-144.34 -136.75 -7.59 -202.87 -194.53 -8.34 -187.63 -190.63 3.00 59.3

def2-TZVP/
PBE-D3

-105.35 -99.97 -5.38 -158.25 -153.67 -4.58 -136.10 -136.95 0.85 14.8

def2-TZVP/
B97-D

-92.95 -90.07 -2.88 -146.03 -141.51 -4.52 -122.24 -124.56 2.31 4.4

HF-3c19 -90.10 -87.25 -2.85 -135.71 -134.26 -1.45 -127.43 -126.20 -1.23 5.4

DMACRYS19 -86.17 -82.64 -3.53 -133.48 -125.41 -8.07 -105.11 -110.40 -5.28 10.7

Exp. -97.3a

(±0.4)
-91.8a

(±0.5)
-5.5
(±0.6)

-140.8a

(±1.5)
-134.7a

(±1.6)
-6.1
(±2.2)

-120.56b

(±1.8)
-120.51b

(±2.4)
-0.06
(±2.9)

[a] Experimental heat capacity corrections19 and the average of results from DMACRYS and HF-3c calculations was used. Their difference was
added to the total uncertainty of Elatt,exp.

[b] Obtained from sublimation free energies, enthalpy and entropy corrections to give - Elatt,exp  = Δ Gsubl - ΔHcorr + T ΔSsubl. 

The average of the zero-point energies from DMACRYS and HF-3c were used19 Their difference was added to the total error and is mainly 
responsible for the large uncertainty of Elatt,exp.
[c] Root-mean-square deviation between calculation and experimental reference for all six crystals.
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Periodic DFT calculations of the racemic (rac) of
(R,S)-naproxen  are  already  demanding  due  to
the large unit  cell  containing  Z  = 8  molecules
with 248 atoms. 

Figure  6.  Calculated  lattice  energies  for  three
chiral  model  substances:  lactide  (◆,  blue),
naproxen (▲, green) and 3-chloromandelic acid
(3ClMA)  (■,  magenta).  (top)  Deviation  of
calculated lattice energies from experiment for
the  three  enantiopure  crystals. (bottom)
Calculated  lattice  energy  differences  between
the enantiopure and racemic crystals compared
to  experiment  (lactide  blue  dashed  line;
naproxen green dashed line;  3-chloromandelic
acid  magenta  area).  Absolute  and  relative
energies  are  compared  to  recently  reported19

calculations  using  DMACRYS  and  HF-3c.  Open
triangles  show  additional  calculations  for
naproxen  using  a  smaller  k-point  mesh  of
k=1x1x1.

Figure  6  (top)  illustrates  the  deviation  of
calculated lattice energies from experiment for
the  three  enantiopure  crystals.  There  is  a
significant increase in accuracy of the calculated

lattice energy when using a large TZVP basis set
which is consistent with our results for the X23
benchmark  set.  The  small  def2-SVP  had  a
significant  RMSE   of   60  kJ·mol-1.  The
PBE-D3/def2-TZVP results have an overall RMSE
of 14.8 kJ mol-1. The lattice energies from B97-
D/def2-TZVP  calculations  are  also  in  good
agreement with experiment and only show an
overall  RMSE  of  4.4  kJ  mol-1 and  is  thus
comparable to the HF-3c method with a RMSE
of 5.4 kJ mol-1. 

Figure  6  (bottom)  gives  the  calculated  lattice
energy  differences between  the  racemic  and
enantiopure  crystals.  Here,  the  results  using
PBE-D3 are close to the experimental value for
lactide and naproxen supposingly as a result of
error  compensation. The effects when using a
smaller (SVP) basis  set are less severe for the
energy differences here. The PBE-D3/def2-TZVP
results are in close agreement with the results
of  the  B97-D  functional.  The  HF-3c  method
performs equally well for absolute and relative
binding energies. 

Since  3ClMA  experimental  data  from
sublimation vapor pressures are not available,
the  estimated  value  from  experimental
solubilities  has  a  larger  error  due  to
uncertainties  when  determining  the  energy
differences  from  experimental  relative
solubilities.19 However,  the  results  for  3ClMA
obtained here with the PBE-D3 and the B97-D
density functionals give a consistent picture and
are within the experimental uncertainty.

We also investigated the influence of a reduced
k-point  sampling  for  (R,S)-naproxen.  The
reduced sampling  effects are less drastic than
when  using  a  smaller  def2-SVP  basis  set  in
terms of  absolute energies (Figure 6,  top) but
similar in magnitude for the energy differences
(see Figure 6, bottom). 

Conclusions

Lattice  energies  of  organic  molecular  crystals
were calculated using periodic Turbomole and
making use of Ahlrichs’ basis set.  Using atom-
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centered  Gaussian  basis  sets  molecular  and
periodic  systems  can  be  calculated  with  the
same approach and basis  set  which enables a
fast  and  facile  calculation  of  lattice  energies.
The PBE-D3 functional in combination with the
def2-TZVP  basis  set  showed  the  best  overall
agreement with experiment for the hydrogen-
bonded crystalline benzoic acid and pi-stacked
structures  of  naphthalene crystals.  Differences
in unit cell geometries are shown to have only
minor effects on the lattice energies. 

In the X23 benchmark, the use of a small basis
set  leads  to  an  over  binding  and  large
computational  errors  especially  if  the
interactions within  the crystals  are dominated
by  one  type  of  intermolecular  interaction
(either hydrogen bonding or stacking). It is the
dominance  of  either  the  hydrogen  bonding
capability or stacking of the molecular structure
in  the  crystal  rather  than  a  closely  packed
crystal that is computationally difficult to treat.
Hence,  it  may  be  suggested  that  deviations
from  experimental  lattice  energies  are  less
method-and density-dependent but rather due
to the type of intermolecular interactions in the
crystal.  Lattice  energy  differences between
enantiomeric  and  racemic  molecular  crystals,
however,  can  be  well  reproduced  by  using
periodic Turbomole calculations. In contrast to
the calculation of absolute lattice energies, the

calculated  lattice  energy  differences are  less
sensitive to the choice of basis set and in good
agreement  with  the  experiment  due  to  a
cancellation of errors. 

Periodic  DFT calculations with Turbomole give
accurate  lattice  energies  for  a  large  set  of
molecular organic crystals which are dominated
by weak interactions such as hydrogen bonding
or  van-der-Waals  interactions.  The  use  the
same basis set and computational approach for
the molecular and the periodic system gives an
elegant  and  straightforward  way  to  calculate
lattice  energies.  The  cancellation  of  system-
specific  deviations  from  experimental  values
allows  the  application  of  such  computational
approaches to obtain small  energy differences
between  enantiomers  and  racemates  and
support  the  design  of  chiral  separation
processes for the chemical and pharmaceutical
industries.

Acknowledgments

We  thank  the  Max  Planck  Society  for  the
Advancement  of  Science for  financial  support.
This project was supported by the COST Action
CM1402  ‘Crystallize’.  We  thank  Prof.  Marek
Sierka (University of Jena) and Dr Uwe Huniar
(Turbomole  GmbH,  Karlsruhe)  for  technical
support and scientific discussions.

Keywords: periodic DFT, chiral, molecular crystals, lattice energy.

Additional Supporting Information may be found in the online version of this article.

References

1. Hasnip, P. J.; Refson, K.; Probert, M. I. J.;
Yates, J. R.; Clark, S. J.; Pickard, C. J. 
Philosophical Transactions Series A, 2014, 
372(2011), 20130270.

2. Neumann, M. A.; van de Streek, J.; 
Fabbiani, F. P. A.; Hidber, P.; Grassmann, O. 
Nature Communications 2015, 6, 7793.
3. Gavezzotti, A. CrystEngComm 2008, 10, 
367-367.

12



4. Yang, J.; Hu, W. F.; Usvyat, D.; 
Matthews, D.; Schutz, M.; Chan, G. K. L. Science 
2014, 345(6197), 640-643.
5. Moellmann, J.; Grimme, S. J Phys Chem 
C 2014, 118(14), 7615-7621.
6. Reilly, A. M.; Tkatchenko, A. J Phys 
Chem Lett 2013, 4(6), 1028-1033.
7. Otero-de-la-Roza, A.; Johnson, E. R. J 
Chem Phys 2012, 137(5), 054103.
8. Chickos, J. S. Netsu Sokutei 2003, 30(3), 
116-124.
9. US Food and Drug Administration, 
Chirality 1992, 4(5), 338-340.
10. Lorenz, H.; Seidel-Morgenstern, A. 
Angewandte Chemie International Edition 2014,
53(5), 1218-1250.
11. Hylton, R. K.; Tizzard, G. J.; Threlfall, T. 
L.; Ellis, A. L.; Coles, S. J.; Seaton, C. C.; Schulze, 
E.; Lorenz, H.; Seidel-Morgenstern, A.; Stein, M.;
Price, S. L. J Am Chem Soc 2015, 137(34), 
11095-11104.
12. Cruz-Cabeza, A. J.; Reutzel-Edens, S. M.;
Bernstein, J. Chem Soc Rev 2015, 44(23), 8619-
8635.
13. Gavezzotti, A.; Rizzato, S. Journal of 
Organic Chemistry 2014, 79, 4809-4816.
14. Palmer, D. S.; McDonagh, J. L.; Mitchell, 
J. B. O.; van Mourik, T.; Fedorov, M. V. J Chem 
Theory Comput 2012, 8(9), 3322-3337.
15. Jane Li, Z.; Ojala, W. H.; Grant, D. J. W. 
Journal of Pharmaceutical Sciences 2001, 
90(10), 1523 -1539.
16. Perlovich, G. L.; Kurkov, S. V.; Hansen, L.
K.; Bauer-Brandl, A. Journal of Pharmaceutical 
Sciences 2004, 93(3), 654-666.
17. Braun, D. E.; Ardid-Candel, M.; D'Oria, 
E.; Karamertzanis, P. G.; Arlin, J. B.; Florence, A. 
J.; Jones, A. G.; Price, S. L. Cryst Growth Des 
2011, 11(12), 5659-5669.
18. Otero-de-la-Roza, A.; Cao, B. H.; Price, I.
K.; Hein, J. E.; Johnson, E. R. Angew Chem Int 
Edit 2014, 53(30), 7879-7882.
19. Buchholz, H. K.; Hylton, R. K.; 
Brandenburg, J. G.; Seidel-Morgenstern, A.; 
Lorenz, H.; Stein, M.; Price, S. L. Cryst Growth 
Des 2017, 17(9), 4676-4686.
20. Hafner, J. Journal of Computational 
Chemistry 2008, 29(13), 2044-2078.

21. Towler, M. D.; Zupan, A.; Causà, M. 
Computer Physics Communications 1996, 98(1),
181-205.
22. Dovesi, R.; Orlando, R.; Civalleri, B.; 
Roetti, C.; Saunders Victor, R.; Zicovich-Wilson 
Claudio, M. In Zeitschrift für Kristallographie - 
Crystalline Materials, 2005, p 571.
23. Blaha, P.; Schwarz, K.; Sorantin, P.; 
Trickey, S. B. Computer Physics 
Communications 1990, 59(2), 399-415.
24. Lippert, B. G.; Parrinello, J. H.; Michele. 
Molecular Physics 1997, 92(3), 477-488.
25. Dovesi, R.; Civalleri, B.; Orlando, R.; 
Roetti, C.; Saunders, V. R. In Reviews in 
Computational Chemistry; Lipkowitz, K. B.; 
Larter, R.; Cundari, T. R., Eds.; John Wiley & 
Sons: Hoboken, New Jersey, 2005.
26. Ulian, G.; Tosoni, S.; Valdrè, G. The 
Journal of Chemical Physics 2013, 139(20), 
204101.
27. Brock, C. P. Acta Crystallogr B 2016, 72, 
807-821.
28. Dovesi, R.; Orlando, R.; Erba, A.; 
Zicovich-Wilson, C. M.; Civalleri, B.; Casassa, S.; 
Maschio, L.; Ferrabone, M.; De La Pierre, M.; 
D'Arco, P.; Noël, Y.; Causà, M.; Rérat, M.; 
Kirtman, B. International Journal of Quantum 
Chemistry 2014, 114(19), 1287-1317.
29. Kudin, K. N.; Scuseria, G. E. Physical 
Review B 2000, 61(24), 16440-16453.
30. Furche, F.; Ahlrichs, R.; Hattig, C.; 
Klopper, W.; Sierka, M.; Weigend, F. Wiley 
Interdisciplinary Reviews-Computational 
Molecular Science 2014, 4(2), 91-100.
31. Turbomole; GmbH. TURBOMOLE V7.1 
2016, a development of University of Karlsruhe 
and Forschungszentrum Karlsruhe GmbH, 1989-
2007, TURBOMOLE GmbH, since 2007; available
from http://www.turbomole.com. ; Turbomole 
GmbH: Karlsruhe, 2016.
32. Burow, A. M.; Sierka, M. J Chem Theory 
Comput 2011, 7(10), 3097-3104.
33. Burow, A. M.; Sierka, M.; Mohamed, F. 
The Journal of Chemical Physics 2009, 131(21), 
214101.
34. Łazarski, R.; Burow, A. M.; Grajciar, L.; 
Sierka, M. Journal of Computational Chemistry 
2016, 37(28), 2518-2526.

13



35. Łazarski, R.; Burow, A. M.; Sierka, M. J 
Chem Theory Comput 2015, 11(7), 3029-3041.
36. Weigend, F.; Ahlrichs, R. Physical 
Chemistry Chemical Physics 2005, 7(18), 3297.
37. Perdew, J. P. Phys Rev B 1986, 33(12), 
8822-8824.
38. Becke, A. D. Phys Rev A 1988, 38(6), 
3098-3100.
39. Lee, C.; Yang, W.; Parr, R. G. Physical 
Review B 1988, 37(2), 785-789.
40. Paier, J.; Hirschl, R.; Marsman, M.; 
Kresse, G. The Journal of Chemical Physics 2005,
122(23), 234102.
41. Hoja, J.; Reilly, A. M.; Tkatchenko, A. 
Wiley Interdisciplinary Reviews: Computational 
Molecular Science 2017, 7(1), e1294.
42. Grimme, S. Journal of Computational 
Chemistry 2006, 27(15), 1787--1799.
43. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg,
H. J Chem Phys 2010, 132(15), 154104.
44. Brandenburg, J. G.; Grimme, S. Topics in
current chemistry 2014, 345, 1-23.
45. Macrae, C. F.; Bruno, I. J.; Chisholm, J. 
A.; Edgington, P. R.; McCabe, P.; Pidcock, E.; 
Rodriguez-Monge, L.; Taylor, R.; van de Streek, 
J.; Wood, P. A. Journal of Applied 
Crystallography 2008, 41(2), 466-470.
46. Bruno, G.; Randaccio, L. Acta 
Crystallographica Section B 1980, 36(7), 1711-
1712.
47. Feld, R.; Lehmann, M. S.; Muir, K. W.; 
Speakman, J. C. In Zeitschrift für Kristallographie
- Crystalline Materials, 1981, p 215.
48. Ponomarev, V. I.; Filipenko, O. S.; 
Atovmyan, L. O. Kristallografiya 1976, 21(2), 
392-394.
49. Capelli, S. C.; Albinati, A.; Mason, S. A.; 
Willis, B. T. M. The Journal of Physical Chemistry
A 2006, 110(41), 11695-11703.
50. Belen'kaya, B. G.; Bel'skii, V. K.; 
Dement'ev, A. I.; Sakharova, V. I.; Chernikova, N.
Y. Crystallography Reports 1997, 42(3), 449-452.
51. van Hummel, G. J.; Harkema, S.; Kohn, 
F. E.; Feijen, J. Acta Crystallographica Section B 
Structural Crystallography and Crystal 
Chemistry 1982, 38(5), 1679-1681.

52. Ravikumar, K.; Rajan, S. S.; Pattabhi, V. 
Acta Crystallogr C 1985, 41(Feb), 280-282.
53. Reilly, A. M.; Tkatchenko, A. J Chem 
Phys 2013, 139(2), 024705-024705.
54. Kampermann, S. P.; Ruble, J. R.; Craven,
B. M. Acta Crystallographica Section B-
Structural Science 1994, 50, 737-741.
55. Leviel, J. L.; Auvert, G.; Savariault, J. M. 
Acta Crystallographica Section B-Structural 
Science 1981, 37(DEC), 2185-2189.
56. Gavezzotti, A. Molecular Aggregation - 
Structure Analysis and Molecular Simulation of 
Crystals and Liquids; Oxford University Press: 
Oxford NewYork, 2007.
57. Fedorov, I. A.; Zhuravlev, Y. N.; Berveno,
V. P. Physical Chemistry Chemical Physics 2011, 
13(13), 5679-5686.
58. William Acree Jr. and James, S. C. 
Journal of Physical and Chemical Reference 
Data 2010, 39(4), 043101.
59. Robie, R. A.; Hemingway, B. Geological 
Survey Professional Paper 1972, 755.
60. Chirico, R. D.; Knipmeyer, S. E.; Steele, 
W. V. The Journal of Chemical Thermodynamics 
2002, 34(11), 1873-1884.
61. Acree, W. J.; Chickos, J., S. Journal of 
Physical and Chemical Reference Data 2010, 
39(4), 043101.
62. Day, G. M.; Price, S. L.; Leslie, M. J Phys 
Chem B 2003, 107(39), 10919-10933.
63. Li, R.; Zeitler, J. A.; Tomerini, D.; Parrott,
E. P. J.; Gladden, L. F.; Day, G. M. Physical 
Chemistry Chemical Physics 2010, 12(20), 5329-
5340.
64. Cysewski, P. Journal of Molecular 
Modeling 2015, 21(4), 83.
65. Smith, D. G. A.; Burns, L. A.; Patkowski, 
K.; Sherrill, C. D. The Journal of Physical 
Chemistry Letters 2016, 7(12), 2197-2203.
66. Brandenburg, J. G.; Alessio, M.; Civalleri,
B.; Peintinger, M. F.; Bredow, T.; Grimme, S. The
Journal of Physical Chemistry A 2013, 117(38), 
9282-9292.
67. Riley, K. E.; Op't Holt, B. T.; Merz, K. M. J
Chem Theory Comput 2007, 3(2), 407-433.
68. Price, S. L.; Leslie, M.; Welch, G. W. A.; 
Habgood, M.; Price, L. S.; Karamertzanis, P. G.; 

14



Day, G. M. Physical Chemistry Chemical Physics 
2010, 12(30), 8478-8490.
69. Sure, R.; Grimme, S. Journal of 
Computational Chemistry 2013, 34(19), 1672-
1685.

70. Emel'yanenko, V. N.; Verevkin, S. P.; 
Pimerzin, A. A. Russian Journal of Physical 
Chemistry A 2009, 83(12), 2013-2021.
71. Buchholz, H.; Emel'yanenko, V. N.; 
Lorenz, H.; Verevkin, S. P. Journal of 
Pharmaceutical Sciences 2016, 105(5), 1676-
1683.

15



1 Physical and Chemical Foundations Group, Max Planck Institute for Dynamics of Complex Technical Systems, 
Sandtorstrasse 1, 39106 Magdeburg, Germany.
22 Molecular Simulations and Design Group, Max Planck Institute for Dynamics of Complex Technical Systems, 
Sandtorstrasse 1, 39106 Magdeburg, Germany.


	Definition of the Lattice Energy and Thermal Corrections

