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Abstract—Due to their light weight, low power, and practically
unlimited identification capacity, radio frequency identification
(RFID) tags and associated devices offer distinctive advantages
and are widely recognized for their promising potential in
context-aware computing; by tagging objects with RFID tags,
the environment can be sensed in a cost- and energy-efficient
means. However, a prerequisite to fully realizing the potential is
accurate localization of RFID tags, which will enable and enhance
a wide range of applications. In this paper we show how to exploit
the phase difference between two or more receiving antennas to
compute accurate localization. Phase difference based localization
has better accuracy, robustness and sensitivity when integrated
with other measurements compared to the currently popular
technique of localization using received signal strength. Using
a software-defined radio setup, we show experimental results
that support accurate localization of RFID tags and activity
recognition based on phase difference.

Index Terms—RFID localization, phase difference, maximum
likelihood estimation, software-defined radio.

I. INTRODUCTION

With the integration of computing into everyday objects

and activities, ubiquitous computing has become part of our

day to day lives. Due to the mobility and dynamic nature

of the communication structure as well as the physical en-

vironment, ubiquitous computing has unique challenges and

presents unprecedented opportunities [1], making context-

aware computing a new paradigm. In this emerging context-

aware computing, the applications adapt not only to the

computing and communication constraints and resources, but

also to the contextual information, such as the objects in

the surroundings and people and activities in the vicinity,

and even emotional and other states of the user [1]. To

realize these potential improvements and make the context-

aware applications cost-effective, the systems must be able to

“sense” the environment effectively, with low energy and low

cost [22], [21]. While traditional approaches such as vision-

sensor and active sensor based methods are obvious choices

for object recognition and localization [17], realization of a

robust and cost-effective system based on these sensors has

yet to be implemented after several decades of research.1

Recent deployment of radio frequency identification (RFID)

technology for efficient asset tracking and management has

made RFID tags and associated devices widely available with

low cost and low energy usage. For example, there are active

1This does not imply that computer vision does not make any progress; on
the contrary, computer vision has made numerous important breakthroughs.

RFID tags that typically last for five to seven years with

a compact battery as a reliable wireless signal transmitter;

obviously passive RFID tags have practically no lifetime limit.

Clearly RFID tags, at a coarser level, provide a cost-effective

and energy-efficient way of solving the environment sensing

problem. One straightforward solution is to attach one or more

RFID tags to each object of interest in the environment. As

RFID tags have a limited range of readability, by reading all

the tags in the proximity, using a reader or similar device, a

computer can approximate its environment based on the sensed

objects. Additionally, a unique advantage of RFID technology

over vision and other sensor based methods is that RFID tags

do not require line of sight in order to be “seen” and thus avoid

problems associated with occlusion. Because of the unique

and strategic advantages of RFID tags, they have been heavily

investigated for numerous applications (e.g. [8], [17], [3], [16],

[9], [15]).

While coarse-grained localization, that is, whether an object

is present or absent in the proximity, is sufficient for many

applications, a large number of applications will benefit from

accurate location information of objects. For example, in a

smart house setting, a low-cost solution of knowing precisely

where people are and what objects are close to them will

enable optimization of user interfaces and energy utilization

and enhanced convenience. In addition, it is often important to

track the motion of people/objects so that dynamic activities

can be recognized and modeled. These applications have

motivated numerous localization schemes and systems for

RFID devices (see [5], [27] for recent reviews). Even though

there are other schemes for localization such as using WiFi

devices, WiFi devices are much larger in size and have much

more strict power requirements, which makes RFID tags the

most attractive choice for numerous applications.

In this paper, to achieve a fine-grained localization, we

exploit the phase difference of the received signals at different

antennas. While the received signal strength can attenuate

quickly and therefore may lead to significant estimation errors

of the location, the phase difference, on the other hand,

can be estimated much more reliably as long as the signal-

to-noise ratio is not too small. A unique advantage of the

proposed phase difference method is that by measuring the

phase difference between pulses within the same burst, one

can estimate the motion of the object, thus making it feasible

to monitor human activities at natural speeds. For example,

our experiments suggest that we can reliably measure phase
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difference within 0.57◦ (see Figs. 6 and 7). Another advantage

of phase difference is that it can be combined with received-

signal-strength-based scene analysis methods to improve the

localization accuracy by using phase difference to estimate the

local distance to reference tags.

To evaluate the effectiveness of phase difference for local-

ization, we set up a plot study system that consists of active

RFID tags, Universal Software Radio Peripheral (USRP) as

receivers, and a pan-tilt unit to accurately place tags for various

controlled experiments. Note that the model and the phase

difference estimation methods apply to passive RFID tags in

a similar manner2; here we limit our scope to active RFID

tags, mainly so that our experiments are easy to replicate.

The initial results we have are encouraging even though more

localization experiments under real-world settings need to be

further investigated.

The rest of the paper is organized as follows. Section II

outlines the general localization problem and then reviews the

related work on localization using RFID technology in the

given framework by categorizing them based on several crite-

ria. In Section III we describe the phase difference model and

Section IV presents algorithms for phase difference estimation.

Section V presents experimental results on localization and

motion estimation and modeling. Section VI concludes the

paper with a summary and discussion.

II. RELATED WORK

The most general setup for RFID localization can be posted

in a statistical inference framework [6], [14]. We represent

the region of interest as a scene that consists of K RFID

tags (wireless signal transmitters), whose configuration at

time t is given by the location in the three dimensional

space, the orientation of the transmitter’s antenna, and the

power level3; and N receivers, whose configuration is given

similarly. Given a number of measurements between the tags

and the receivers, the localization problem is to estimate

the probability distribution of the location of the tags and

receivers. Note that even though the localization algorithms

developed for wireless ad-hoc networks and in particular,

wireless sensor networks [14], can, in theory, be applied

to localization using RFID technology, due to the unique

characteristics of RFID technology, for example, no or very

limited computation capabilities available on the tags, the

potential large number of tags, and typical indoor operating

environments; localization algorithms specific to RFIDs should

be developed and studied [4].

The existing localization methods can be categorized based

on 1) the constraints (i.e., range-free (based on connectivity

information) or continuous measurements (such as received

signal strength)), 2) the temporal nature of locations of tags

and receivers (e.g., anchor-free or with reference tags or

receivers at fixed locations), 3) and the statistical inference

2For example, we can use one RFID reader to power and initiate wireless
communications from passive tags.

3The power level of an active RFID tag is constant; for a passive tag, it
can be changed by changing the power level of the reader.

algorithm given the constraints. In the given setting, it is

clear that range-free localization methods can be seen as a

special case of using received signal strength, where only

binary values of received signal strengths are available through

reachability.

Before we summarize existing methods and systems for

localization using RFID technology, we stress the significant

differences between the results based only on computer simu-

lations and the results based on physical system measurements.

While RFID tags and readers are widely available, setting

up an experimental system is not a straightforward task, as

capturing wireless signals is full of challenges [23]. To avoid

difficulties associated with prototyping, simulation is often

used in various localization studies. For example, Wang et

al. [20] propose an active scheme and passive scheme for

RFID localization and provide supporting evidence through

simulation in Matlab; Zhang et al. [25] propose the use of

direction estimation for two dimensional localization; while

they propose to use the phase difference to estimate the

direction of arrival but they provide only simulation results.

Bouet and Pujolle [4] use connectivity constraints through

detectability of tags of mobile readers. While simulation

results can be used to verify principles and theoretical aspects

of localization and other methods, they are not sufficient to

evaluate RFID localization performance as the wireless signals

are affected by many other factors. Therefore, localization

accuracy comparison between methods based on physical

system measurements and methods based on simulation results

(e.g. [4]) should be interpreted carefully.

Due to the difficulties of capturing and processing RFID

communications, localization systems commonly rely on avail-

able wireless measurements at the receivers (e.g., RFID

readers) such as received signal strength (RSS) (e.g., [11],

[13]).4 These RSS measurements can be binarized using some

hardware or software threshold, resulting in binary readabil-

ity/reachability values, which can be used as connectivity

constraints in range-free localization systems. When the trans-

mitting power of the transmitters can be dynamically changed,

one can obtain a multi-level approximation of the range using

multiple readability values [13]. This can be interpreted as an

intermediate range representation between continuous values

and range-free binary values. These measurements lead to

constraints on the location and the orientation of tags as well

as on the readers, which are then used by a statistical inference

algorithm for localization. The localization step is often called

the scene analysis step [5].

As the measurements and therefore constraints are pairwise

between transmitters and receivers, they can be used to localize

either transmitters or receivers using known fixed receivers

or transmitters (called anchors), or both as in anchor-free

systems. For example, SpotON [11] is based on RSS measure-

ments estimated from adjustable sensors and the measurements

4There are other measurements that can be used to estimate the distance,
such as time difference of arrival [18] and time of arrival; these measurements
are rarely used in RFID technology as these measurements are difficult and
expensive to implement.
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are used to estimate inter-tag distances with improved accuracy

by calibrating radio signals to reduce the effects of hardware

variability; as custom-built sensors used in SpotON are both

transmitters and receivers, the system is more similar to

a wireless ad-hoc network than to an RFID-based system.

Landmarc [13] localizes RFID tags through comparing profiles

with a number of reference tags with known locations; in

this system nine readers with eight different power levels are

used and a number of reference tags (i.e., tags with fixed and

known location) are used for localization. To localize a tag, its

estimated signal strengths from all the readers are compared

to the corresponding measurements of reference tags. The

estimated tag location is given by a weighted average of the k-

nearest neighbors. The system is robust to some environmental

factors as the reference and the unknown tags are subject to

the same conditions; however, it is sensitive to tag orientation

as the reference tags and the unknown tag can be oriented

differently, specially when the tag is used to track moving ob-

jects. VIRE [26] uses the same localization method as in [13]

and improves the efficiency of Landmarc by introducing a

proximity map so that only tags in the neighboring areas need

to be compared, rather than all the tags as in [13]. Zhang et

al. [24] improves the localization accuracy of [13] by modeling

the noise so that dissimilarity among tags is reduced for more

reliable nearest neighbor matching and estimation. While the K

nearest-neighbor estimation is commonly used as the inference

algorithm, statistical inference algorithms are also used. For

example, Bekkali et al. [2] propose to use Kalman filtering to

estimate locations of unknown tags based on multilateration

to the reference tags using two mobile RFID readers. A more

general statistical inference framework is to use the Bayesian

network [12] to estimate the locations and even orientation of

tags and readers.

In this paper, we study the phase difference for accurate

localization and motion tracking and activity recognition.

In contrast to Zhang et al. [25], where phase difference is

used only in simulations, our phase difference estimation is

implemented and demonstrated using a prototype system and

therefore our study is directly relevant to RFID applications

that rely on localization. Our experiments show the phase

difference can be estimated with high accuracy and can be

used for three dimensional positioning. To the best of our

knowledge, this is the first time that phase differences from

RFID tags are measured reliably and are used for three

dimensional positioning, motion estimation and tracking.

III. SYSTEM SETUP AND COMMUNICATION MODEL

In this paper, we focus on quantitative models of phase

difference for RFID tags. The phase difference measurements

are based on software-defined radios due to their flexibility

in implementing various algorithms. To be more precise in

presenting our model and algorithms, our formulation is based

on the following setup we have. Clearly, for a different setup,

the phase difference estimation algorithm and results should

be similar even though changes may need to be made. As

shown in Fig. 1, the system we have consists of RFID tags,

Fig. 1. The system setup (consisting a software-defined radio (USRP), RFID
tags, and a pan-tilt unit) we have used for accurate manipulation and placement
of tags for controlled experiments.

a software-defined radio system, and a pan-tilt unit. The

tags we use are the M100 asset tags from RF Code5. The

carrier frequency of the tags is 433.92 MHz with typical

transmission range over 90 meters (sufficient to cover entirely

typical houses and offices). The tag uses the on-off keying

(OOK) for communication, as it is simple to implement and

is energy efficient (to prolong battery life). To meet the

energy efficiency requirement, the signals are transmitted in

a burst only at almost regular internals6. Using a compact

battery (Lithium CR2032, which is replaceable), a tag typically

lasts over seven years. During each burst, a fixed number of

pulses are transmitted at seemingly the same magnitude with

predetermined intervals, where we suspect that the lengths of

the intervals are used to identify the tag. Each pulse is basically

a sine wave for a short period of time on the carrier frequency.

To be able to implement various phase difference estima-

tion algorithms and measure various aspects of the wireless

communication, we have used software-defined radios for the

experiments due to their flexibility7. The software-defined

radios are based on the USRP from Ettus Research LLC8,

along with software modules and packages from the GNU

software-defined ratio project9. We have used two RFX400

daughter boards, where both are configured as receivers. In

order to estimate phase difference, the two receivers must

be driven with the same sampling clock; otherwise, even a

tiny mismatch between the clock will result in a huge phase

difference. The USRP guarantees that the two channels are

driven by the same sampling clock. In our system, the daughter

boards are tuned to 433.92 MHz.

A. Communication Model

The wireless communication between the tags and the

USRP unit is a typical wireless communication system and

5Specifications available from http://www.rfcode.com.
6The intervals are randomly perturbed for collision avoidance.
7Note the algorithms presented can be implemented in hardware efficiently

if a hardware implementation is desired.
8http://www.ettus.com/.
9Available http://gnuradio.org.
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here we follow the model in [19]. Based on our observation,

the wireless signal from an RFID tag in one pulse can be

described as A cos(2πfct), where A is the constant magnitude

and fc is the carrier frequency. At each daughter board,

the received signal at its antenna is amplified and down-

converted to the baseband. A baseband signal is represented

by the inphase and quadrature components, denoted as I(t)
and Q(t), respectively. If the carrier of the tag and the USRP

are on exactly the same frequency, both I(t) and Q(t) should

be a constant, depending only on the phase of the carriers.

However, there will always be a frequency difference between

the carrier of the tag and the carrier of the USRP due to

the manufacturing process of the oscillator. Let fr denote the

frequency tuned to at the receivers. The waveforms at receiver

1 can be represented as

I1(t) = A1 cos(2π(fr − fc)t + φ1) + σ1n11,
Q1(t) = A1 sin(2π(fr − fc)t + φ1) + σ1n12,

(1)

where A1 is the received signal magnitude, φ1 is the initial

phase difference between the carrier at the tag and the carrier

at the receiver, the initial carrier phase at the receiver, n11 and

n12 are Gaussian noise terms of unit variance, and σ1 is the

noise level. Using similar notations, the waveforms at receiver

2 can be represented as

I2(t) = A2 cos(2π(fr − fc)t + φ2) + σ2n21,
Q2(t) = A2 sin(2π(fr − fc)t + φ2) + σ2n22.

(2)

Wireless signals travel at the speed of light, such that φ1

and φ2 depend on the lengths of the paths from the tag to the

receivers. However, the exact values of φ1 and φ2 also depend

on the initialization process of the hardware, such that they

cannot be used directly for distance and location estimation.

Fortunately, the phase difference, i.e., φ1 − φ2, captures the

difference of the distances of the paths, which can be used for

location estimation.

B. Measured Waveforms and Phase Difference

To demonstrate that the wireless signals are reliable for

phase difference estimation, Fig. 2 shows one burst received

at the two antennas along with a zoomed version showing the

signals during one pulse. These plots show clearly that the

signals are robust and allow for reliable phase estimation and

thus the phase difference estimation.

The waveforms received at the antennas as given in Eqs.

(1) and (2) allow a straightforward estimation the phase

difference. That is, at time t, the phase difference should be

tan−1(Q1(t)/I1(t)) − tan−1(Q2(t)/I2(t)). Figure 3 shows

one example of estimated phases during a pulse and a typical

distribution of estimated phase difference during a burst.

Figure 3(a) plots I1(t) v.s. Q1(t) (green ’+’) and I2(t) v.s.

Q2(t) (red ’+’); where the time is encoded by the intensity

of the colors; it shows clearly the constant phase difference.

Figure 3(b) shows the probability distribution of the phase

differences of a stationary tag during one burst; here the

probability distribution is estimated using the Parzen window

method [10]. In this typical example, the standard deviation

(a)

(b)

Fig. 2. Waveforms received at antennas during a transmission of a burst.
(a) Estimated magnitudes of the signals received at two antennas (top and
bottom); (b) Each panel shows the received signals at an antenna, here the
blue plot shows I(t), and the red one shows Q(t), and the black dashed one

shows the magnitude
p

I(t)2 + Q(t)2.

(a) (b)

Fig. 3. Phase difference estimation example for one pulse. (a) The signals at
two antennas, showing clearly the constant phase shift; (b) The estimated
probability distribution of the estimated phase differences during a burst;
here it is estimated using a Parzen window and the standard deviation of
the distribution is 0.954◦.

of the phase differences is 0.954◦. For the waveforms at

433.92 MHz, this corresponds to a localization accuracy of 1.8

millimeters.10 While the estimated accuracy is under an ideal

situation, it shows clearly the feasibility of phase difference

estimation for accurate localization.

IV. MAXIMUM LIKELIHOOD ESTIMATION OF THE PHASE

DIFFERENCE

While the straightforward estimation the phase difference is

often sufficient, for more reliable and accurate estimation in

10Given by 0.954

360
×

299792458

433920000
meter = 0.0018 meter, where 299792458

is the speed of light (meters/second).
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cases such as phase difference tracking for moving RFID tags,

one can use the maximum likelihood estimation. One option

is to estimate the phase for each antenna separately and then

compute the phase difference. The other option is to directly

estimate the phase difference. In the first case, suppose we

have n samples from the first antenna, I1(t1), . . . , I1(tn), and

Q1(t1), . . . , Q1(tn). As the sampling rate of the channels is

constant and known, we have ti = i×∆t, where ∆t is given

by the sampling rate.

Under the common assumption that the noise terms are

statistically independent and follow the Gaussian distribution,

we have

φ̂1 = arg maxφ1

∏i=n

i=1
(P (I1(ti)|φ1) × P (Q1(ti)|φ1)

= arg minφ1

∑i=n

i=1
(I1(ti) − A1 cos(∆ω × i + φ1))

2

+(Q1(ti) − A1 sin(∆ω × i + φ1))
2,

(3)

where ∆ω = 2π(fr−fc)∆t. Here we assume that the original

waveform is a pulse with a constant amplitude and therefore

A1 does not depend on i; we utilize the assumption that the

I1(ti) − A1 cos(∆ω × i + φ1) and Q1(ti) − A1 sin(∆ω ×
i + φ1) are Gaussian distributed. This leads to a nonlinear

optimization problem and it can be solved through a gradient

method by initializing the variables with the mean estimation

of the variables. For example, A1 can be initialized with the

average amplitude during the active pulse transmission.

Note that the joint optimization of φ1 and φ2 can be done by

weighting the criterion used in Eq. (3) by σ2

1
and σ2

2
, which

can be estimated using the channel signals when no pulses

are being transmitted. We have implemented the maximum

likelihood using a nonlinear optimization function in Matlab11.

In typical waveforms, maximum likelihood estimation gives

an improved phase difference estimation, even though the

improvement is not always significant.

V. EXPERIMENTAL RESULTS

In this section we show the experimental results using the

system setup outlined in Section II. In these experiments, we

mount an RFID tag on the pan-tilt unit and set up the USRP

unit with two receiving antennas tuned to 433.92 MHz; all the

experiments were carried out in a room (roughly of 3.0m ×
6.0m × 3.5m) with all the fixtures (desks, chairs, and books

so on) in the room. While the set up we have may not be

as realistic as in situations required by some applications, all

the effects including multiple path, noise, and environment

factors are intrinsically part of the measurements. Compared to

simulation only studies (e.g. [20], [25]), our results are directly

relevant and applicable to localization applications.

A critical test is whether the phase difference can be esti-

mated reliably and whether the phase difference is discriminat-

ing, i.e., whether it changes smoothly when the tag is moved.

Figure 4 shows one of the experiments that demonstrates these

important features of the phase difference. In this experiment,

11We used fminsearch function; the Matlab is available from
http://www.mathworks.com.

(a)

(b)

Fig. 4. Phase differences on a surface patch. (a) Top-down view; (b) side
view to show the distribution in the three dimensional space.

we vary both the pan and tilt of the pan-tilt unit to cover a

portion in the three dimensional space, which is similar to

a portion of a sphere. For accurate measurements of phase

difference, we systematically move the tag; at each location

when the tag stops moving, we wait until we capture an

active burst of pulses and then we move the tag to the next

location. Figure 4 shows the phase difference on the surface;

Fig. 4(a) gives a two-dimensional view of the surface to show

the detailed variations and Fig. 4(b) shows a three-dimensional

view. It is clear that the phase difference varies smoothly,

depending on the three dimensional location of the tag. In

other words, the phase difference provides information of the

tag position in the three dimensional space.

Figure 5 shows a one-dimensional localization experiment.

Due to an equipment constraint (as we have only one USRP

unit with complete configurations), the localization is one

dimensional. In these particular experiments, we demonstrate

the localization accuracy based on profiling. Here we fix the

tilt angle and change the pan from -130◦ to 70◦ with a 25◦ step

size. For each run, we generate a profile as in [13], i.e., the

phase differences along the path, and use the phase differences
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(a)

(b)

Fig. 5. One dimensional localization experiments along an arc. Here two
experiments are shown. (a) Prediction for phase difference; note that the
absolute value of the phase difference is not essential as each USRP run
gives a different systematic bias to the phases at the receivers; (b) Prediction
for average signal strength at the two channels.

as training data. Then we collect test samples by starting from

-117.5◦ with the same step size. We use the training profile to

predict the values along the path by fitting the training samples

to a spline and use the trained spline to predict the values at

the test samples. To quantify the error between the prediction

and the actual measurements, we define

e =

√
1

n

∑n

i=1
(p(i) − a(i))2

var(a)
, (4)

where p(i) and a(i) are the predicted and actual values at

location i, n is the total number of test locations, and var(a)
is the variance of the actual measurements. It is clear that the

error given by Eq. (4) is unitless, and scale and translation

invariant. Figure 5(a) shows two different experiments and

standard deviation between the predicted and actual phase

difference values is 0.34◦ and 2.3◦ respectively; the error

according to Eq. (4) is 0.02 and 0.12 for the top and the bottom

experiment respectively. These examples show clearly that

phase difference is a reliable measurement of the difference in

distances from the antennas to the tag, allowing for millimeter

accuracy prediction. To compare with received signal strength

estimation, Fig. 5(b) shows the corresponding plots for the

average RSS from the antennas. Here the error according

to Eq. (4) is 0.02 and 0.28 respectively. While both phase

difference and RSS are reliable with small error, this result

show that when the signal to noise ratio is lower, the error for

RSS tends to be larger.

Figure 6 demonstrates a unique advantage of phase dif-

ference. As phase differences change with small changes in

distance, they can be used to estimate motion and can then

be used in human activity recognition. In these experiments,

we move the mounted tag with a constant pan motion while

we capture the wireless signals; the moving speed is roughly

1.3 meters per second, corresponding to a typical human

walking speed. Note that we do not stop the tag to acquire

data as in the previous experiments. Here we estimate the

phase difference using the samples within each pulse; the

pulses are detected based on a threshold of the magnitude

above a constant factor of the noise level, that is estimated

automatically. The plots in Fig. 6(a)-(c) shows the estimated

phase difference during a burst while the tag is in motion;

Fig. 6(d) shows the phase difference when the tag is static for

comparison. These plots show interesting patterns and may

lead to new and efficient ways of modeling activities. In the

three examples when the tag is moving, the phase difference

changes smoothly in all the three cases, but with different

changing patterns. Additionally, these plots show the phase

difference can be estimated accurately and reliably even when

the tags are moving. The results show again the accuracy of

estimated phase difference and the sensitivity of the phase

difference relative to the motion.

For comparison, Fig. 7 shows the received signal strength

corresponding to the two cases in Fig. 6(a) and (b). While

received signal strength does also change, it does not show

as large changes as the phase difference. Additionally, the

patterns of changes are much similar, compared to the phase

difference ones. These experiments suggest that phase differ-

ence would be more effective for activity characterization and

recognition.

VI. CONCLUSION

In this paper we exploit the phase difference between two

receiving antennas for localization. Using a software defined

radio implementation, we demonstrate that phase difference

can be estimated reliably for commercially available RFID

tags and they can be used for localization in three dimensional

and for motion estimation and tracking. The experiments

demonstrate clearly the advantages of phase difference for

accurate localization. The experiments show millimeter accu-

racy localization is achievable under ideal situations. While

in more realistic settings, the performance may degrade and

but we expect the results should be robust. While further

experiments are needed for complete evaluation, the results

show clearly the potential usefulness of phase difference. For

motion estimation and recognition, the phase difference may

provide a unique method to achieve energy efficient motion

estimation. Additionally, the phase difference estimation can

be directly integrated with RSS based methods to improve the

local estimation or to reduce the number of reference tags

required. Given all the experiments reported, the next logical

step is to implement a full localization system using several

USRP units for three dimensional localization and evaluate the

accuracy of the approach.

As the system we have consists of a software-defined radio

component for its flexibility to set up and test various algo-
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(a) (b)

(c) (d)

Fig. 6. Three examples ((a)-(c)) of phase differences estimated during pulses within a burst when the tag is moving; for comparison, (d) shows the phase
difference when the same tag is static.

rithms, one potential issue is the complexity of the algorithms

when a hardware system needs to be realized. The phase

difference algorithm can clearly be streamlined and so its

implementation should not require special parts beyond typical

digital signal processing components.

Based on the experimental results, estimated phase differ-

ences can be used in a number of applications to improve

the localization accuracy. For example, for searching book

in library, high localization accuracy is needed to make the

RFID techniques effective [9]. Combined with other coarser

level localization, phase difference may provide the millimeter

localization accuracy when books to be interested are known

to be an area; this is being investigated further. For robot

navigation, robots need to sense their environment and require

accurate localization of obstacles and other objects and esti-

mated phase difference may achieve the required accuracy that

is otherwise not feasible using the RFID technology.

There are several improvements that can be made. One

of the key questions is how sensitive the phase difference

estimation is with respect to other factors such as multi-

path problems and orientation. For certain applications, the

phase difference will allow us to track and model motions of

people and other moving objects, which provide information

to estimate the underlying three dimensional structure of the

environment, and thus a ray-tracing based method may be used

to approximate multi-path problems. It is often reported that

RFID tags are sensitive to orientation of the tags relative to

the receivers due to the size of the antenna and other physical

constraints of the tags. It appears that the phase difference

may be more robust to orientation changes. Figure 8 shows an

experiment where we rotate the tags. Clearly the orientation

sensitivity has an intrinsic structure and is relative invariant

under certain conditions. A complete understanding of ori-

entation sensitivity under realistic scenarios is required; for

certain applications, the increasingly available computational

RFID tags [7] can be used, which can estimate and report their

orientation using built-in programs and accelerometers.
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Fig. 7. The received signal strength plots corresponding to the two cases shown in 6 (a) and (b).

Fig. 8. The phase difference of four different orientations along an arc
generated by panning the tag.
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