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Accurate Lindblad-form master equation for weakly damped

quantum systems across all regimes
Gavin McCauley 1, Benjamin Cruikshank1,2, Denys I. Bondar 3 and Kurt Jacobs 1,2,4✉

Realistic models of quantum systems must include dissipative interactions with a thermal environment. For weakly-damped

systems, while the Lindblad-form Markovian master equation is invaluable for this task, it applies only when the frequencies of any

subset of the system’s transitions are degenerate, or their differences are much greater than the transitions’ linewidths. Outside of

these regimes the only available efficient description has been the Bloch–Redfield master equation, the efficacy of which has long

been controversial due to its failure to guarantee the positivity of the density matrix. The ability to efficiently simulate weakly-

damped systems across all regimes is becoming increasingly important, especially in quantum technologies. Here we solve this

long-standing problem by deriving a Lindblad-form master equation for weakly-damped systems that is accurate for all regimes.

We further show that when this master equation breaks down, so do all time-independent Markovian equations, including the B-R

equation. We thus obtain a replacement for the B-R equation for thermal damping that is no less accurate, simpler in structure,

completely positive, allows simulation by efficient quantum trajectory methods, and unifies the previous Lindblad master

equations. We also show via exact simulations that the new master equation can describe systems in which slowly-varying

transition frequencies cross each other during the evolution. System identification tools, developed in systems engineering, play an

important role in our analysis. We expect these tools to prove useful in other areas of physics involving complex systems.

npj Quantum Information            (2020) 6:74 ; https://doi.org/10.1038/s41534-020-00299-6

INTRODUCTION

Weakly damped open systems are important across a wide range
of areas in both physics and chemistry, from quantum thermo-
dynamics1–3 to the control of chemical reactions4, to quantum
technologies5–12. So long as the thermal environment that induces
the weak damping has a high cut-off frequency (something we
assume throughout), Lindblad-form Markovian master equations
are tremendously useful for modeling these systems as they avoid
the computationally expensive, and often prohibitive, task of
simulating the thermal environment13,14. However, recent devel-
opments have made it clear that the regime that existing Lindblad
master equations cannot describe—the "near degenerate” regime
in which non-degenerate transition frequencies are close together
—while long ignored, is crucial for investigating important
questions in a range of topics, including reservoir engineering
and cascaded systems15–20, adiabatic computation21,22, super and
sub-radiance23–26, and "weak lasing”27,28, with the possibility that
this regime will also reveal new tools for controlling quantum
systems.
Weakly-damped quantum systems can be divided into three

regimes depending on the frequency difference between pairs of
transitions. These regimes are degenerate (the frequency differ-
ence is zero), non-degenerate (the frequency difference is much
greater than the transitions’ linewidths), and near-degenerate
(everything else). The degenerate and non-degenerate regimes
are described, respectively, by two quite different Lindblad master
equations29,30 (for ease of reference we present these master
equations in the Supplementary Discussion). The difference
between them is exemplified by the fact that degenerate
transitions exhibit super and sub-radiance, whereas non-
degenerate transitions do not. These two Lindblad master

equations are obtained from the Bloch–Redfield master equation
by making the secular (rotating-wave) approximation. However,
no Lindblad master equation has been obtained for the near-
degenerate regime31,32. Thus to simulate systems in which two or
more distinct transitions are separated by less than a few
linewidths, one must resort to the Bloch–Redfield (B–R) master
equation33,34. This equation has long been the subject of debate
because it is not guaranteed to preserve the positivity of the
density matrix35,36. In some subfields (e.g., photo-chemistry37,38),
the B–R master equation is used as the standard vehicle for
treating weakly-damped systems. Practitioners in other fields, for
example quantum optics and many areas of quantum technolo-
gies, do not use it because its failure to ensure such a fundamental
property as positivity is seen as an indication that it cannot be
trusted.
There have been a number of papers, some quite recent,

arguing that the B–R equation is a valid and effective model so
long as the system is close to Markovian28,39,40. In particular,
Eastham et al.28 considered a model of two coupled linear
oscillators that can be solved exactly, and examined how well the
B–R equation describes the near-degenerate regime (since this is
the regime in which it is needed). They found that the B–R
equation was both very accurate and preserved positivity to a very
good approximation. They attributed this to the fact that the
dynamics of the coupled oscillators stays close to Markovian,
which was in turn due to the relatively slow variation of the
spectral density. Jeske et al.40 also noted that when transitions are
close enough that they share the same value of the spectral
density, the B–R equation reduces to the degenerate master
equation, which is a key element in our analysis here. These recent
works raise an interesting question: other authors have assumed

1U.S. Army Research Laboratory, Sensors and Electron Devices Directorate, Adelphi, MD 20783, USA. 2Department of Physics, University of Massachusetts at Boston, Boston, MA

02125, USA. 3Department of Physics and Engineering Physics, Tulane University, New Orleans, LA 70118, USA. 4Hearne Institute for Theoretical Physics, Louisiana State University,

Baton Rouge, LA 70803, USA. ✉email: kurt.a.jacobs5.civ@mail.mil

www.nature.com/npjqi

Published in partnership with The University of New South Wales

1
2
3
4
5
6
7
8
9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41534-020-00299-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41534-020-00299-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41534-020-00299-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41534-020-00299-6&domain=pdf
http://orcid.org/0000-0003-2675-3791
http://orcid.org/0000-0003-2675-3791
http://orcid.org/0000-0003-2675-3791
http://orcid.org/0000-0003-2675-3791
http://orcid.org/0000-0003-2675-3791
http://orcid.org/0000-0002-3626-4804
http://orcid.org/0000-0002-3626-4804
http://orcid.org/0000-0002-3626-4804
http://orcid.org/0000-0002-3626-4804
http://orcid.org/0000-0002-3626-4804
http://orcid.org/0000-0003-0828-6421
http://orcid.org/0000-0003-0828-6421
http://orcid.org/0000-0003-0828-6421
http://orcid.org/0000-0003-0828-6421
http://orcid.org/0000-0003-0828-6421
https://doi.org/10.1038/s41534-020-00299-6
mailto:kurt.a.jacobs5.civ@mail.mil
www.nature.com/npjqi


that the near-degenerate regime is non-Markovian, due to the
apparent lack of a Lindblad-form master equation in that
regime31,32. If the dynamics of weakly-damped systems is indeed
Markovian in the near-degenerate regime, then it is not
unreasonable to suggest that there may be a completely positive
Markovian master equation that accurately describes it.
Here we show that there is a single, Lindblad-form master

equation that describes weakly-damped systems across all three
regimes. This master equation, which can be found in Eqs. (37)
and (50), applies to the Ohmic spectrum, and any spectrum that
varies sufficiently slowly on the scale of the Lamb shifts and
linewidths. For baths with spectra that satisfy this "slow variation"
condition, our master equation agrees to very high accuracy with
the B–R equation, something that follows from our derivation and
is confirmed by numerical simulations. We further show, using
exact simulations, that when our "slow variation" condition is
broken not only does the B–R equation for thermal damping break
down, but so do all time-independent Markovian master
equations. We thus show that this B–R equation cannot be
trusted outside the regime in which our master equation is valid,
and in this sense our master equation is a complete replacement
for it. The Lindblad master equation has a simpler form that the
Bloch–Redfield equation, and thus provides new insight into the
behavior of the near-degenerate regime.
Numerical simulations reveal that our master equation

describes non-degenerate transitions more accurately than the
existing Lindblad master equation for non-degenerate transitions.
Not only does our master equation finally provide a non-
controversial method for simulating all weakly damped systems;
being in the Lindblad form it can also be simulated using efficient
Monte Carlo methods41–44, and provides a formulation of the
action of a thermal bath as a continuous measurement on the
system. This formulation quantifies the way in which information
flows from the system to the bath.
We expect that many important problems involving the near-

degenerate regime will also involve transition frequencies that
change with time, and possibly cross during the evolution.
Examples of this are the Landau-Zener transition45,46 and the
control of super- and sub-radiance by shifting energy levels. We
show that the adiabatic extension of our master equation is able
to accurately describe such time-dependent problems, so long as
the rate of change of the transition frequencies is not too fast.
Our derivation of the Lindblad master equation provides the

following corollaries:

1. It shows that the secular approximation is unnecessary:
weak damping, a high bath cut-off frequency, and sufficient
flatness of the spectral density suffice to guarantee positivity
and Markovianity. We show that the flatness of the spectral
density is also a necessary condition for Markovianity for the
oscillator bath model of thermal damping.

2. It resolves the controversy regarding the Bloch–Redfield
master equation for thermal damping: it shows that when
the spectral density is sufficiently flat, this equation is very
close to a Lindblad master equation, and will thus
approximately preserve positivity. Conversely, outside this
flatness condition this Bloch–Redfield equation is, in general,
no longer valid, confirming the conjecture in ref. 28).

We obtain the new master equation in two steps. First, we use
exact simulations of a V system coupled to an Ohmic bath,
together with the method of system identification, developed in
systems engineering, to show that weakly-damped quantum
systems with an Ohmic spectrum are not only Markovian but also
time-independent across all three regimes. This method also
allows us to directly back-out the Lindblad-form equation of
motion for this V system. Second, aided by the form obtained in
step one, we show how to derive the new Lindblad master
equation from the Bloch–Redfield equation valid for all regimes

and all temperatures. We provide additional confirmation of its
accuracy for the Ohmic bath by comparing its predictions to those
of exact simulations for two further systems, a trident system and
two co-located qubits.
We note that here we are specifically concerned with the

standard oscillator-bath model of thermal damping. Thus the B–R
equation we are concerned with is the one that results from
coupling the system to quadrature operators of the bath
oscillators. Naturally, other kinds of system-bath coupling may
lead to different B–R equations. It is an open question as to
whether our method for obtaining a Lindblad equation that
replaces the B–R equation extends to models in which the system
couples to other kinds of bath operators.
The results section is laid out as follows. First we perform

simulations of a V system with an Ohmic bath, and obtain an
accurate master equation for this system for all regimes using
system identification. Next we use the information obtained from
the V system to derive a master equation for all weakly damped
systems and all temperatures given a constraint on the derivative
of the spectral density. We then perform numerical simulations to
provide further confirmation of the accuracy of the master
equation, and show how both it and the B–R equation break
down as the derivative of the spectral density is increased. These
simulations also show that weakly damped system become non-
Markovian as these equations break down. Finally, we use
numerical simulations to show that the master equation is able
to describe time-dependent systems whose energy levels cross
during the evolution.

RESULTS

System identification in the near-degenerate regime

The methods of system identification provide us with a way to
determine, from the time series of a linear time-invariant system,
the minimal number of variables required to generate this time-
series (that is, the dimension of the system), as well as its
equations of motion. System identification (SID) methods are
typically concerned with input/output systems. SID involves
obtaining the outputs of a system for a large enough set of
distinct inputs that the equations of motion can be determined.
While our system does not have inputs, SID methods are easily
adapted to replace the set of inputs with a set of initial states. (The
SID method that we use is given in Methods.) Since the evolution
of the V system is non-trivial only when the upper levels are
populated, and the evolution does not generate coherence with
the lower level, the two upper populations together with the real
and imaginary parts of their coherence form a closed four-
dimensional system. Performing exact simulations of the V system,
SID provides us with the dynamics of a fictitious (and possibly
larger) system that generates the four-dimensional dynamics.
Specifically, if we denote the state of the fictitious system at time t
by v(t), then SID provides us with a matrix M(τ) where v(τ) = M(τ)v
(0) for a specified time τ. The number of appreciable eigenvalues
of M is the effective size of the fictitious system.
Since it is only the ratios between the various rate parameters

that determine the dynamical behavior (up to a scaling of time)
we specify all frequencies in terms of an arbitrary frequency, ~ν. We
perform SID on the V system depicted in Fig. 1a with bath cut-off
frequency Ω ¼ 80π~ν (we give the details of the bath model when
we derive the master equation below), fix the mean transition
frequency ω � ðω1 þ ω2Þ=2 ¼ 3π~ν, and choose the coupling
constants g1 and g2 (defined in Eq. (10)) so as to give the decay
rates γ1 ¼ 0:1~ν and γ2 ¼ 0:05~ν. Note that since we are simulating
the Hamiltonian in Eq. (8), it is the coupling constants gj, rather
than the damping rates γj, that define the simulation, with γj ∝
∣gj∣

2. Because we have fixed ω while changing the detuning, and
since γj ∝ ωj for the Ohmic spectral density, when the detuning
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changes we must change gj to keep the damping rates fixed. We
wish to examine the evolution when the detuning, Δω ≡ ω2 − ω1,
is not large compared to the damping rates, so we simulate the
evolution for the following four values of Δω: 0, 0.28πγ1, 2πγ1, and
4.8πγ1.
To perform the exact simulations we use the method detailed

in13,14 which employs the matrix-product-state method of
Vidal47,48. This in turn requires a split operator method, for which
we use a second-order method valid for time-dependent systems,
and choose a time-step small enough to obtain an accuracy of
about six digits of precision.
Obtaining the matrix M for each value of the detuning, Δω, we

find that the largest four eigenvalues of M account for almost all of
the dynamical behavior for all four values: the magnitudes of all
the rest of the eigenvalues contribute a fraction of less than 3 ×
10−4 to the 1-norm of M. This result implies that the dynamics of
the system in the near-degenerate regime is both time-
independent and Markovian to very good approximation.
A 4-dimensional dynamical model for the four independent

variables of the V system can now be obtained merely by taking
the log of the matrix M(t) for some appropriate value of t. We note

that the time index t must be smaller than the smallest period of
the dynamics to avoid multiple branches of the complex
logarithm. Writing the four variables as the vector x, the
approximate model is _x ¼ Dx, with D ¼ ln ½MðtÞ�=t. To determine
the Lindblad-form master equation specified by this model, we
need to translate from the elements of D to the familiar terms
used to express such master equations. The simplest way to do
this is to take a general degenerate master equation for a V system
and derive its D matrix. The degenerate master equation for a V
system (Fig. 1a), in which both transitions have frequency ω, is
given by

_ρ ¼ � i

_
H0 þ HL; ρ½ � þ D½Σ�ρ: (1)

Here

H0 ¼ _ω0ð 1j i 1h j þ 2j i 2h jÞ; (2)

Σ ¼ ffiffiffiffiffi

γ1
p

σ1 þ eiϕ
ffiffiffiffiffi

γ2
p

σ2; (3)

with ω0 the frequency of both transitions, D is a superoperator

Fig. 1 The four open systems we use as examples. Here we depict four systems with transitions that decay due to a coupling with a thermal
bath at zero temperature. The red bars are the energy eigenstates of the system and the blue wiggly lines indicate the transitions. These
system are a V system, b trident system, c four-level system, and d two co-located qubits. Given that the relative energy of each level in the
diagram is indicated by its vertical position, Δ denotes the detuning between the transitions in a, c, and d. In system (b) there are three
transitions and thus two independent detunings denoted by Δ1 and Δ2. The decay rate of the jth transition is denoted by γj. The transition
operators and frequencies for each of these systems are given in the supplementary discussion.
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defined by

D½c�ρ � 1

2
2cρcy � cycρ� ρcyc
� �

(4)

for an arbitrary operator c, and HL is the Lamb shift Hamiltonian,
given by

HL ¼ �_

X

j

Δjσ
y
j σj þ

ffiffiffiffiffiffiffiffiffiffi

Δ1Δ2

p

ðeiϕσy
1σ2 þ H:c:Þ

" #

(5)

with σ1 ¼ 0j i 1h j, σ2 ¼ 0j i 2h j. The phase ϕ is determined by the
phases of the interactions between the transitions and the bath
(see Eq. (10)). We also note that HL can be factored as HL = − ħf(ω)

D†D in which D ¼
ffiffiffiffiffi

Δ1

p
σ1 þ eiϕ

ffiffiffiffiffi

Δ2

p
σ2.

From the derivation of the degenerate master equation29 (also
see below) we know that the decay rates γj depend on the spectral
density of the bath evaluated at their corresponding transition
frequencies ωj. The Lamb shifts depend both on the damping
rates (to which they are proportional) as well as a factor that is an
integral of the entire spectral density. Thus if the frequencies of
the transitions are changed while leaving the spectral density the
same, the decay rates and Lamb shifts also change.
We find that the backed-out model for Δω ≠ 0, in which the

Hamiltonian is now

H0 ¼ _ω0 1j i 1h j þ _ðω0 þ ΔωÞ 2j i 2h j; (6)

has exactly the same form as the degenerate master equation.

That is, it can be written as Eq. (1) with HL ¼
P

jζ jσ
y
j σj þ ðξσy

1σ2 þ
H:c:Þ and σ = ∑jηjσj for some set of {ζj, ξ, ηj}. This may be
considered a little surprising, given that the non-degenerate
master equation has no terms in the Lamb shift Hamiltonian
proportional to σ1σ2. A simple guess for the parameters ζj, ξ, and ηj
as functions of the Lamb shifts and the decay rates is to take
exactly the expression for the degenerate master equation, but to
replace Δ2(ω0) and γ2(ω0) by new values implied by the new value
of ω2, namely Δ2(ω0 + Δω) and γ2(ω0 + Δω).
We find that this trial master equation does indeed match the

model backed out using SID for all three values of Δω. We
compare further the evolution predicted by this master equation
to the exact evolution in Fig. 2, for a range of values of Δω. For
these simulations we use ω0 ¼ 10π~ν and
γ1ðω0Þ ¼ 2γ2ðω0Þ ¼ 0:1~ν. In Fig. 2c we show a measure of the
difference between the evolution given by the master equation
and exact simulations for a range of values of the detuning. This
measure is an average of the absolute values of the differences
between the populations and coherences of the density matrix
averaged over time. The measure is below 10−3 for all values of
the detuning shown.
In Fig. 2b we plot the evolution of the populations of the upper

levels for both the master equation and the exact simulation for a
value of Δω that might be considered well into the non-
degenerate regime (Δω = 100γ). We see that the evolution
contains "wiggles” that are correctly predicted by our trial master
equation, but are not predicted by the non-degenerate master
equation. These wiggles vanish as Δω → ∞.
In showing that, for the V-system, the degenerate, near-

degenerate, and far-detuned regimes are all described by a
Lindblad master equation that is essentially the degenerate
master equation, SID has provided us with the insight we need
to derive this Lindblad equation from the B–R equation. An
inspection of the B–R equation, Eq. (25) in the next section, shows
that the only way that it can take this Lindblad form is if the
frequency-dependent parameters Rj and Ij that appear in this
equation are effectively equal for transitions whose frequency
differences are on the order of the damping rates and Lamb shifts,
respectively. Combining this with the fact that certain terms
containing these parameters are effectively removed by the
rotating-wave approximation when the same frequency

differences are much larger than the damping rates and Lamb
shifts allows us to derive the Lindblad master equation. We
perform this derivation in the next section.

Derivation of the master equation

Having shown numerically that there is a Markovian master
equation describing thermal damping of two arbitrarily detuned
transitions, at least for the Ohmic bath, as well as obtaining the
form that this equation takes, a close examination of the usual
derivation of the existing Markovian master equations reveals how
this more general master equation can be derived for an arbitrary
number of levels. For simplicity we present this derivation first for
a bath at zero temperature. We then outline the derivation for
non-zero temperature, since it is essentially the same.
The Hamiltonian for the standard model of thermal damping, in

which a system is coupled to a continuum of independent
harmonic oscillators, is given by

H ¼ Hsys þ _ðAþ Ay þ DÞ
R

Ω

0

ffiffiffiffiffiffiffiffiffi

JðωÞ
p

bðωÞ þ byðωÞ
� �

dω

þ
R

Ω

0
_ωbðωÞybðωÞ dω:

(7)

Here Hsys is the Hamiltonian of the system which has a discrete
set of energy levels. The operators b(ω) are the annihilation
operators for a continuum of harmonic oscillators indexed by their
frequencies ω (equivalently the modes of a quantum field). The
function J(ω) is the density of oscillators per unit frequency,
usually referred to as the spectral density of the bath. The
maximum frequency of the bath oscillators is Ω and is called the
"cut-off” frequency. Instead of having a sharp cut-off at frequency
Ω one can instead arrange J(ω) to exhibit a smooth drop-off above
some frequency. We use a sharp cut-off purely for simplicity. As
will be clear in what follows, in the weak-damping regime the

Fig. 2 Accuracy of the master equation inferred from system
identification. Here we compare the exact evolution of the weakly-
damped V system with that predicted by the master equation in Eq.
(1) with the replacements Δ2(ω0) → Δ2(ω0 + Δω) and γ2(ω0) → γ2(ω0

+ Δω), which for the V-system is equivalent to the new Lindblad
master equation we derive here. In (a) and (b) we show the
populations of levels 1j i (red) and 2j i (blue) as a function of time

with the initial state ψ0j i ¼ ð 1j i þ 2j iÞ=
ffiffiffi

2
p

. The damping rates are
γ1 ¼ 2γ2 ¼ 0:1~ν, in which ~ν is an arbitrary frequency specifying our
frequency units. The solid curves are the exact evolution and the
dashed curves are that of the master equation. The detuning is (a)
Δω = 4γ1, (b) Δω = 100γ1. In (c), for the values of the detuning
shown in the legend, and with the parameters above, we plot a
measure of the deviation of the master equation from the exact
dynamics as a function of time. This measure is an average taken
over the deviations of the four relevant elements of the density
matrix: the populations of levels 1j i and 2j i, and the real and
imaginary part of the coherence between them. Notably, this
average error remains less than 8 × 10−4 for all the values of
detuning we explored.
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addition of a smooth cut-off merely modifies the values of the
damping rates and Lamb shifts.
We have written the Hermitian system operator with which the

bath couples as A + A† + D. In the eigenbasis of Hsys, D is defined
as being diagonal with real elements and A is upper-triangular.
Thus A has all the matrix elements that transform higher energy
levels to lower ones. The diagonal component D generates only
dephasing for the transitions. In Methods we derive the terms in
the master equation that result from a non-zero D, and show that
they play no role in near-degenerate transitions. Further, the terms
that arise from D are already in the Lindblad form when deriving
the B-R equation. Thus we can set D to zero in our analysis here.
If we denote the energy levels of the system by nj i, thus writing

Hsys ¼
X

n

En nj i nh j; (8)

and define transition operators (or "lowering operators")

σj ¼ nj
�

�

�

mj

	 �

�; Emj
> Enj ; j ¼ 1; ¼ ; J; (9)

then A can be written as

A ¼
X

J

j¼1

gjσj; (10)

where gj ¼ gj
�

�

�

�eiϕj are complex numbers giving the magnitude
and phase of the coupling of transition j to the bath. The
frequency of transition j is

ωj ¼
Emj

� Enj
_

; (11)

and the evolution of the transition operators σj and bath operators
b(ω) in the interaction picture is

σI
j ¼ σje

�iωj t; (12)

bIðωÞ ¼ bðωÞe�iωt: (13)

To derive Markovian master equations one applies a rotating-
wave approximation (RWA) to the Hamiltonian above. (Without
the RWA one obtains non-Makovian evolution, as exemplified by
the Caldeira-Leggett master equation49.) The RWA that is made at
this point should not be confused with a second rotating-wave
approximation which is the final step that turns the Bloch-Redfeild
master equation into the degenerate and non-degenerate
Lindblad master equations. To apply this first RWA we move into
the interaction picture. The terms in the interaction Hamiltonian
that contain the products Ab(ω) and A†b†(ω) (the so-called "off-
resonant” terms) become

HI
OR ¼ _

Z

Ω

0

ffiffiffiffiffiffiffiffiffi

JðωÞ
p X

j

gjσjbðωÞe�iðωjþωÞ þ H:c

" #

dω: (14)

Since the minimum frequency at which each of the terms in the
sum over j oscillates is ωj, when the damping rates and Lamb
shifts (to be derived below) are much less than all the ωj, these
terms will average to zero on the timescale of the dynamics
induced by the bath, and can be discarded. With this approxima-
tion the Hamiltonian of the system and bath becomes

H RWA ¼Hsys þ _

Z

Ω

0

ffiffiffiffiffiffiffiffiffi

JðωÞ
p

AybðωÞ þ AbyðωÞ
� �

dω

þ
Z

Ω

0

_ωbðωÞybðωÞ dω:
(15)

The regime of weak damping is defined as the regime in which
we are close enough to the limit in which minjðωjÞ=maxjðγjÞ ! 1
so that this approximation is a good one.
To proceed one now applies what are known as the Born-

Markov approximations to the evolution generated by HRWA. For
the details of these approximations we refer the reader to29,36,50).

The result is the following expression for the evolution of the
density matrix of the system in the interaction picture:

dρI

dt
¼ 1

_
2

Z 1

0

TrB HI
Rðt � sÞ; ρIðtÞ � ρBð0Þ

� �

;HI
RðtÞ

� �

ds; (16)

where

HI
R ¼ _

Z

Ω

0

ffiffiffiffiffiffiffiffiffi

JðωÞ
p X

j

gjσ
Iy
j b

IðωÞ þ H:c

" #

dω (17)

is the interaction between the system and the bath that appears in
HRWA, in the interaction picture. The operator ρI(t) is the density
matrix of the system in the interaction picture, ρB(0) is the initial
density matrix of the bath, and TrB½�� denotes the trace over
the bath.
To proceed now we will examine a single term from the

expression above, since all the terms are similar and each is
processed in the same way. Substituting HI

RðtÞ and HI
RðsÞ into the

expression above, one of the terms we obtain is

K ¼
Z 1

0

Z

Ω

0

GðωÞ dω

 �

σ
Iy
k ðtÞσI

jðt � sÞρIðtÞ ds; (18)

where

GðωÞ ¼ e�iωs
R

Ω

0
bðωÞbyðω0Þ
	 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

JðωÞJðω0Þ
p

dω0

¼ JðωÞe�iωs:
(19)

Here we have used the relation ½bðωÞ; byðω0Þ� ¼ δðω� ω0Þ and
chosen the field to be at zero temperature so that
byðω0ÞbðωÞ
	 �

¼ 0. Note that all terms in Eq. (16) that contain
two lowering or two raising operators are eliminated by the
rotating-wave approximation.
Now substituting G(ω) into K and rearranging we obtain

K ¼
R1
0

R

Ω

0
JðωÞe�iωs dω

h i

σ
Iy
k ðtÞσI

jðt � sÞρIðtÞ ds

¼
R

Ω

0

R1
0

JðωÞe�iðω�ωjÞs ds dω
h i

σ
Iy
k ðtÞσI

jðtÞρIðtÞ:
(20)

It is useful to define

Γj � ΓðωjÞ �
Z

Ω

0

Z 1

0

JðωÞe�iðω�ωjÞs ds dω; (21)

Rj ¼ Re ½Γj�; (22)

Ij ¼ Im ½Γj�: (23)

Moving back into the Schrödinger picture, and writing down all
the terms, we obtain the Bloch–Redfield equation for thermal
damping, which is

_ρ ¼ � i
_
½Hsys; ρ� � i

P

j

Ij½Σyj Σj; ρ� þ
P

j

2RjD½Σj �ρ

� i
P

k≠j

Ik Σ
y
j Σkρ� ρΣ

y
kΣj þ ΣjρΣ

y
k � ΣkρΣ

y
j

h i

�
P

k≠j

Rk Σ
y
j Σkρþ ρΣ

y
kΣj � ΣjρΣ

y
k � ΣkρΣ

y
j

h i

:

(24)

Here, for compactness, we have defined

Σj � gjσj ; (25)

and D is the superoperator defined in Eq. (4).

G. McCauley et al.

5

Published in partnership with The University of New South Wales npj Quantum Information (2020)    74 



We note that the decay rates γj will be

γj ¼ 2jgj j2Rj
¼ 2jgj j2

R

Ω

0
JðωÞ

R1
0

cosð½ω� ωj�sÞds
� �

dω

¼ 2jgjj2
R

Ω

0
JðωÞπδðω� ωjÞdω

¼ 2πjgjj2JðωjÞ
� γðωjÞ

(26)

and the Lamb shifts will be

Δj ¼ jgjj2 Ij

¼ jgj j2
R

Ω

0
JðωÞ

R1
0

sinð½ω� ωj �sÞds
� �

dω

¼ jgjj2 P
R

Ω

0
JðωÞ 1

ω�ωj

� 

dω
h i

¼ jgjj2 P
R

Ω�ωj

�ωj

JðωþωjÞ
ω

dω
h i

� ΔðωjÞ:

(27)

Here P½�� denotes the principle value of an integral. For readers
not familiar with this quantity we give the definition and an
example in Methods. So long as the spectral density does not
decrease with ω, and Ω > ωj, the Lamb shift Δj can be expected to
be greater than the damping rate γj (this is true for the Ohmic
bath, see below).
The master equation we have derived in Eq. (25), the

Bloch–Redfield equation for thermal damping, includes arbitrary
detuning between the levels, but it is not in the Lindblad form,
and does not guarantee that the density matrix will remain
positive. We wish to obtain a master equation in the Lindblad
form that is still valid for all detunings between the transitions.
Note first that when transitions j and k are degenerate Γj = Γk. In

this case the last two lines of Eq. (25) combine respectively with
the last two terms on the first line to give the degenerate master
equation for these transitions. In this case the Lamb-shift
Hamiltonian is HL = �hD†D with D ¼ P

j

ffiffiffi

Ij
p

Σj and the Lindblad
damping term is D½Σ� with Σ ¼ P

j

ffiffiffiffiffiffiffi

2Rj
p

Σj .
There is another situation in which the B–R equation will reduce

immediately to a Lindblad master equation: if the spectrum is flat,
meaning that it is the same for all ω. (The assumption of a flat
spectrum is often called the "white noise approximation", as it is
useful for deriving quantum Langevin equations for open systems
in the non-degenerate regime51,52.) If the spectrum is flat then Γj =

Γk for all values of ωj and ωk, and so in this case the resulting
master equation, which has the same form as the degenerate
master equation, is valid for all regimes. Unfortunately, physically
relevant spectra are not flat.
What we do now is to show that a flat spectrum is not required

to derive a master equation valid for all regimes; the rate of
change of the spectrum with respect to ω does not need to be
zero, it merely needs to be small enough. We determine the
necessary condition on this rate of change, and use it to derive the
Lindblad master equation. This master equation has the same
form as that for a flat spectrum, but of course the damping rates
and Lamb shifts will not be the same as those for a flat spectrum,
since the spectral density will now in general be different for
different transitions.
To begin we observe that when two transition frequencies, ωj

and ωk, are different, every term in the last two lines of Eq. (25) will
oscillate at the difference frequency Δωjk = ∣ωj − ωk∣. If this
difference frequency is sufficiently high then these terms will
average to zero and we will be left only with the first line of Eq.
(25), which is the non-degenerate master equation. How large
does Δωjk need to be to eliminate the last two lines of Eq. (25)? It
needs to be much larger than the magnitudes of the rest of the
dynamical terms in the master equation (excluding the Hamilto-
nian of the system, since this does not change the populations of

the system’s eigenstates). The magnitudes of the second and third
terms on the top line are Δj and γj, respectively, and those on the
last two lines are

Mjk � jgjgk jRj �
ffiffiffiffiffiffiffiffi

γjγk
p

; (28)

Ojk � jgjgk jIj �
ffiffiffiffiffiffiffiffiffi

ΔjΔk

p

: (29)

So the terms on the last two lines are eliminated when
minjk Δωjk � maxlm Mlm and minjk Δωjk � maxlm Olm. Without loss
of generality we will assume that the Lamb shifts are greater than
the damping rates (in the opposite case one merely switches the
roles of Oj and Mj). To find a set of terms that are in the Lindblad
form, and that are an excellent approximation to the last two lines
of Eq. (25), we only need concern ourselves with the regime

Δωjktminjk Ojk (30)

(since we have assumed Ojk ≥Mjk, the regime Δωjktminjk Ojk

automatically includes the regime Δωjktminjk Mjk ). Outside of
this regime, the last two lines will be eliminated by the oscillations
at the detuning frequency Δωjk.
We now recall that γj and Δj, and therefore Mjk and Ojk, must be

much smaller than both transition frequencies in order for the
master equation to be valid. This is a requirement of the initial
rotating wave approximation discussed above. Combining this
with Eq. (30) we need only consider the regime in which

ΔωjktOjk �
ffiffiffiffiffiffiffiffiffi

ΔjΔk

p

	 ffiffiffiffiffiffiffiffiffiffi

ωjωk
p

: (31)

Now if Γj (and thus Rj and Ij) does not vary rapidly on the scale of

Ojk �
ffiffiffiffiffiffiffiffiffi

ΔjΔk

p

(which is the scale of the Lamb shifts), then in the

regime we need to consider we have Γj ≈ Γk. More specifically, we
consider systems for which the spectral density satisfies

Jðωj þ ΔkÞ 
 JðωjÞ; 8j; k; (32)

for which the more precise statement is

jJðωj þ ΔkÞ � JðωjÞj 	 JðωjÞ; 8j; k; (33)

since this implies that Γ(ω) also satisfies the same "slow variation”
conditions. Under the condition in Eq. (33) we have

jωj � ωk jtOjk )
Rj 
 Rk

Ij 
 Ik

�

(34)

while at the same time allowing

Rj ≠ Rk ; Ij ≠ Ik when jωj � ωkj � Ojk; (35)

The relation (34) allows us to make the replacements Rj 

ffiffiffiffiffiffiffiffiffi

RjRk
p

and Ij 

ffiffiffiffiffiffi

Ij Ik
p

in Eq. (25) because i) when ∣ωj − ωk∣ ≲ Ojk these

replacements are well justified, and ii) when ∣ωj − ωk∣ is larger the

terms containing
ffiffiffiffiffiffiffiffiffi

RjRk
p

and
ffiffiffiffiffiffi

Ij Ik
p

are eliminated by the rotating

wave approximation. The result is

_ρ ¼ � i
_
½Hsys; ρ� � i

P

j

Ij ½Σyj Σj ; ρ� þ
P

j

2RjD½Σj�ρ

� i
P

k≠j

ffiffiffiffiffiffi

Ij Ik
p

Σ
y
j Σk þ Σ

y
kΣj; ρ

h i

� 2
P

k≠j

ffiffiffiffiffiffiffiffiffi

RjRk
p

Σ
y
j Σkρþ ρΣ

y
kΣj � 2ΣjρΣ

y
k

h i

:

(36)

The terms in this equation can be re-factored so as to write it in
a much neater form, namely

_ρ ¼ � i

_
H0 � _DyD; ρ
� �

þD½Σ�ρ (37)

This is the zero-temperature Lindblad-form master equation for all
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regimes. The operators Σ and D are

Σ ¼
X

N

j¼1

ffiffiffiffi

γj
p

eiϕjσj ; (38)

D ¼
X

N

j¼1

ffiffiffiffiffi

Δj

p

eiϕjσj; (39)

in which ϕj ¼ arg½gj� as defined below Eq. (10). The term HL ≡

−ℏD†D is the Lamb-shift Hamiltonian. If we expand it out we see
that, so long as σ

y
j σk ≠ 0, the upper levels of the transitions j and k

are coupled together via the bath:

HL ¼ �_
P

N

j¼1

Δjσ
y
j σj � _

P

N

j¼1

P

N

k¼jþ1

ffiffiffiffiffiffiffiffiffi

ΔjΔk

p

eiΔϕjkσ
y
j σk þ H:c:

� 

; (40)

where the phases are given by

Δϕjk ¼ ϕk � ϕj: (41)

The decay rates γj are given in Eq. (28) and are determined by the
value of the spectral density J(ω) only at transition frequency ωj.
The Lamb shifts, on the other hand, depend on the whole spectral
density, and in particular on the cut-off frequency. As an example,
for the Ohmic spectrum with a sharp cut-off at Ω, in which J(ω) ∝
ω (we choose to define J(ω) = ω/Ω2) the Lamb shifts are

Δj ¼ jgjj2 P
R

Ω�ωj

�ωj

JðωþωjÞ
ω

dω
h i

¼ jgj j2

Ω
2 P

R

Ω�ωj

�ωj

ðωþωjÞ
ω

dω
h i

¼ γj
2π

Ω

ωj
þ ln Ω

ωj
� 1

� h i

:

(42)

We see that so long as Ω is larger than 2ωj the Lamb shift is
larger than the damping rate by at least a factor of Ω/ωj. Recall
that the Lamb shifts are required to be much less that the
transition frequencies. Using the expression for Δj above, we have

Δj

ωj
¼ γj

2π
Ω

ωj
þ ln Ω

ωj
� 1

� h i


 1
2π

γj
ωj

� 

Ω

ωj

� 

:
(43)

Thus to satisfy the condition Δj ≪ ωj requires that the cut-off
frequency is not too large. In particular Ω 	 2πω2

j =γj .
We can now evaluate the fidelity of our approximation explicitly

for the Ohmic spectrum. Recall that we require Δk/Δj ≈ 1, when
Δω = ∣ωj − ωk∣ ≲ Δj. Denoting Δj by Δ(ωj), and writing ωk = ωj + Δj,
we have

Δðωj þΔjÞ
ΔðωjÞ � 1 ¼ Δj

Ω
ln Ω

ωj
� 1

� 

þOðΔω2Þ


 Δj

ωj

h i

ωj

Ω
ln Ω

ωj

� h i

	 1:
(44)

Since the master equation is already derived under the
conditions that Ω ≫ ωj, and ωj ≫ Δj, the expressions in both of
the square brackets are individually much less than unity. Thus the
slowly varying spectrum approximation that we have introduced
is automatically a very good approximation for the Ohmic bath.

Master equation for arbitrary temperature

To derive the master equation for non-zero temperature we
merely replace the zero-temperature expectation values of the
bath operators with their expectation values at non-zero
temperature, which are

byðω0ÞbðωÞ
	 �

¼ nT ðωÞδðω� ω0Þ; (45)

bðω0ÞbyðωÞ
	 �

¼ ½1þ nT ðωÞ�δðω� ω0Þ; (46)

in which

nT ðωÞ ¼
1

exp _ω= kBTð Þ½ � � 1
: (47)

Here T is the temperature of the bath and kB is Boltzmann’s
constant. With these new expectation values we now obtain more
terms in the master equation. For the new terms the spectral
density J(ω) is multiplied by nT(ω), so the new terms give a new
integral for which we have to calculate the principle value. For the
Ohmic bath this integral is

Im ½~ΓTj � ¼ P
R

Ω�ωj

�ωj

JðωþωjÞnT ðωþωjÞ
ω

dω
h i

¼ 1
Ω
2P

R

Ω�ωj

�ωj

1þðωj=ωÞ
exp½_ðωþωjÞ=ðkBTÞ��1

dω
h i

:
(48)

Unfortunately this integral does not have an analytic solution,
so we leave it as an integral and define a new set of Lamb shifts

Δ
T
j � jgjj2 Im ½~ΓTj �: (49)

The approximations we used for the zero temperature part of the
master equation can be applied in exactly the same way to the
new terms that appear at non-zero temperature. The resulting
master equation for arbitrary temperatures is

_ρ ¼ � i

_
½H0 þ HL; ρ� � D½ΘðTÞ�ρ�D½ϒðTÞ�ρ; (50)

where

ΘðTÞ ¼
X

N

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γj 1þ nT ðωjÞ
� �

q

eiϕjσj; (51)

ϒðTÞ ¼
X

N

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γjnT ðωjÞ
q

e�iϕjσ
y
j ; (52)

and

HL ¼ �_ ByB� CCy� �

; (53)

with

B ¼
X

N

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δj þ Δ
T
j

q

eiϕjσj ; (54)

C ¼
X

N

j¼1

ffiffiffiffiffi

Δ
T
j

q

eiϕjσj: (55)

Note that when T > 0 the bath induces a Hamiltonian coupling not
only between the upper levels of the different transitions, but also
the lower levels.

The non-degenerate master equation and numerical efficiency

In deriving the master equation valid for all regimes, we did not
make the secular approximation, which involves dropping terms
that oscillate at the frequency difference between different
transitions. However, when the difference between the frequen-
cies of two transitions is much larger than the Lamb shifts and
linewidths, keeping the resulting rapidly oscillating terms greatly
increases the numerical overhead while contributing little to the
evolution. In this case one should drop these terms for numerical
efficiency. Doing so transforms the master equation into the non-
degenerate master equation, but only for those pairs of transitions
for which the detuning is very large. If we write the master
equation in the form given in Eq. (37), then dropping the rapidly
oscillating terms means merely dropping terms in the second and
third lines for the pairs of values of j and k whose transitions are
detuned by much more that their Lamb shifts and linewidths.
For readers very familiar with the degenerate and non-

degenerate master equations, the result of applying the secular
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approximation to a subset of pairs of transitions will likely be clear.
For readers without this familiarity, we give an explicit example.
Let us say that we can divide our transitions into two sets, where
the frequencies of those in the first set differ from the frequencies
of those in the second set by at least 103Δmax in which Δmax is the
maximum Lamb shift among all the transitions. If we denote the
transition operators in the first set by σ

ð1Þ
j , with j = 1, …, N1, and

those in the second by σ
ð2Þ
j , with j = 1, …, N2, then the result of

making the secular approximation on the master equation in
Eq. (37) is

_ρ ¼ � i

_
H0 � _

X

2

m¼1

Dy
mDm; ρ

" #

þ
X

2

m¼1

D½Σm�ρ; (56)

with

Σm ¼
X

Nm

j¼1

ffiffiffiffiffiffiffiffi

γ
ðmÞ
j

q

eiϕ
ðmÞ
j σ

ðmÞ
j ; (57)

Dm ¼
X

Nm

j¼1

ffiffiffiffiffiffiffiffiffi

Δ
ðmÞ
j

q

eiϕ
ðmÞ
j σ

ðmÞ
j : (58)

Additional confirmation of accuracy for the Ohmic bath

It is clear from the derivation in the previous section that the
master equation we have obtained, given in Eqs. (37) and (50), will
be valid so long as the variation of the Lamb shifts Δ(ωj) and
damping rates γ(ωj) on the scale of these same Lamb shifts and
damping rates is sufficiently small. This variation of the Lamb shifts
and damping rates will be small if the variation of the spectral
density J(ω) on the scale of the Lamb shifts and damping rates is
sufficiently small. Below we will verify quantitatively the accuracy
of the new master equation for the Ohmic spectrum at zero
temperature, using exact simulations of two example systems. The
Ohmic spectrum is appropriate for systems such as atoms, color
centers, or superconducting qubits coupled to one-dimensional
wave-guides or transmission lines.
Since the efficacy of the approximation used to derive the

master equation does not depend on the temperature of the bath
or the specific functional form of the spectral density (it depends
only on the local variation of the resulting Lamb shifts and
damping rates around their respective transition frequencies),
simulations for the Ohmic bath at zero temperature provide a high
level of confidence in the accuracy of the master equation more
generally. Further, since we have exact analytic expressions for the
Lamb shifts and damping rates in this case, if desired the
variations of these quantities at the transition frequencies can be
related directly to the accuracy determined in our simulations.
We have already compared the evolution of the master

equation to exact simulations for the V system in Fig. 2. We now
consider two further systems. The first is the "trident” system
depicted in Fig. 1b. This system has three transitions, and thus also
three pairs of transitions which we can place simultaneously in the
near-degenerate regime. Again using ~ν as our arbitrary frequency
reference, we choose parameters ω1 ¼ 10π~ν, ωj = ω1 + γ2/(j − 1),
for j = 2, 3, and γj ¼ ½ð5� jÞ=40�~ν, for j = 1, 2, 3, with the cut-off
frequency Ω ¼ 80π~ν. Choosing the initial state
ψ0j i ¼ ð7i 1j i þ 3 2j iÞ=

ffiffiffiffiffi

58
p

, we plot the evolution of the popula-
tions predicted by the master equation along with the exact
evolution in Fig. 3a. The maximum error in the evolution of the
master equation over the time period plotted in Fig. 3a is less than
2 × 10−3.
We now perform simulations for two co-located qubits, whose

level structure is depicted in Fig. 1d. We choose the parameters
ω1 ¼ 10π~ν, ω2 = ω1 + 2γ1, and γ1 ¼ γ2 ¼ 0:1~ν, with the same cut-
off frequency as before. We find that this system requires
significantly larger values of the weak damping parameters

("quality factors”), Qj ≡ ωj/γj, in order for the master equation to
accurately model the dynamics. Since available numerical
resources place restrictions on the sizes of the Qj’s that we can
practically simulate, for this system we apply the first rotating-
wave approximation to our model Hamiltonian prior to perform-
ing the exact simulations. That is, we simulate the Hamiltonian
HRWA (Eq. 15) instead of the full model in Eq. 7. These simulations
thus show us how well the master equation will perform so long
as the Qj’s are large enough to satisfy the first rotating-wave
approximation. We stress that the values of the Qj’s we actually
simulate here are not large enough to satisfy this approximation
for this system. This fact is interesting in itself, because it shows
that different systems, even with only a few levels, can require
quite different quality factors to reach the weak damping regime.
We believe this is due to the availability of more channels via
which the off-resonant terms in the system bath interaction can
excite the two-qubit system over the V and trident systems.
Choosing the initial state ψ0j i ¼ ði 1j i1 0j i2 þ 0j i1 1j i2Þ=

ffiffiffi

2
p

, we
show the evolution of the populations for both the master
equation and the exact simulations of HRWA in Fig. 3b. The error in
the evolution of the master equation over the duration shown in
Fig. 3a is less than 5 × 10−3.
Finally, we compare the evolution of the Bloch–Redfield

equation (Eq. 24) both to our Lindblad master equation and the
exact simulations. These comparisons, plots of which are given in
the Supplementary Figs. 1 and 2, confirm that the B-R equation
and our master equation have essentially the same accuracy. This
result is implied, of course, by the derivation of the Lindblad
master equation.

Regime of validity

We have shown that when the spectral density is sufficiently flat
the B–R equation for thermal damping can be replaced by a
Lindblad equation, and that this is an excellent approximation for
the Ohmic bath. The question we need to answer now is whether
the slowly varying spectrum (SVS) approximation remains an
excellent approximation over the entire domain in which the B–R
equation itself is valid, or whether there is a regime in which the
B–R equation is valid but the Lindblad equation is not. Since the
SVS approximation depends solely on the slope of the spectral

Fig. 3 Comfirming the accuracy of the Lindblad master equation
for two examples. A comparison of the master equation given in Eq.
(37) with the exact evolution for two open systems. The evolution of
the master equation is shown as dashed lines and the exact
evolution as solid lines. a The populations of the three upper levels
of the trident system depicted in Fig. 1b with initial state

ψ0j i ¼ ð7 i 1j i þ 3 2j iÞ=
ffiffiffiffiffi

58
p

. b The populations of the two upper
levels of the two-qubit system depicted in Fig. 1d with the initial

state ψ0j i ¼ ð i 1j i1 0j i2 þ 0j i1 1j i2Þ=
ffiffiffi

2
p

and the parameters
γ1 ¼ γ2 ¼ 0:1~ν, ω1 ¼ 10π~ν, and ω2 = ω1 + 2γ.
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density (strictly, the difference between the values of the spectral
density at the frequencies of nearby transitions) the question is, as
we increase this slope, whether the B–R equation deviates from
the exact evolution before or after the Lindblad and B–R equations
deviate from each other?
If we use an Ohmic spectrum, then we cannot increase the

slope of the spectral density without similarly increasing the decay
rate(s). We already know that the master equations break down
(deviate from the exact evolution) at large damping. To explore
how the slope of the spectral density affects the master equations
we thus require a new spectral density, and we use the one
depicted in Fig. 4. This density, which we will denote by Jr(ω), is
divided into three segments. It has a constant slope in each
segment, with all but the middle segment having the same slope
as the Ohmic spectrum (dJr(ω)/dω = 1/Ω2). In the middle segment,
which includes the transition frequency(ies) of the system, this
slope is increased by a factor of r.
It has already been established that the spectral density must

be sufficiently flat in order that the damping induced by the bath
be exponential32,53. We can use system identification, which we
used above to find the master equation for the V-system, to
determine the number of dynamical variables required to
reproduce the evolution of the open system as the slope of the
spectral density is increased. When this number is greater than
that possessed by the system, the evolution is non-Markovian and
all time-independent Markovian master equations will break
down. This allows us to determine not only how the B–R equation
performs, but whether any time-independent Markovian master
equation is able to model baths with steeply varying spectra.
We examine the exact evolution of both a two-level system and

the three-level V-system of Fig. 1a. The frequency of the two-level
transition is ω0 ¼ 10π~ν, with a damping rate of γ ¼ 0:296~ν when
r = 1, while the V-system has ω1 = ω0 − γ/2, ω2 = ω0 + γ/2, and
γ1 ¼ γ2 ¼ 0:2~ν. Since we have chosen a higher damping rate for
the two-level system the "baseline" error of the master equations
for this system will be a little higher than that for the V-system.
As we increase the slope of Jr, all the damping rates do increase

(at first only a little) because the values of Jr(ω) at the transition
frequencies also increase. The increase in the error of the master
equations will thus have two sources, the increasing slope and the
increasing damping rate(s). By determining the error of the master
equations as we increase the damping rates while keeping the
spectrum Ohmic, we can largely distinguish the relative contribu-
tions of the two sources of error.
In Fig. 5a we plot the population of the excited state of the two-

level system as it decays into the bath, for r = 2n, with n = 0 (the
Ohmic spectrum) and n = 3, 4, …, 12. We see that as the slope
increases the evolution distorts away from exponential decay.
Since the system starts in the excited state, the coherences remain
zero and there is only one independent variable in the evolution.
Since a time-independent linear equation can only generate real
non-exponential evolution if it has more than one dynamical
variable, any deviation from exponential behavior necessarily
implies non-Markovian evolution. In Fig. 5c we plot the error in the
evolution of the master equations (note that both the Lindblad

and B–R master equations are identical for a two-level system) as a
function of n (equivalently log 2r). Note that the evolution of the
master equation is determined solely by the damping rate γ(r) =
2πg2Jr(ω0). Rather than using the damping rate as given by the
master equation, for each value of r we can alternatively choose
the damping rate that minimizes the error. We also plot this "best
fit" error in Fig. 5c, as well as the error of the master equations for
an Ohmic spectrum with the damping rate γ(r). We see that the
effect of the increased slope on the error is much greater than that
of the increased damping rate alone. We also see that the "best-
fit" error, while smaller than that given by the value of γ specified
by the master equation, increases just as rapidly as the latter.
We use system identification to determine the dimension of the

dynamics that generates the exact evolution for each value of r. As
above, we define this dimension as the number of dynamical
variables required to account for 0.999 of the combined
magnitude of the dynamical eigenvalues. The results are
presented in Table 1. We see that the dimension, and thus the
non-Markovianity, starts increasing as soon as we increase the
slope, showing that all time-independent Markovian master
equations break down.
We now examine whether there is difference between the

accuracy of the Lindblad and B–R master equations as the slope, r,
increases. For this we need to explore the evolution of the V-
system. We choose the initial state of this system to be 2j i, and
plot in Fig. 5d the error of both master equations as a function of
n, as well as the error when Rj and Ij are chosen so as to give the
best fit to the exact dynamics. As Fig. 5d shows, the behavior of
the V-system is very similar to that of the two-level system. Even
when both master equations have deviated significantly from the
exact dynamics, they remain so close to each other that the
difference in their respective errors is hardly distinguishable on
the plot. Thus the master equations break down well before they
deviate from each other, and thus well before the SVS
approximation breaks down. We also note that the B-R equation
continues to maintain positivity to good approximation up
through r = 10; the magnitude of the most negative eigenvalue
of the density matrix remains below 1 × 10−12.
In Fig. 5b We show how the master equations compare to the

exact evolution for the V-system when n = 7 (r = 128). Notable is
how different the master equations are from the exact evolution,
while being close to eachother. The fact that the master equations
are able to approximate the exact evolution considerably better
given the optimal choices for Rj and Ij is rather interesting. It
suggests that there might be some way to develop improved
formulae for Rj and Ij.

Time-dependent problems: accuracy of the adiabatic extension

Many important problems involve open systems whose Hamilto-
nians change with time. Our master equation can be used to
describe these systems if the time-dependence is not too fast. To
do so one takes the master equation and changes the parameters
and operators that appear in it, namely γj(ωj), Δj(ωj), and σj (which
depend on the system eigenstates and thus on the system
Hamiltonian), so that at each time they take the values
determined by the Hamiltonian of the system at that time54.
The resulting time-dependent "adiabatic” master equation will be
effective for sufficiently slow changes in the Hamiltonian.
Here we examine some examples to confirm that the adiabatic

version of the master equation is accurate even when two levels of
an open system cross each other, or move from degenerate to
near-degenerate, during the evolution. We consider first the V
system in which both damping rates are equal and the detuning
changes with time. We start the system in the state
ψ�j i � ð 1j i � 2j iÞ=

ffiffiffi

2
p

, which for Δω = 0 will not decay since it
is the (sub-radiant) dark state15,25. We then change the detuning

Fig. 4 The piece-wise linear spectrum, Jr(ω). We use this piece-wise
spectrum to examine the effect of the slope of the spectral density
on the accuracy of the master equations. On the two outer
segments this spectrum has the slope of the Ohmic spectrum, while
on the middle segment the slope is increased by a factor r.
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with time as determined by the following two functions:

F1ðtÞ ¼
0; 0<t< T

4
;

π
64

t � T
4

� �

; T
4
<t<T ;

(

(59)

F2ðtÞ ¼
0; 0<t< T

4
;

π
2
; T

4
<t< 3T

4
;

0; 3T
4
<t<T :

8

>

<

>

:

(60)

The function F1 is chosen so that the detuning increases gradually,

while F2 involves rapid changes. In Fig. 6 we compare the

adiabatic version of the master equation with the exact evolution
for the two cases. For Δω(t) = F1(t) the maximum error of the
adiabatic master equation is 3.4 × 10−3, and for Δω(t) = F2(t) the
maximum error is 1.5 × 10−2.
As our final example we consider a generalized version of the

Landau-Zener transition45,46, in which the energies of two coupled

levels cross each other. In particular we use the 4-level system
depicted in Fig. 1c, in which we add a coupling between the
upper two levels. In the original Landua-Zener transition, for which
there is an analytic solution, the energy of one of the levels is fixed

and the other increases linearly with time. We generalize this by
choosing the following sinusoidal time-dependence for ω1:

ω1ðtÞ ¼ ω2 � Δ0 cosðνtÞ; 0 � t � π

ν

: (61)

The detuning, Δω ≡ ω1 − ω2, starts at − Δ0 and increases as a
sinusoid through zero to end at Δ0. We plot the evolution of the

populations of the two levels in Fig. 7. The maximum error of the
adiabatic extension of the master equation is less than 5.4 × 10−3.

Table 1. Effective dimension of the two-level system and V-system.

r 20 21 22 23 24 25 26 27 28 29 210 211 212 213

D2 1 2 2 2 3 4 4 4 4 5 5 5 5 5

DV 4 5 6 7 8 9 10 10 10 11 12 12 12 12

The effective dimension of the damped two-level system, D2, and that of

the damped three-level V-system, DV, as the slope of the spectral density,

J0ðωÞ ¼ r=Ω2, is increased for a fixed cut-off frequency, Ω.

Fig. 5 Breakdown of the Lindblad and Bloch–Redfield (B–R) master equations. Here we show how the Lindblad and Bloch–Redfield (B–R)
master equations break down as the condition on the flatness of the spectral density is relaxed. Plots a and c show this break down for a two-level
system and plots b and d for the three-level V-system of Fig. 1a. a The population of the excited state as it decays, for a range of values of the slope
of the spectral density at the transition frequency, J0ðω0Þ ¼ r=Ω2. The blue curve is the Ohmic spectrum, and rest of the curves, from green
through violet, show the evolution for r = 2n, with n = 3, 4, …, 12. b The population of level 2j i of the V-system with r = 27 (blue) along with the
predictions of the Lindblad and B–R master equations (green and turquoise, respectively). The orange and pink curves show the "best-fit" to the
exact dynamics for both master equations, obtained by fitting the parameters Rj and Ij. c The blue curve is error of the master equation in
describing the decay of the excited state when the spectrum is Jr, as r is increased. The red curve is the error of the master equation when the
spectrum is Ohmic and the damping rate is the equivalent of that set by Jr, namely γ(r) = 2πg2Jr(ω0). The orange curve shows the error of the
master equation for the spectrum Jr when we fit the damping rate. d The blue and magenta curves give, respectively, the errors of the Linblad and
B-R master equations in describing the evolution of the population of the initial state 2j i, when the spectrum is Jr. (Note that these errors are
sufficiently similar that the magenta curve is almost entirely obscured by the blue curve.) The red and dark red curves, respectively, give the same
errors when the spectrum is Ohmic and the damping rates are the equivalents of those set by Jr. The orange and purple curves give the same
errors when we choose the values of Rj and Ij so as to give the best fit to the exact dynamics for each master equation.
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DISCUSSION

We have shown that a slow variation condition on the spectral
density is necessary for Markovianity in the oscillator-bath model
of thermalization, and along with weak damping and a high cut-
off frequency is a sufficient condition for the existence of an
accurate Lindblad master equation for all regimes of detuning. In
doing so we have shown that the Bloch–Redfield equation for
thermal damping can be replaced with this Lindblad equation.
This resolves the long-running controversy with the
Bloch–Redfield equation, and confirms the conjectures of Eastham
et al.28.
The new master equation unifies the existing Lindblad master

equations for degenerate and non-degenerate systems and in
doing so provides insight into the dynamics of the near-
degenerate regime. It also allows both the use of efficient Monte
Carlo methods and a measurement description of the action of a
thermal bath for all regimes. Further, its adiabatic extension
provides a powerful tool for simulating systems in which
transitions are time-dependent and cross during the evolution,
so long as this time-dependence is not too fast. This suggests that
further exploration of the accuracy of the adiabatic extension as a
function of the speed of the time-dependence may be a
worthwhile endeavor. Such an exploration would help to
delineate the class of controlled systems for which it is effective.

The technique of system identification played an important role
in obtaining the master equation, as well as determining when
open systems are Markovian. As far as we are aware, system
identification has not been used before as a tool to understand
the dynamics of open quantum systems, or emergent phenomena
in many-body systems more generally. We expect that it will prove
to be powerful for exploring a wide range of problems in open
systems and many-body physics.

METHODS

System identification for linear systems

Here we present the method we used to determine the minimal model of
a linear system given a knowledge of the evolution of a subset of the
system’s state-space. In our case the linear system consists of a low-
dimensional quantum system interacting with a high-dimensional bath,
and the subset of the state space that we can observe is the density matrix
of the low-dimensional system. The following method is one of a family of
elegant methods referred to as subspace identification methods, adapted
so as to use a set of initial conditions rather than a set of inputs. Further
information on subspace identification methods can be found in55–58.
Let us say we have a high-dimensional system with dimension J (in our

case the open system and the bath), and we have the ability to observe N
< J variables of the system, as well as to evolve the system with any choice
of initial conditions for the N variables we can observe. We would like to
find an accurate model (another linear system) that generates the

Fig. 6 Accuracy of the Lindblad master equation for two time-dependent examples. A comparison of the evolution predicted by the
adiabatic extension of the new master equation, Eq. (37), with an exact simulation of a V system coupled to an Ohmic bath (Fig. 1a), in which

the detuning between the transitions, Δω, has the time-dependence given in Eqs. (59) and (60). The initial state is ψ�j i ¼ ð 1j i � 2j iÞ=
ffiffiffi

2
p

which
is the dark state for degenerate transitions with equal damping rates. The transition frequency ω1 ¼ 3π~ν, the damping rates are
γ1 ¼ γ2 ¼ γ ¼ 0:1~ν, and the simulation time is T = 8. (a,c,e) Δω(t) = F1(t) (Eq. (59)). a The populations of levels 1j i (blue) and 2j i (red), with the
evolution of the adiabatic master equation denoted by dashed lines and that of the exact simulation by solid lines. c The absolute value of the
difference between the populations predicted by the adiabatic master equation and the exact evolution. e The detuning as a function of time.
b, d, f The same set of results but with the detuning given by F2(t) (Eq. (60)).
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evolution of the N variables but is onlyM dimensional with N ≤M < J. Let us
denote a state of the full J-dimensional system by the vector v, and the
subset of N variables in which we are interested by the N-dimensional
vector x. The map that gives the state of the total J-dimensional system at
time τ given an initial state v(0) we will call Z(τ) so that v(τ) = Z(τ)v(0).
Defining Z ≡ Z(τ) we note that Z(nτ) = Zn. We also define the non-square
projector P that projects onto the N variables so that x = Pv.
Given the ability to evolve the total system with any choice of initial

conditions for the N-dimensional subsystem, along with a single choice for
the initial values of the rest of the variables (of which there are N − J), we
can obtain the matrices Yn = PZ(nτ)PT that maps the N variables at time 0
to their values at time τ, for any time τ.
We now construct the following two symmetric "block Hankel” matrices:

H0 �

Y0 Y1 � � � Yn

Y1 Y2 Ynþ1

.

.

.
.
.

.
.
.
.

Yn Ynþ1 � � � Y2n

0

B

B

B

B

@

1

C

C

C

C

A

; (62)

H1 �

Y1 Y2 � � � Ynþ1

Y2 Y3 Ynþ2

.

.

.
.
.

.
.
.
.

Ynþ1 Ynþ2 � � � Y2nþ1

0

B

B

B

B

@

1

C

C

C

C

A

: (63)

We now note that H0 can be written as an outer product H0 = CDT of (non-
square) matrices given by

C ¼

P

PZ

.

.

.

PZm

0

B

B

B

B

@

1

C

C

C

C

A

¼ P

I

Z

.

.

.

Zm

0

B

B

B

B

@

1

C

C

C

C

A

; (64)

DT ¼ Z Z2 � � � Zm
� �

PT: (65)

We can now determine C and D by doing a singular value decomposition
of H0 to give H0 = USVT. Note that since the smaller dimension of the
matrices C and D is smaller than that of H0 we expect many of the columns
of U and the rows of VT will be zero, as will many of the eigenvalues of H0

which are given in the diagonal matrix S. Note that we can now view P and
Z as defining a linear model that generates evolution of the N-dimensional

subsystem. The number of eigenvalues that are appreciably non-zero tells
us the dimension of the model.
To distinguish the model from the original total system we started with,

we can write the matrices C and D as

CT ¼ MT ½MT�2 � � � ½MT�m
� 

QT; (66)

DT ¼ M M2 � � � Mm
� �

QT; (67)

where M is the evolutionary map for the model and Q is the projector onto
the subsystem. Let us now decompose H0 = USVT into the outer product of

two vectors ~C � U
ffiffiffi

S
p

PT and ~D ¼ ðP
ffiffiffi

S
p

VTÞT . Noting that

H1 ¼ CZDT (68)

we can obtain the evolutionary map for the model, M, from H1 using

M ¼ ð~C~CTÞ
�1

~C
T
H1

~Dð~DT
~DÞ

�1

: (69)

We note that the above method determines the equations of motion of
the linear system, but does not itself give the change of basis between the
original system variables and those that appear in the obtained equations.
Obtaining this change of basis requires additional methods.

Including a diagonal system-bath coupling operator: dephasing

In our derivation of the master equation above we set the diagonal
component of the interaction operator, D, to zero. To include D we note
that it can be expressed as

D ¼ κ0I þ
X

N

j¼1

κjzj (70)

for some real numbers κ0, κj. Here we have defined zj � σ
ðjÞ
z ¼ mj

�

�

�

mj

	 �

��
nj
�

�

�

nj
	 �

� as the Pauli z-operator for transition j. Note that the term κ0I does
not contribute to the dynamics of the system.
In driving the master equation we now have additional terms of the

form of K in Eq. (18), but with the operators σIj replaced by zIj ¼ zj (The zj
operators have no evolution in the interaction picture because they
commute with Hsys). Note that there are no terms of the form of K in which
there is one zj and one σIk because the rotating-wave approximation
eliminates them. Since the zIj do not oscillate, the terms they generate are
"at zero frequency" and thus cannot be near-degenerate with any of the
damping terms. As such, in proceeding to process the new terms to derive
the B–R equation, one immediately obtains a Lindblad form for these
terms and the new approximation we have introduced is not required. The
contribution to the master equation is

_ρ ¼ � i Z2; ρ
� �

� Y; Y; ρ½ �½ � (71)

where

Z ¼
X

j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πκ2j Jð0Þ
q

zj (72)

Y ¼
X

j

κj

Z

Ω

0

JðωÞ
ω

dω


 �1=2

zj (73)

Note that the integral in Eq. (73) will only exist so long as J(ω) goes to zero
sufficiently fast as ω → 0. But in this case J(0) = 0 so the Hamiltonian
contribution vanishes. The double commutator in Eq. (71) gives collective
dephasing of the transitions.

Principle value of an integral

In deriving our Lindblad master equation we used the fact that
Z

FðxÞ
Z 1

0

sinð½ω� ω0�sÞds

 �

dx ¼ P
Z

FðxÞ
x

dx


 �

(74)

for any smooth function F(x), in which P � � �½ � denotes the principle value
of a divergent integral. The principle value of an integral that diverges at a
point a (where a ∈ (b, c)), is defined by

P

Z c

b

f ðxÞdx

 �

� lim
ε!0

Z a�ε

b

f ðxÞdx þ
Z c

aþε

f ðxÞdx

 �

: (75)

Since the divergent function f(x) = 1/x is anti-symmetric and diverges at
a = 0, it is simple to evaluate the principle value of

R c

�b
ð1=xÞdx. Assuming

Fig. 7 Accuracy of the Linblad master equation for an example
Landau-Zener transition. Here we plot the evolution resulting from
a generalized Landau-Zener transition in which the energies of two
coupled levels cross. The levels are the upper two levels of the four-
level system depicted in Fig. 1c. The energy of level 2j i is fixed so
that ω2 ¼ 2π~ν, and that of level 1j i, in which all the population
starts, increases with time. The detuning between the levels is
shown as a function of time in the inset. We plot the populations of
the two levels, both the exact evolution (solid) and that predicted by
the master equation (dashed). The damping rates of the two levels
are γ2 ¼ 2γ1 ¼ 0:05~ν, the coupling between them is c ¼ 0:2~ν, the
initial detuning is Δ0 ¼ ðπ=2Þ~ν, and the period of the sinusoid is
2π=ν ¼ 64=~ν.
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that b and c are positive and c > b we have

P
R c

�b
dx
x

� �

� lim
ε!0

R�ε

�b
dx
x
þ
R c

ε
dx
x

� �

¼ lim
ε!0

R�ε

�b
dx
x
þ
R b

ε
dx
x

h i

þ
R c

b
dx
x

¼
R c

b
dx
x
¼ ln ðc=bÞ:

(76)
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