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Abstract

Akey component in calculations of exchange and correlation energies is the Coulomb operator, which
requires the evaluation of two-electron integrals. For localized basis sets, these four-center integrals
aremost efficiently evaluatedwith the resolution of identity (RI) technique, which expands basis-
function products in an auxiliary basis. In this workwe show the practical applicability of a localized
RI-variant (‘RI-LVL’), which expands products of basis functions only in the subset of those auxiliary
basis functions which are located at the same atoms as the basis functions.We demonstrate the
accuracy of RI-LVL forHartree–Fock calculations, for the PBE0 hybrid density functional, as well as
for RPA andMP2 perturbation theory.Molecular test sets used include the S22 set of weakly
interactingmolecules, theG3 test set, as well as theG2–1 andBH76 test sets, and heavy elements
including titaniumdioxide, copper and gold clusters. Our RI-LVL implementation paves theway for
linear-scaling RI-based hybrid functional calculations for large systems and for all-electronmany-
body perturbation theorywith significantly reduced computational andmemory cost.

1. Introduction

With advances inhigh-performance computing and improvednumerical algorithms, the predictive power offirst-
principles electronic-structure theory is increasing in termsof accuracy and tractable system size.Density-functional
theory (DFT)using (semi-)local functionals has excelled because of a very favorable combinationof computational
efficiency and reasonable accuracy in solid-state theory andquantumchemistry.However, it iswell documented
that conventionalDFTmethods are not sufficient to properly describe certain types ofbinding interactions [1–6]. It
is oftennecessary tousehybrid functionals [7, 8]or evenhigher-levelmethods like second-orderMøller–Plesset
perturbation theory [9] (MP2), GWmethods [10, 11]or the random-phase approximation (RPA) andbeyond [12–
14] to accurately treat e.g. cohesive energies, vanderWaals interactions or reaction-barrier heights.

For hybrid functionals andmore sophisticated treatments of the electronic exchange and correlation amajor
computational bottleneck is the evaluation of the two-electron repulsion integrals for orbitals rs{ ( )}y
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The notation a b( ∣ ) refers to theCoulomb interaction between the functions indexed by a and b, respectively,
throughout the paper. In particular, we have ij b ri∬( ∣ ) ( )*y= vr r rj ( ) ( )y - ¢ r r rd db ( )y ¢ ¢ and a b a∬( ∣ ) *y=
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Upon replacing the orbitals by their expansions in a chosen set of basis functions i Nr 1, ,i basis{ ( )∣ }j = ¼ ,
equation (1) transforms into a sumover four different basis function indices. The approach for evaluating these
integrals largely depends on thebasis set. ForGaussian or planewave basis sets these integrals are given analytically.
For numeric atom-centered orbital [15–23] (NAO)basis sets r Ri I{ ( )}j - on the other hand, these integralswith
four different atomic positions RI, often called four-center integrals, have to be evaluated by explicit integration.

A straightforward approach for basis sets with analytical solutions is possible, but due to the Nbasis
4( )

integrals this leads to unfavorable execution times for large systems. ForNAOs, on the other hand, no analytical
solution exists. Computing these integrals on thefly becomes intractable as the system size grows. Precomputing
them is also out of the question due to thememory and communication requirements for storing and reading
thismatrix with Nbasis

4( ) entries.
Awidely used approach to alleviate the computational time requirements of the four-center integral

evaluation is the ‘resolution of identity’ (RI), also known as ‘density fitting’ [24–30]. The central idea is to expand
orbital products into an auxiliary basis P r{ ( )}m :
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This approach represents the four-indexmatrix in terms of three- and two-index ones and is therefore better
suited to be precomputed and stored. The auxiliary basis functions P r{ ( )}m can either be predefined or calculated
at runtime. Themost commonly used variant is the ‘RI-V’ scheme [24, 29–31], which determines the expansion
coefficients by directlyminimizing the errors in the four-center integrals. This scheme has the advantage that the
error in the four-center integrals is quadratic in the error of the actual RI expansion [24, 25]. This approximation,
togetherwith the fact that the total energy is stationarywith respect to the expansion coefficients,makes the RI-V
a ‘robust variational’ scheme [25].

Our group has successfully applied the RI toNAOs and shown it to be a reliable and robust approach [32].
Additionally, a general procedure for the construction of the auxiliary basis was presented that is particularly
accurate for on-site products of atomic orbitals, which carry the bulk of the total energy.While RI expansions for
any atomic basis set are particularly efficient for small systems, the scaling behavior, both in terms of
computational time andmemory usage, is problematic because of the nonlocal nature of expansions based on
theCoulombmetric [33]. (See equations (6) and (7) below.) In principle, this nonlocality is artificial as a local
quantity like the product of two localized orbitals should not need expansion functions arbitrarily far away, and
itmakes the application to large or even periodic systems [34] impractical or even impossible.

There are several previous studies exploringways to limit the number of nonvanishing expansion
coefficients. For example Reine et al replaced the global Coulombmetric with a localized one [35]. Sodt et al
followed amore pragmatic approach by restricting the expansion of a basis function product to the subset of
those auxiliary basis functionswhich are centeredwithin a sphere around one of the two basis function centers
[36, 37]. Pisani et al followed a similar approachwith amore general fitting domain for localMP2-calculations in
periodic systems [38, 39]. Recently,Merlot et al presented a localized RI, which uses only auxiliary basis
functions centered on the two centers of the expanded basis functions as a starting point [40]. To reach a
reasonable accuracy, they then applied aCholesky decomposition scheme to converge the integration accuracy
by adding further auxiliary functions along the connection line between the two centers. Evenmore localized
density fitting approaches were already known in the early days of computational quantum chemistry. Of
particular interest for the present work is the limited expansion of diatomic overlap (LEDO) of Billingsley and
Bloor [24, 41]. In this work, the authors expanded products of Slater type orbitals on different atoms in the on-
site products of these two atomic centers.

In addition to using localized variants of the RI approach, several other techniques for the evaluation of four-
center integrals have been investigated in the literature. Delley evaluated the products ofmolecular orbitals on an
atom-centered numerical grid and usedmultipole techniques to solve the Poisson equation [42]. Already in the
early 1980s [43], Talman showed how to use Fourier space techniques [44, 45] to spherically expandNAO
products around a point between the two orbital centers, and how to efficiently calculate theCoulomb
interactions between such expansions [43, 46]. Recently, amore efficient way of spherically expanding orbital
products based on Legendre integrationwas published by the same author [47]. Foerster showed how to
construct a compact auxiliary basis a posteriori fromTalman’s expansion [43, 46] for a given atompair bymeans
of a singular value decomposition [48, 49]. In contrast to our strictly atom-centered approach, this work
employs bond-centered auxiliary basis sets. Another technique is the expansion of theNAOs in terms of a
Gaussian function set, which is implemented in the SIESTA code [50, 51].While this strategy has the advantage
of offering an analytic solution, eachNAOmust befitted by several Gaussians, which partially undoes the
benefits of the compactness ofNAObasis sets.Most of these studies aim at computing the four-center integrals
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directly, while the aimof the RI-approach is to compute a set of intermediate expansion coefficients that can be
stored inmemory. Some of the integration techniques developed by Talman are employed in ourwork as well.

In the present paperwe demonstrate an approach that is similar to LEDO, but gives accurately converged
total energies forNAOs, forHartree–Fock (HF) and hybridDFT functionals, as well as for correlationmethods
likeMP2 andRPA. A similar atomic RI strategy has recently been implemented forGaussian-type orbitals
(GTO) byManzer et al [52]. In contrast to ourwork, they only apply their new algorithm to the exchange
integrals of the SCF-cycle at present.

Ourmethod has recently been applied in a linear-scaling implementation of hybrid density functionals for
periodic systems [34] and allows for simple nuclear derivatives, used, e.g., in a corresponding implementation of
the stress tensor for hybrid density functionals [53].

Wewill introduce ourmethod, which is implemented in the FritzHaber Institute ab initiomolecular
simulations package (FHI-aims [16, 54]), as a localizedmodification of our globalfitting approach reported in
[32]. In section 2we briefly review our RI scheme and introduce our new localized variant. Section 3 shows an
extensive study on the convergence and accuracy for differentmethods, and in section 4we compare the
computational scalingwith our RI-V implementation. Finally, we summarize our results and draw conclusions
in section 5.

2. Theory

The basic RI implementation in FHI-aims is described extensively in [32].We here briefly recapitulate the key
equations before proceeding to the localized expansion. Finally, we explain how the localized variant can be
adapted in a controlledway to further increase the accuracywhich is required tominimize the linear error terms
arising in our localized approach (see below).

2.1. Global expansion

The nonlocal exchange operator as part of the generalizedKohn–Shamor Fockmatrix is defined by

K D ij kl , 2il

jk

jk≔ ( ∣ ) ( )å

whereDjk is the one-particle densitymatrix and ij kl( ∣ ) are four-center integrals of basis functions ri ( )j ,
analogous to the four-center integrals defined in equation (1) for the orbitals rs ( )y .

In the RI, orbital products r r ri j ij( ) ( ) ≕ ( )j j r are expanded in a set of auxiliary basis functions P r( )m :
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Several strategies have been proposed to determine the expansion coefficients Cij
m. Themost common variant is

known as ‘RI-V’. This approach directlyminimizes the error of the four-center integrals.Whitten has shown
[24] that this can be achieved byminimizing theCoulomb integral of the fitting error ij ij( ∣ )dr dr :
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Theminimization problem then leads to a systemof linear equations:
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yielding the expansion coefficients and the approximated four-center integrals:
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The four-indexmatrix we startedwith is now represented by only two- and three-index objects, implying a
significant advantage in terms ofmemory requirements and computational time. Furthermore, the error of the
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approximated four-center integrals is quadratic in the residual r r rij ij ij( ) ( ) ˜ ( )dr r r= - of the fitted orbital
product [25].

Unfortunately, the Coulomb kernel v r r( )- ¢ is long-ranged, so that ( ∣ )m n and ij( ∣ )m are neither sparse nor
short-ranged except when the overlap between ij and jj vanishes. The consequence is a canonical O N3( )
computational andmemory scalingwith system size for the precomputed expansion coefficients Cij

m. It can be

reduced to O N 2( )memory scaling by taking the vanishing overlaps into account, but in both cases there is a
large prefactor in actual computations. The formal O N4( ) scaling for the exchangematrix construction is not
reduced by theRI approach, unless densitymatrix screening techniques [55] are usedwhen the exchangematrix
is computed. Since theCoulombmetric distributes the expansion coefficients Cij

m for any given (localized)

density rij ( )r over all auxiliary basis functions P r( )m in the system,O(N) scaling can no longer be achieved for the

exchange operator.

2.2. Construction of the standard auxiliary basis

In our implementation [16, 32], all atom-centered basis functions ri ( )j are defined as:

u r Yr , , 8i skl lm( ) ( ) ( ) ( )j f q=

where uskl(r) is a radial functionwith index k and angularmomentum l for species s and Y ,lm ( )f q denotes a
spherical harmonic. Both the radial part and the spherical harmonics are real-valued functions. The basis
functions are constructed numerically and are subject to a cut-off potentialVcut(r), which enforces a smooth
decay to zero of the basis functions outside the relevant range [16]. The construction of the confined basis
functions is described in detail in equations (8) and (9) of [16]. In short, all radial functions in FHI-aims are
solutions to:

r

l l

r
V r V r u r u r

1

2

d

d

1
. 9i i i i

2

2 2 cut
( ) ( ) ( ) ( ) ( ) ( )
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Our auxiliary basis functions P r( )m are not predefined, but rather derived from the basis set ri{ ( )}j used to
expand the orbitals r( )y . Our construction scheme for the P r( )m ensures an exact reproduction of those
integrals ij kl( ∣ )with basis functions i j k l, , , centered at the same atom,which account for themajor part of the
total energy.We therefore construct our auxiliary basis set such that it contains all on-site products of basis
functions r ri j( ) · ( )j j explicitly. Specifically, the auxiliary basis set can be derived from twodifferent underlying
basis sets:

• OBS: the standard orbital basis set used to expand theKohn–Shamorbitals of theDFT calculation

• OBS+: an enhancedOBSwith additional functions, which are used only for the construction of the P r( )m
functions

Infigure 1 the auxiliary basis construction is illustrated as aflowchart. For each atom species s in the system
we compute all on-site products u r u rsk l sk l1 1 2 2

( ) ( ) of the radial basis functions uskl(r). These products are then
orthogonalizedwith aGram–Schmidt scheme. A radial product is accepted as a new radial auxiliary basis
function in a given angularmomentum channel if the normof its projection orthogonal to the already accepted
functions is larger than a small value orth (for RI-V: 10−2 for atomswith Z 10 , 10−3 for atomswith

Z10 18  and 10−4 for all other elements).
The choice of this parameter controls the size of the auxiliary basis P r{ ( )}m and thus the expansion accuracy

[32]. The accepted products are thenmultipliedwith each spherical harmonic Y ,lm ( )f q which satisfies the
Clebsch–Gordon condition l l l l l1 2 1 2∣ ∣ ∣ ∣ - + to obtain the P r( )m . Themaximumangularmomentumof
any basis function in theOBS orOBS+ of a given species, ls

max, thus also controls themaximumangular
momentumof any basis function in the auxiliary basis set, l2 s

max. For each species s themaximal angular
momentumof the product functions ls

cap can be capped to reduce the size of the auxiliary basis, but this comes at
the price of a reduced accuracy. In this work, we do not restrict ls

cap in anyway for either RI-V or for our new
localized RI. For production calculations beyond this work, wefind that ls

cap should never be reduced for the
localized RI. For RI-V, wefind that ls

cap= 5 for elements belowXe (Z= 54) and ls
cap= 6 for heavier elements are

sufficient for well-converged results.

2.3. Construction of the enhanced auxiliary basis

Our standard procedure for the construction of the P r{ ( )}m has the advantage of producing an atom-centered
auxiliary basis that automatically adapts itself to the orbital basis set and that yields a particular high accuracy for
on-site products. The off-site products on the other hand are not included in the auxiliary basis set and therefore
will not be expanded exactly. To obtain accurate results for these integrals too, wemust use a sufficiently large
auxiliary basis set. This can be readily achievedwith our construction scheme by enhancing theOBSwith
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additional functions, which are used only for the construction of the auxiliary basis set, as shown by the gray box
infigure 1. This enhancedOBS is labeledOBS+ and yields a larger set of P r{ ( )}m functions. Since the auxiliary
basis is constructed at the species level, this approachwill add the additional auxiliary basis functions to each
atomof the affected species. The choice of additional basis functionswill be discussed in detail in section 3.1.

2.4. Localized expansion

As our aim in this work is to reduce the number of expansion coefficients substantially, we restrict the expansion
coefficients Cij

m to be non-zero only if the auxiliary functionμ is centered at one of the two atoms at which the

basis functions i and j are centered. This restricted expansion of the product r ri j( ) ( )j j (centered on atoms I and

J) can bewritten as

C Pr r 10ij
IJ

ij˜ ( ) ( ) ( )
( )
år =
m

m
m

Î

where IJ I J( ) ≔ ( ) ( )  È denotes the set of all auxiliary functions centered at atom I or atom J, as depicted in
figure 2.

Since the RI-V prescription has proven to be a robust scheme, we use the sameminimization target for our
localized variant. In practice, thismeans that weminimize theCoulomb self-repulsion ij ij( ∣ )dr dr of the residual

rij ( )dr from the restricted expansion:

C P

r r r

r r r

ij ij ij

i j
IJ
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( ) ( ) ( )
( )
å

dr r r

j j

= -

= -
m

m
m
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with respect to variations in Cij
m. Theminimization condition then leads to a set of linear equations similar to the

one for RI-V (equation (5)):

C
C ij0

1

2
11

ij ij

ij

IJ

ij

( )
( ∣ ) ( ∣ ) ( )

!
( )

å
dr dr

m n m= = -m
n

n

for the coefficients Cij
n . Both indicesμ and ν are restricted to the subset IJ( ) . As a consequence, the systemof

linear equations can be decomposed into a set of subproblems, one for each atompair. Finally, the expansion
coefficients and four-center integrals can bewritten as

Figure 1.The construction of the auxiliary basis in FHI-aims: starting from the orbital basis set, the on-site products of two radial
functions (with subscripts s k l, , for species, index and angularmomentum) are orthonormalized. The product of the resulting
functionwith spherical harmonics represents the auxiliary basis functions. One important feature of this approach is that we can add
further radial functions (gray box) to the orbital basis set, which are only used during this procedure and do not influence the
performance of the orbital basis in anyway.
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with L V
IJ IJ 1( )= - where V

IJ is a squarematrix with the entries ( ∣ )m n for IJ, ( )m n Î . The dimension of L
IJ is

therefore N Naux
IJ

aux
IJ´ withNaux

IJ being the number of P r{ ( )}m centered on atoms I and J, which is only a small
fraction of the total number of auxiliary basis functionsNaux. If we now insert equation (12) into equation (4), we
obtain

ij kl ij L V L kl 13
IJ

KL

IJ KL( ∣ ) ( ∣ ) ( ∣ ) ( )
( )
( )



å l s »
ml
ns

lm mn ns
Î
Î

where the sums are restricted to the subset IJ( ) because of equation (12).We name this expansion ‘RI-LVL’
after thematrices occurring in equation (13).

One advantage of this scheme lies in the fact that the size of the local Coulombmatrices V
IJ required for each

atompair is independent of the system size. Their number initially increases quadratically, but with increasing
system size the number of relevant pairs scales linearly. Due to the cubic scaling ofmatrix inversions, the
inversion of several local Coulombmatrices becomes favorable for large systems compared to the single
inversion of a global Coulombmatrix.

Furthermore, we no longer need the full three index object ij( ∣ )m , but only the parts relevant for
equation (12). Additionally, the calculation of the remaining three-index integrals ij( ∣ )m is simplifiedwithin RI-
LVL because the center ofμ is either I or J. The product of the Coulombpotential of Pm with, say, ij is a simple
superposition of atom-centered functions, whose overlapwith jj can be calculated in Fourier space using the

methods suggested by Talman [43, 46] as described in [32]. Togetherwith the strong reduction in the number of
these integrals the computational time can be reduced to an extent where it is small compared to the other parts
of the calculation.

2.5. Error analysis

The following exact relation of four-center integrals and their RI approximations

ik jl 14ik jl ik jl ik jl ik jl( ) ( ) ( ) ( )( ∣ ) ˜ ˜ ˜ ˜ ( )r r r dr dr r dr dr= + + +

is important for assessing the accuracy of RI schemes.Here, r r rik i k( ) ( ) ( )r j j= are the exact products, rik˜ ( )r
their RI approximations and r r rik ik ik( ) ( ) ˜ ( )dr r r= - are the residuals. Thefirst term is the straightforward RI
expansion used so far. The next two terms are linear in the residual, whereas the last is quadratic in the residual.

In RI-V, theminimization criterion for the residual equation (5) can be rewritten as 0 ik( ∣ )m dr= . Since all
approximated products r˜( )r are expanded in the P r{ ( )}m , the linear termsmust vanish in RI-V.

The localized version, on the other hand, only enforces this condition for those P r{ ( )}m which are centered
on the same atoms as the basis function composing the product. Therefore, the linear termswill only vanish for
those integrals for which I K J L, ,{ } { }= , where the capital letters denote the atom index of the corresponding
orbital basis function. For all other integrals, the error is linear in the residuals.

Figure 2.The localized version of the RI approach: the function product r ri j( ) · ( )j j is to be expanded in terms of the auxiliary basis

set P{ }s centered at atom I or J. Auxiliary basis functions centered on other atoms, like Pl on atomK, are not used.
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Some localized RI-schemes alleviate this error by using the robustDunlap correction[25]. Localized schemes
can be extended to yield quadratic errors in the residual by including the linear error terms from equation (14) in
(13):

ik jl . 15ik jl ik jl ik jl( ) ( ) ( )( )∣ ˜ ˜ ˜ ˜ ( )r r r r r r= + -
~

In RI-V, all of these three terms are identical and therefore reduce to the previously used formula (equation (7))
for the four-center integral. This expression has a few drawbacks: to calculate the correction terms, all of the
three-indexCoulomb integrals jl( ∣ )m are required. (This also includes those forwhich P r( )m is not centered on
the same atomas rj ( )j or rl ( )j .) Since the sparsity in the three-indexCoulomb integrals is the key to our
memory and computational time savings, this correctionwould undomost of our achievements. Furthermore,
it also has been recently demonstrated [40] that this expression can lead to serious convergence problems in rare
cases, because thematrix for the approximated four-center integrals is not necessarily positive semi-definite.
Since negative eigenvalues correspond to attractive electron–electron interactions, the usual safeguards to ensure
SCF convergence will lead to a high ratio of rejected steps, slowing SCF convergence downor preventing
convergence at all.

Due to these drawbacks, we do not employ theDunlap correction for our localized scheme. Aswewill show
in section 3, the combination of a localized RI from equation (13)with localizedNAOs nevertheless reproduces
the results obtained fromRI-Vwith essentially exact accuracywhile significantly decreasing the computational
requirements. The key step is an appropriate enhancement of the auxiliary basis itself.

3. Results

In this sectionwe demonstrate that our RI-V implementation is a reliable benchmark for RI-LVL by comparing
it to theGTObasedNWChem [56] code that does not employ the RI approximation. In this step, we use
Gaussian-type functions in FHI-aims so that we can perform the comparison for exactly the same basis
functions.We then evaluate the accuracy for RI-LVL forHF [57] and second-orderMøller–Plesset perturbation
theory [9] (MP2), as well as for the PBE0 [8] hybrid functional and the RPA [12–14].

As explained in the previous section, we enhance the normalOBSwith additional functions to improve the
accuracy of the resulting P r{ ( )}m . Throughout this article we only add hydrogen-like functionswith theminimal
principal quantumnumber for the given angularmomentum, i.e. nodeless radial functions. For these functions,
we haveV r z ri ( ) = - in equation (9). In the following, spd(z= x)will denote the enhancement of theOBS, i.e.
which additional functionsOBS+ contains, as described in section 2.2. spd indicates the added angular
momentum channels (s, p, d, f etc) and z= x denotes the effective charge parameter of the added hydrogenic
basis functions. Neither for RI-V nor RI-LVLwe did impose any constraints on themaximal angular
momentum (ls

cap) of the P r{ ( )}m .
Individual total energy values for all structures in all benchmark sets used for eachmethod can be found in

the supporting information (SI).

3.1.HF andMP2 calculations

Todemonstrate the general applicability of our approach, we first discussHF andMP2 total energies for RI-V
andRI-LVL in FHI-aims usingGaussian basis sets and compare them to the results obtainedwithNWChem.
We then show that the same degree of accuracy can be obtained using theNAObasis functions of FHI-aims.

3.1.1. Gaussian type orbitals

To establish a valid reference for our comparison betweenRI-V andRI-LVL, wefirst calculate total energies for
themolecular geometries compiled in the S22 test set of Jurečka and coworkers [58]with theGaussian basis set
cc-pVTZ [59]. This test set contains 22weakly bonded dimers with 6–30 atoms per dimer, ranging from the
water dimer to adenine–thymine complexes. This test set allows us to test total energies ofmolecular systems as
well as weak binding energies, which usually require RPAorMP2 for an accurate description. Figure 3 shows the
total energy errors for allmolecular dimers and table 1 shows the rootmean square deviation (RMSD) and
maximumabsolute value (MAX) for the error per atom (not counting hydrogens) and the systemwide error. The
results show that the RI-V implementation in FHI-aims is reliable and accurate [32], yielding deviations in total
energy of less than 1 meVper system forHF calculations. Also theMP2 corrections, which aremore sensitive to
the accuracy of the four-center integrals, are of similar quality, with a RMSDbelow 0.2 meV.OurRI-V
implementation is therefore a suitable reference choice to benchmark RI-LVL andwill be employed as such
throughout the rest of this work.

The straightforward localized RI on the other hands yields significantly higher errors of up to 29.5 meV/
atom (up to 440 meV total error) forMP2 calculations and also gives less accurate results forHF, although the
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discrepancies there are less dramatic. However, the plot also shows an additional set of curves, labeled ‘RI-LVL
+aux’, which corresponds to RI-LVLwith an enhanced auxiliary basis (using a single hydrogenic g functionwith
z= 6). This data set shows that RI-LVL yields an accuracy similar to RI-V provided a suitable chosenOBS+ and
thus auxiliary basis set P r{ ( )}m is chosen.Wewill discuss the choice ofOBS+ in detail below. (The interested
reader is referred to appendix B formore details about the impact of the g-function.)

In addition to the S22 test set we also investigated the performance of our newmethod in the largerG3 test
set [60]. This test set contains 223molecules composed offirst and second row elements. As in the S22 casewe

Figure 3.Total errors in the total energy computedwith FHI-aims using RI-V andRI-LVL, compared toNWChem. The upper panel
shows the errors ofHartree–Fock calculations and the lower panel shows the errors of theMP2 correction in the S22 test set using the
cc-pVTZGaussian basis set. ‘RI-LVL+aux’ uses an additional g-function for constructing the auxiliary basis. The area highlighted
with the light green background is plotted using a linear y axis, the non-coloured area corresponds to a logarithmic y axis where only
the 2nd and 5th intermediate grid lines are plotted. See SI for details.

Table 1.Rootmean square deviation andmaximum (absolute) value of the total
energy error (total and per atom, not counting hydrogens) of RI-V in the S22 test
set compared toNWChemusing the cc-pVTZbasis set. (See alsofigure 3.)

EtotD HF MP2

(meV) RMSD MAX RMSD MAX

RI-V
Total 0.383 0.716 0.182 0.445

per atom 0.038 0.082 0.028 0.085

RI-LVL
Total 9.129 18.423 168.995 440.565

per atom 0.743 1.062 11.432 29.371

RI-LVL+aux
Total 0.527 0.936 0.581 1.144

per atom 0.051 0.087 0.055 0.111
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usedNWChem as a reference for our RI implementations. The results forHF andMP2 total energies are shown

infigure 4.We have not included the 28 dimer systems in the statistical analysis, because RI-V andRI-LVL are

the same procedures for dimer systems.
Overall, RI-V achieves a very good accuracywith anRMSDof the total energy of about 1 meV. Aswas

already the case in the S22 test set, RI-LVL itself performsworse and yields errors with tens or even hundreds of

meVmagnitude. However, enhancing the auxiliary basis with the same functionswe used in the S22 test set, we

can again recover the same accuracy as RI-V. A few test cases still exhibit total energy errors up to 5.5 meV. For

all these cases the RI-LVL results lie exactly on top of the RI-V results, which is a strong indication that these

errors are not specific to RI-LVL. It should also be noted that almost all the outliers contain chlorine atoms.

3.1.2. Numeric atom-centered orbitals

For the remainder of the article, wewill return to theNAObasis sets and focus on improving the accuracy of RI-

LVL. ForHF calculations we use the standard tier 2 basis sets [16]with tight settings. ForMP2 calculations, on

the other hand, we use the recently developed valence correlation consistentNAObasis sets [61].
As seen infigure 3, our standard procedure to construct the P r{ ( )}m yields sufficiently accurate total energies

at theHF level. However, it does not suffice to convergeMP2 total energies with our localized RI. A

straightforwardway to deal with this error is to increase the size of the auxiliary basis. This is achieved by using

OBS+ instead ofOBS for the construction of the auxiliary basis set, as discussed in section 2.3.
Wefirst show that our reference is well convergedwith respect to the auxiliary basis by enhancing the

originalOBSwith functions of increasing angularmomentum (see upper panel infigure 5). Thenwe apply the

same systematic approach to RI-LVL and finally we demonstrate that anOBS+with only a single extra g

function (see lower panel infigure 5) is sufficient.

Table 2.RMSD andmaximumabsolute errors forHartree–Fock cal-
culations in the S22 test set using the RI-Vmethodwith tier 2 basis
sets. The functions listed under ‘aux basis additions’ are added to those
from the bare basis set when the product basis is constructed.

HF RI V–
EtotD (meV)

Aux basis Per atom Systemwide
additions RMSD MAX RMSD MAX

s(z= 1) 0.005 0.016 0.040 0.124

sp(z= 1) 0.009 0.024 0.090 0.201

spd(z= 1) 0.011 0.020 0.119 0.318

spdf(z= 1) 0.023 0.064 0.341 1.219

spdfg(z= 1) 0.154 0.367 2.320 6.976

Figure 4.RMSD andMAXerrors in the total energy computedwith FHI-aims using RI-V andRI-LVL, compared toNWChem. The
left side shows the errors ofHartree–Fock calculations and the right side shows the errors of theMP2 correction in theG3 test set using
the cc-pVTZGaussian basis set. ‘RI-LVL+aux’ uses an additional g-function for constructing the auxiliary basis. The dimer-systems
from the test set were excluded because they are of little interest for the accuracy analysis of the RI-LVL. See SI for details.
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Table 2 shows the impact of this enhanced P r{ ( )}m on theHF total energies calculatedwith RI-V. Even if the
auxiliary basis set is significantly enlargedwith extended functions having high angularmomenta, the change in

total energy is below 0.16 meVper atom (max 0.37 meV).
Figure 6 shows that the error of RI-LVL systematically converges with increasing auxiliary basis set size. By

including additional radial functionswith angularmomentum s, p, d, f and g in the auxiliary basis construction

the RMSDof the total energy per atom can be reduced from1.9 to 0.13 meV. Therefore, the error introduced in

aHF calculation by using the local RI approximation can be controlled systematically by adding higher angular

momenta to the P r{ ( )}m and decreases to a negligible value.
Infigure 6 it can be seen that the addition of f and g functions has the largest impact. It turns out that a single g

function is already sufficient. As shown in table 3, the accuracy of the hierarchical approach can even be

surpassed if we alter the effective charge that defines the added g function, but the general quality of the result is

unaffected by the choice of the effective charge. The reasonwhy the results do not depend strongly on the shape

Figure 5.Radial shape of the employed basis functions. The upper panel shows basis functionswith different angularmomentum and
constant effective charge z= 1. The lower panel shows 5g radial functions with different effective charges z. The dashed line in both
panels shows the onset of the basis confining potential.

Figure 6.Convergence of theHF total energy error of the RI-LVL approximationwith increasing auxiliary basis set size. The difference
between the RI-LVL calculations and the RI-V reference using the pure tight (tier 2) basis set is shown. The black line shows the
performance of theOBS+with a single g-function(z= 1), whichwe consider sufficient for production calculations (see also table 3).

10

New J. Phys. 17 (2015) 093020 AC Ihrig et al



(see lower panel offigure 5) of the added function is the basis-confining potential (see equation (9)). As can be
seen infigure 5, the onset and peak position of the radial function depends on the effective charge, but their
behavior in the outer regions is similar.Without the confinement potential, the radial functions would extend
further and the results would probably show a significant dependence on the effective charge.

We also investigated the use of RI-LVL inMP2 calculations. For these calculationswe use the recently
developed compactNAObased valence correlation consistent basis sets [61] that facilitate an extrapolation to
the complete basis set limit.

As can be seen from table 4, RI-Vwith the 3Z-version of these basis sets is essentially insensitive to an
enlarged auxiliary basis set, yielding atmost a change of 0.1 meVper atom compared to the pure basis set. In the
following analysis, RI-Vwith theNAO-VCC-3Z basis set with the standard auxiliary basis set will therefore be
used as the reference to benchmark theMP2 results.

Figure 7 shows the accuracy forMP2 using the same representation as figure 6 did forHF. In essence, wefind
the same results as forHF: if functions up to angularmomentum channel f are included inOBS+, the error can
be reduced to 0.43 meVper atom (6.52 meV for the system) atmost, while an additional g function reduces the
error even further to atmost 0.11 meVper atom (1.15 meV for the system). As forHF and the tier basis, the
accuracy of the hierarchical approach can also be achievedwith fewer auxiliary basis functions. Table 5 shows
that a single g-function reduces the total energy error to the same order ofmagnitude as the addition of s, p, d, f
and g functions. As forHFwefind that the general quality of the results is insensitive to the variation of the
effective charge, but can befine-tuned to yield errors slightly below those of the systematic approach.

3.2. PBE0 andRPA

Todemonstrate RI-LVL’s broad range of applicability, we also performed calculations with the PBE0 exchange-
correlation functional [8] and the RPA [12–14].

For PBE0we use tier 2 basis sets, as we did forHF. For convergedRPA total energies, largerNAObasis sets
are required [62] andwe thus use theNAO-VCC-3Z basis set again. As in the cases ofHF orMP2, for PBE0 the

Table 3.RMSDandmaximumabsolute errors forHartree–
Fock calculations in the S22 test set using the RI-LVLmethod
with tier 2 basis sets. The functions listed under ‘aux basis
additions’ are added to those from the bare basis set when the
product basis is constructed.

HFRI–LVL
EtotD (meV)

Aux basis Per atom Systemwide

additions RMSD MAX RMSD MAX

None 0.594 1.891 3.959 6.432

spdfg(z= 1) 0.052 0.124 0.493 1.466

g(z= 1) 0.066 0.153 0.633 1.799

g(z= 2) 0.059 0.137 0.567 1.663

g(z= 3) 0.054 0.127 0.533 1.590

g(z= 4) 0.053 0.125 0.514 1.544

g(z= 5) 0.053 0.123 0.491 1.454

g(z= 6) 0.047 0.107 0.465 1.305

g(z= 7) 0.046 0.098 0.462 1.226

Table 4.RMSD andmaximumabsolute errors forMP2@HF
in the S22 test set using the RI-Vmethodwith theNAO-VCC-
3Z basis set. The functions listed under ‘aux basis additions’
are added to those of the bare basis set when the product basis
is constructed.

MP2@HFRI–V
EtotD (meV)

Aux basis Per atom Systemwide
additions RMSD MAX RMSD MAX

s(z= 1) 0.003 0.008 0.031 0.076

sp(z= 1) 0.013 0.045 0.050 0.123

spd(z= 1) 0.012 0.036 0.066 0.126

spdf(z= 1) 0.011 0.027 0.076 0.144

spdfg(z= 1) 0.031 0.098 0.494 1.856
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RI-V shows no significant dependence on the added auxiliary basis functions (data not shown).When the

product basis is enhancedwith additional auxiliary functions, the RI-LVL results can be controlled and

converged in a systematic way. In contrast to the previousHF calculations (see figures 3 and 6), we find that no

OBS+ is needed to obtain accurate results with PBE0. This has two reasons: first, compared to the cc-pVTZ basis

set used infigure 3 the tier 2 basis already contains a g-function in the orbital basis set. (See table 10 formore

details on the tier basis sets and table 12 for an example of how the auxiliary basis set is enhanced by the

additional g function.)The second reason is that PBE0 only contains 25% exact exchange, which reduces the

total energy error accordingly, when compared to the tier 2HF calculations.
Table 6 shows the relevant errors for the hierarchical enhancement of the auxiliary basis. As forHF,we can

significantly reduce the RMSDandmaximal value of the total energy error per atom, in this case bymore than

one order ofmagnitude from0.19 to 0.02 meV. If the auxiliary basis is only enhanced by a single g-function, we

find results similar to those from theHF analysis: the effective charge of extra function in theOBS+has no

significant impact on the achieved accuracy.
For RPA@PBE0 calculations using theNAO-VCC-3Z basis set we find almost the same behavior as forMP2:

the RI-V reference is againwell converged and shows no sensitivity to the added auxiliary basis functions (data

not shown) and the RI-LVL error can bewell controlled by the hierarchical auxiliary basis set additions, as

shown infigure 8 for the RMSD andmaximal absolute error. The only difference we found is that the reduction

Figure 7.MP2 total energy errors of the RI-LVL calculations using theNAO-VCC-3Z basis set with additional auxiliary basis
functions, compared to the RI-V calculationwith the pure basis set. The black line shows the performance of theOBS+with a single g-
function (z= 1), whichwe recommend for production calculations.

Table 5.RMSDandmaximumabsolute errors forMP2@HF in the S22
test set using the RI-LVLmethodwith theNAO-VCC-3Z basis set. The
functions listed under ‘aux basis additions’ are added to those of the bare
basis set when the product basis is constructed.

MP2@HFRI–LVL
EtotD (meV)

Aux basis Per atom Systemwide

additions RMSD MAX RMSD MAX

None 13.919 32.970 195.751 494.545

spdfg(z= 1) 0.047 0.104 0.548 1.141

g(z= 1) 0.063 0.111 0.859 2.006

g(z= 2) 0.064 0.114 0.881 2.003

g(z= 3) 0.059 0.104 0.814 1.879

g(z= 4) 0.054 0.097 0.737 1.780

g(z= 5) 0.036 0.070 0.483 1.324

g(z= 6) 0.028 0.074 0.364 1.035

g(z= 7) 0.046 0.082 0.610 1.384
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of the additional auxiliary basis functions to a single g-function is not as effective as for theHF/MP2 case. In

table 7we listed the RMSD andmaximal absolute errors for different effective charges of the added g-function.

As can be seen, the values are significantly larger than for the largest analyzed hierarchical auxiliary basis set, but

Table 6.RMSD andmaximumabsolute errors for PBE0 in the
S22 test set using the RI-LVLmethodwith the tier 2 basis set. The
functions listed under ‘aux basis additions’ are added to those of
the bare basis set when the product basis is constructed.

PBE0RI–LVL
EtotD (meV)

Aux basis Per atom Systemwide
additions RMSD MAX RMSD MAX

None 0.068 0.185 0.543 0.941

s(z= 1) 0.070 0.188 0.557 0.964

sp(z= 1) 0.060 0.159 0.464 0.792

spd(z= 1) 0.039 0.091 0.334 0.588

spdf(z= 1) 0.012 0.028 0.115 0.237

spdfg(z= 1) 0.007 0.017 0.065 0.168

Figure 8.Rootmean square deviation andmaximal (absolute) errors for RPA@PBE0 in the S22 test set usingRI-LVLwith theNAO-
VCC-3Z basis set and different auxiliary basis sets.

Table 7.Rootmean square deviation andmaximumabsolute errors
for RPA@PBE0 in the S22 test set using the RI-LVLmethodwith the
NAO-VCC-3Z basis set. The functions listed under ‘aux basis addi-
tions’ are added to those of the bare basis set when the product basis
is constructed.

RPA@PBE0RI–LVL
EtotD (meV)

Aux basis Per atom Systemwide
additions RMSD MAX RMSD MAX

None 9.119 17.611 120.283 266.504

spdfg(z= 1) 0.041 0.130 0.221 0.597

g(z= 1) 0.059 0.385 0.792 7.324

g(z= 2) 0.060 0.383 0.795 7.286

g(z= 3) 0.059 0.387 0.791 7.353

g(z= 4) 0.058 0.390 0.785 7.416

g(z= 5) 0.059 0.406 0.796 7.712

g(z= 6) 0.058 0.417 0.804 7.932

g(z= 7) 0.057 0.402 0.788 7.642
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still small on an absolute scale. The error per atom is below 0.5 meV in all cases and the RMSD for the total error
is approximately 0.8 meV.

3.3. Atomization energies and reaction barrier heights

In addition to total energies we also computed the atomization energies in theG2–1 test set [66, 67] and reaction
barrier heights in the BH76 test set [6, 68]withRI-LVL. The employed geometries are taken from the original
papers. For theG2–1 test set we included only thosemolecules in the error analysis which have at least three
atoms, because RI-V andRI-LVL are identical in the dimer case. In the RI-LVL calculationswe use an auxiliary
basis set constructed fromanOBS+with a g functionwith z= 6. All RI-V calculations are performedwith the
standardOBS and P r{ ( )}m . All calculations use theNAO-VCC-3ZOBS. As shown in table 8, RI-LVL performs
equally well for binding energies as for total energies.

3.4. RI-LVL for heavy elements

In addition to the properties of light elements from the first and second rowof the periodic table, we also
investigated the performance of RI-LVL for a few representative heavier elements, namely copper, gold and
titaniumdioxide. The cluster geometries used for this test are displayed infigure 9.

Figure 10 shows the RMSD andmaximumabsolute error per atom for titaniumdioxide, copper and gold
clusters. For the heavy elements we used either tier 3 (titanium, oxygen and gold) or tier 4 (copper) basis sets to
demonstrate the applicability of our newmethod to a typical RPA-calculation setup.We know from the previous
results that light elements like oxygen need an enhanced auxiliary basis set for an accurate treatment with RI-
LVL. Therefore, we constructed an enhanced auxiliary basis set with an additional g-function (z= 1) for oxygen
in titaniumdioxide. For the explicit three-center integrals ij( ∣ )m of RI-V, densemulticenter integration grids are
needed for heavy elements.We note that the ij( ∣ )m integrals are two-center in RI-LVL and can be carried out
using Talman’smethod, therefore significantly lighter integration grids are sufficient for our RI-LVL
implementation than for RI-V.With very tight integration settings (see appendix C for the details) particularly
for RI-V, our RI-LVL resultsmatch the total energies of RI-V for our chosen systemswith anRMSDbelow

Table 8.Absolute differences betweenRI-V andRI-LVL
for the rootmean square deviation andmaximal abso-
lute error for theG2–1 test set (restricted to non-dimers)
and the reaction barrier height test set BH76. Computa-
tional details are given in the text. See SI formore details.

G2–1* (meV) BH76 (meV)

RMSD MAX RMSD MAX

HF 0.060 0.184 0.077 0.181

PBE0 0.023 0.093 0.019 0.045

MP2 0.064 0.188 0.079 0.232

RPA 0.105 0.429 0.079 0.200

Figure 9.The clusters we used to benchmark the performance of RI-LVL for heavy elements. The geometries of all clusters can be
found in the supporting information. The gold [63] and titanium-dioxide clusters [64] are the results frombasin hopping and genetic
algorithmbased structure optimizations. The copper clusters [65] are cut out frombulk geometries.
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1.3 meVper atom even for gold clusters. In contrast to lighter elements, our results suggest that the auxiliary

basis is well saturated and has enoughflexibility to compute the four-center integrals accurately without adding

further elements to theOBS.
To substantiate this observation, we computed the systems againwith a g-function in theOBS+ and

otherwise identical parameters. The results are shown in table 9.
Enhancing the RI-LVL calculations with additional auxiliary basis functions on the heavy elements changes

the results only slightly. The RI-V calculations on the other hand show a larger, but overall still insignificant

susceptibility to the additional functions in the P r{ ( )}m . For example the RMSD changes by 0.44 meV for gold
when computedwith RI-V, while RI-LVL only exhibits a change of 0.19 meV.

From the presented RMSDandmaximumerrors (figure 10)we can see that RI-LVL is very accurate for

heavy elements and can reproduce the RI-V results with no significant error. The deviation for the error per

atom is consistently below 1.5 meV and even the total error is a fewmeV atmost for large basis sets.We have

additionally verified that these conclusions also hold for smaller FHI-aims tier1 basis sets as theOBS for Ti, Cu,

andAu,withmaximumoverall errors betweenRI-LVL andRI-V for RPAof 3 meV (Au7) and errors for the

Figure 10.Total energy error of the RI-LVLRPA@PBE0 calculations for TiO2 (2–8 units), Cu (2–6,9 and 12 atoms) andAu clusters
(2–7 atoms). The reference point is the RI-V calculationwith the standard tier3/4 basis sets. In the TiO2 case the oxygen atoms had an
OBS+with a g-function for the RI-LVL calculation. See SI for details.

Table 9. For RI-V andRI-LVL, we show the
RPA@PBE0 total energy change (RMSD) of the
clusters shown in figure 9when adding a g-func-
tion (z= 6) to theOBS of the elements Ti, Cu, and
Au. For all titaniumdioxide test cases, we used an
OBS+with an additional g-function on oxygen,
i.e., the third columnonly reflects the RMSD
change due to the addition of a g-function to the
OBS of Ti. See text for further details about the
computational settings.

RPA-RMSDper atom RMSDper

OBS+with g[z= 6] versus
standardOBS atom (meV)

Gold RI-V 0.438

OBS: tier 3 RI-LVL 0.187

Copper RI-V 0.193

OBS: tier 4 RI-LVL 0.043

Titaniumdioxide RI-V 0.101

OBS: tier 3* RI-LVL 0.022
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PBE0 hybrid functional consistently below 1 meV. The good performance for all three elements shows that the
RI-LVL has no problems dealingwith d- and f-electrons.

4. Computational scaling analysis

In addition to the accuracy of the localized RI, we also investigated the scaling with system size, i.e. the number of
atoms, both in terms ofmemory consumption and the required computational time. To obtain a superior
scalingwith our localized variant, specialized routines are required that operate on the resulting sparse tensors
instead of on the full three-function tensor. At present, such routines exist for the evaluation of the Fockmatrix
within FHI-aims. This implementation is discussed in detail in a separate publication [34]. In particular this
implementation employs integral screening as used in standard quantum chemistry linear scaling exchange
algorithms based on densitymatrix screening [55, 69].

Figure 11 shows the scaling of the RI-LVL (using sparsity and screening) in comparison to RI-V for theHF
level of theory for extended polyalanine chains. One of them, namely Alanine-8 (Ala8) is depicted infigure 11(b).
All calculations were performed using the tier 2 basis sets [16] and tight integrations settings (see table 1 in [70]
for details). The auxiliary basis in RI-LVLwas enhancedwith one extra g-function (z= 6).

Figure 11(a) shows the total time required for the self-consistentHF calculation, as well as the portion that is
spent on the Fockmatrix evaluations. In small systems, the screened RI-LVL runs slower compared to simple
BLAS3 densematrixmultiplications used in RI-V. The break-even point occurs at about 70 atoms. For RI-LVL,
in contrast to RI-V, the Fockmatrix evaluation is the single dominant contribution to the total time, regardless
of the system size. This shows that the localized scheme significantly speeds up the construction of the auxiliary
basis.

Figure 11(c) shows how thememory consumption for RI-V andRI-LVL scales with system size.While RI-
LVLhas a large constant offset, it scales linearly and breaks even at only 50 atoms. The favorablememory scaling
is due to the fact that we no longer need to store the complete three-center integrals ij( ∣ )m . Each core phas a peak

Figure 11. Scaling analysis of self-consistentHartree–Fock calculations for fully extended oligoalanine chains. The figures show the
RI-V implementation and the RI-LVL version that uses sparsity as well as integral screening. All calculations were performed using
180CPUcores of an Infiniband-connected Intel cluster with Intel XeonX5650Westmere hexa-core processors (2.66GHz, 12 cores
per node). As computational settings we used the tight defaults settings and the tier 2 basis set. For the RI-LVL calculations we
furthermore added onemore radial g-functionwith z= 6 for the construction of the auxiliary basis.
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memory requirementMp. For bothmethods an increase in the spread betweenminimal ( Mminp p( )) and
maximal ( Mmaxp p( ))memory consumption per core can be observedwith increasing system size. This is a
consequence of a load-balancing algorithm [34]. Figure 11(d) shows the difference in the total energy per atom
betweenRI-V andRI-LVL. The error per atom is insignificant and does not increase with system size, but instead
levels out at a very low value.

Finally, we extrapolated the scaling of the computational time for the algorithmwith system size by
analyzing the scaling of its dominant step, namely the evaluation of the exchangematrix. Infigure 12we present
the scaling of the time necessary for the exchangematrix evaluation as a function of the system size
approximated by the second SCF-iteration. Shown are the results for RI-V using the standard auxiliary basis and
180 cores (to accommodate thememory needs of the largest system tested) and for RI-LVLwith the enhanced
auxiliary basis on 24 cores. Our localized RI exhibits a superior scaling (linear versus cubic) and despite using
significantly fewer cores, the break-even point occurs at around 110 atoms.

5. Conclusion and outlook

In this work, we present away to improve the scaling of the RI techniquewith the number of atoms by restricting
the expansion to a subset of the auxiliary basis functions. ‘RI-LVL’ only includes auxiliary basis functionswhich
are located at one of the two atomswhere the basis functions forming the product are centered. Importantly, the
Coulombmetric of RI-V is retained.

We show forHF,DFT-PBE0,MP2, andRPA that the error of the RI-LVL approach can be controlled in a
systematic way by enhancing the set of orbital basis functions, uponwhich the auxiliary basis for RI is based, with
specific, structure- andmethod-independent additional radial functions before the auxiliary basis set P r{ ( )}m
itself is built. For light elements, by using functions up to angularmomentum channel gwewere able to reduce
the RMSDof the total energy (compared to anRI-V calculationwith the pure basis set) below 1 meV for the S22
test set. Even for sub-meV total energy accuracy, we found that a single g function in theOBS+ is sufficient. For
heavy elements, no enhancement of the orbital basis set for the purpose of constructing the RI auxiliary basis set
is needed.We also showed that RI-LVL has a similar performance for reaction barrier heights and atomization
energies inmolecular systems. The RI-LVLmethod also requires less dense integration grids for the same
accuracy as RI-V for heavy elements with very large basis sets.

The RI-LVLmethod togetherwith these auxiliary basis sets paves theway towards low-memory, linear-
scaling implementations ofHF exchange,MP2, RPA and even higher-levelmethods.
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Figure 12.Time for the Fockmatrix evaluation in the second SCF step of fully extended oligoalanine chains of increasing length. In the
graph, we compare data for the RI-V implementation and for the RI-LVL version that uses sparsity aswell as integral screening. The
RI-V based calculations were performed in parallel on 180CPUcores, while the RI-LVL based calculations were performed using 24
CPU cores (same hardware as described in caption offigure 11). As computational settings we used the tight defaults settings and the
tier 2 basis set. For the RI-LVL calculationswe furthermore added onemore radial g-functionwith z= 6 for the construction of the
auxiliary basis.
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AppendixA. Employed basis sets

The FHI-aims code includesNAObasis sets consisting of successive ‘tiers’ or levels of groups of radial functions.

The basis sets include the free-atom solutions for occupied orbitals of the given element and hydrogen-like

functions. In some cases also functions from the free ion are used to complement the basis set. The tier basis sets

used in this paper are listed in table 10. The table only lists the radial functions, which are thenmultipliedwith all

spherical harmonics for their given angularmomentum.

Appendix B. The effects of augmenting the orbital basis set

As shown above, adding a single hydrogen-like functionwith angularmomentum g to the pool of functions used

to construct the auxiliary basis set in RI-LVL suffices to recover the accuracy of the RI-V. To give a specific

Table 10.Numerical parameters of the radial functions defining theNAObasis sets employed in FHI-aims as described in detail in [16]. Basis
sets consist of aminimal free-atom like set of radial functions, and additional ‘tiers’ (levels) of radial functions as determined by an auto-
mated basis set construction procedure. The label ‘H nl z,( )’ denotes a hydrogen-like functionwith principal quantumnumber n, angular
momentum l and the effective charge z. The label ‘X nlz ( )+ ’ denotes free-ion solutionswith the given ion charge z and the quantumnumbers
n and l. Each tier includes the functions from all preceding tiers.

H C N O Ti Cu Au

Minimal 1s [He]+ 2s, 2p [He]+ 2s, 2p [He]+ 2s, 2p [Ar]+ 4s, 3d [Ar]+ 4s, 3d [Xe]+ 6s, 5d, 4f

Tier 1 H(2s, 2.1) H(2p, 1.7) H(2p, 1.8) H(2p, 1.8) H(4f, 8.0) Cu2+(4p) Au2+(6p)

H(2p, 3.5) H(3d, 6.0) H(3d, 6.8) H(3d, 7.6) H(3d, 2.7) H(4f, 7.4) H(4f, 7.4)

H(2s, 4.9) H(3s, 5.8) H(3s, 6.4) Ti2+(4p) H(3s, 2.6) Au2+(6s)

H(5g, 11.6) H(3d, 5.0) H(5g, 10.0)

Ti2+(4s) H(5g, 10.4) H(6h, 12.8)

H(3d, 2.5)

Tier 2 H(1s, 0.8) H(4f, 9.8) H(4f, 10.8) H(4f, 11.6) H(3d, 4.4) H(4p, 5.8) H(5f, 14.8)

H(2p, 3.7) H(3p, 5.2) H(3p, 5.8) H(3p, 6.2) H(6h, 16.0) H(3d, 2.7) H(4d, 3.9)

H(2s, 1.2) H(3s, 4.3) H(1s, 0.8) H(3d, 5.6) H(4f, 9.4) H(6h, 15.2) H(3p, 3.3)

H(3d, 7.0) H(5g, 14.4) H(5g, 16.0) H(5g, 17.6) H(4p, 4.5) H(5s, 10.8) H(1s, 0.5)

H(3d, 6.2) H(3d, 4.9) H(1s, 0.8) H(1s, 0.5) H(4f, 16.0) H(5g, 16.4)

H(6h, 13.6)

Tier 3 H(4f, 11.2) H(2p, 5.6) H(3s, 16.0) O2+(2p) H(4d, 6.4) H(4d, 6.0) H(4f, 5.2)

H(3p, 4.8) H(2s, 1.4) N 2+(2p) H(4f, 10.8) H(4f, 10.0) H(3p, 2.4) H(4d, 5.0)

H(4d, 9.0) H(3d, 4.9) H(3d, 6.6) H(4d, 4.7) H(5g, 12.0) H(4f, 6.4) H(5g, 8.0)

H(3 s, 3.2) H(4f, 11.2) H(4f, 11.6) H(2s, 6.8) H(2p, 1.7) H(3s, 6.8) H(5p, 8.2)

H(6h, 16.4) H(5g, 11.2) H(6d, 12.4)

H(4s, 3.8) H(6s, 14.8)

Tier 4 H(2p, 2.1) H(2p, 4.5) H(3p, 5.0) H(4p, 7.0)

H(5g, 16.4) H(2s, 2.4) H(3s, 3.3) H(4s, 4.0)

H(4d, 13.2) H(5g, 14.4) H(5g, 15.6) H(6h, 14.0)

H(3s, 13.6) H(4d, 14.4) H(4f, 17.6) H(4d, 8.6)

H(4f, 17.6) H(4f, 16.8) H(4d, 14.0) H(5f, 15.2)

Table 11.Highly converged integration settings for
the different atoms.Nr denotes thefinal number of
radial shells. Nr

base is the initial number of shells
before the enhancement factor rmult, also known as
the radialmultiplier, is applied and router is the out-
ermost radius of the base integration grid. (see
appendix of [61] for details)Nang is the number of
grid points on an integration shell.

Quantity Au Cu Ti O

Nr 443 323 293 221

Nr
base 73 53 48 36

rmult 6 6 6 6

router 7 Å 7 Å 7 Å 7 Å

NMin ang( ) 110 110 110 110

NMax ang( ) 974 974 974 974
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example of the number and type of radial functions recovered at each step of the construction procedure
outlined infigure 1, table 12 summarizes the pertinent radial functions in the orbital and auxiliary basis sets of
the C atom, using theGTO cc-pVTZ and theNAO tier 2 basis sets as examples. All specifics of the radial
functions up to tier 2 are summarized in table 10. As it can be seen from the table, adding a single g-function to
the construction procedure yields a large set of additional auxiliary basis functions.

AppendixC. Integration parameters for heavy element tests

FHI-aims uses an atom-centered grid for computingmost integrals [16, 54]. The grid is composed of radial
‘shells’ [71] (see also equation (18) in [16] and the appendix in [61]) and each shell is populatedwith a given
number of angular integration points that form a Lebedev grid [72–75]. The key controlling parameters for the
accuracy of the integration routines are the number of radial shells and the number of angular grid points as a
function of the distance to the center. For our investigation of heavy elements, we use dense integration grids,
because our reference point, the RI-V, is sensitive to the quality of the grid. The details are listed in table 11. For
the sake of consistencywe decided to use the same integration settings also in RI-LVL. In a production
calculation the settings can be reduced significantly, because RI-LVL does not use the atom-centered grid for the
four-center integral evaluation and the normalDFTpart hasmuch lower demands on the grid settings.
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