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Abstract—The research on indoor localization has received
great interest in recent years. This has been fuelled by the
ubiquitous distribution of electronic devices equipped with a
radio frequency (RF) interface. Analyzing the signal fluctuation
on the RF-interface can, for instance, solve the still open issue
of ubiquitous reliable indoor localization and tracking. Device
bound and device free approaches with remarkable accuracy
have been reported recently.

In this paper, we present an accurate device-free passive
(DfP) indoor location tracking system which adopts channel
state information (CSI) readings from off-the-shelf WiFi 802.11n
wireless cards. The fine-grained subchannel measurements for
MIMO-OFDM PHY layer parameters are exploited to improve
localization and tracking accuracy. To enable precise positioning
in the presence of heavy multipath effects in cluttered indoor
scenarios, we experimentally validate the unpredictability of
CSI measurements and suggest a probabilistic fingerprint-based
technique as an accurate solution. Our scheme further boosts
the localization efficiency by using principal component analysis
(PCA) to filter the most relevant feature vectors. Furthermore,
with Bayesian filtering, we continuously track the trajectory
of a moving subject. We have evaluated the performance of
our system in four indoor environments and compared it with
state-of-art indoor localization schemes. Our experimental results
demonstrate that this complex channel information enables more
accurate localization of non-equipped individuals.

I. INTRODUCTION

People assign a significant share of their time indoors (over

80%) [1], covering shopping in leisure time or attending

meetings during office hours. Accurate information on mo-

bility patterns and movement paths would enable improved

building and path management and also help to advertise

relevant information at right places. However, in most practical

purposes, it can not be assumed that all subjects to be tracked

can be equipped in advance, as this would require considerable

resources. Recent research on RF-based indoor localization,

however, has let to promising results. In these approaches,

fluctuations in the ubiquitously available RF-Signals are ex-

ploited for localization and tracking purposes.

Traditional approaches require transceiver-equipped sub-

jects and localize the device rather than its wearer by translat-

ing the observed changes and fluctuation in received signals

to a coordinate system.

Examples are FM-based indoor localization [8], GSM-based

techniques [26] as well as Bluetooth [13] or WiFi-based

systems [4]. The reported localization accuracy of state-of-art

device-bound indoor systems is less than 0.5m [32] [33] with

the adoption of CSI information, which meets the demand of

most applications.

The main disadvantage of such approaches is, however, that

all require a cooperating and equipped subject to be localized.

However, in most practical purposes, it can not be assumed that

all subjects to be tracked can be equipped in advance, since this

would require considerable resources. A possible alternative

is device-free passive (DfP) indoor localization [52], [7], [49],

[31]. In DfP indoor localization, fingerprint-based techniques

are widely adopted, since the unpredictability of radio prop-

agation due to multipath effects renders the alternative of

analyzing RF signals challenging. Among these solutions, the

Nuzzer system [31] builds an offline radio map by modeling

the RSSI of a data stream from an AP-MP pair to follow

Gaussian distribution and assuming all the data streams to be

independent at each predefined training location. In the online

phase, a location is determined whose RSS samples match

closely with the passive radio map. PC-DfP improves the

accuracy by adopting linear discriminant analysis or quadratic

discriminant analysis. Channel state information (CSI) recently

can be aggregated from a commodity Intel 5300 Network

Interface Card in the granularity of OFDM subchannels, a

much finer grained channel indicator than RSSI. By adopting

the raw CSI measurements, a recent work, Pilot, shows that the

correlation feature of CSI samples can be leveraged to distin-

guish between empty environment and presence of a subject in

the area of interest, and further determine the location of this

subject. Thanks to the fine-resolution of CSI readings, Pilot

outperforms state-of-art RSSI-based indoor schemes, such as

Nuzzer and PC-DfP. However, for one CSI reading from a

packet, only one correlation value is calculated in Pilot, which

does not take full advantage of the characteristics in frequency

and space domain.

In this study, we further advance CSI-based indoor local-

ization by adopting every single subchannel amplitude of CSI

measurements and propose a single-stage direct classification.

This is in contrast to Pilot, which utilizes the “correlation”

between multiple CSI readings in a two-stage process. The

contributions of this paper are

a) a comprehensive analysis of the characteristics of CSI
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change induced by human presence.

b) a computationally efficient single-stage approach for in-

door localization and tracking which takes full advantage

of information provided by CSI measurements from

commodity 802.11n WiFi wireless cards. The approach

is computationally efficient and robust against high-

dimensional CSI vectors due to PCA-based dimension-

ality reduction.

c) a large case study covering four diverse typical indoor

spaces in two different buildings

d) a performance comparison to the state-of-art indoor

positioning solutions Nuzzer [31], PC-DfP [50] and

Pilot [46].

e) Kalman-filter and Particle-filter based approaches to

track a moving target and a discussion on the adapt-

ability of these two Bayesian filters to distinct walking

patterns.

f) the Cramér-Rao Bound (CRB) on the proposed track-

ing system, which is regarded as the benchmark for

asserting the performance of KF and PF based tracking

algorithms.

This paper is an extension of our work presented in [34].

In particular, we have significantly revised and improved the

analysis, conducted a more general experimental study in

4 diverse environments, added performance metrics for the

analysis, compared the results achieved to two additional

state-of-the-art algorithms, namely Nuzzer and PC-DfP and

improved the overall discussion on the topic. Finally, and

most significantly, our current system is able to continuously

track a moving target. This is possible by the adaptation of

Kalman-filter and Particle-Filter-based approaches. Both have

been concisely investigated and are discussed in depth in this

article.

The rest of this paper is structured as follows. The related

work and preliminary studies are detailed in section II and III.

In section IV, we describe the implementation of our proposed

CSI-based passive device-free indoor localization system. In

section V, we investigate the feasibility of tracking a moving

person using Bayesian filtering. We detail the experiment setup

in section VI. The evaluation results are presented in sec-

tion VII. In Section VIII, related issues and possible solutions

are discussed. Finally, section IX draws our conclusion and

discusses future work.

II. RELATED WORK

Recently, location estimation in indoor environments has

gained a great deal of attention by researchers, due to the

increasing demand of location-based services and applications.

While a large range of information sources have been utilized,

such as video [20], magnetometers [22], and magnetic resonant

coupling [27], all of which suffer from the system cost and

installation effort. In this study, of particular interest are radio

frequency (RF) based solutions, as RF-channel information is

a ubiquitously available source, thereby mitigating installation

cost. Many systems using RF signals have been designed

for precise indoor positioning from traditional device-bound

solutions. In these, the target is an RF-transceiver equipped

subject [31], [50], [25], [46]. We detail these two categories of

localization systems in the following. Furthermore, we survey

a plethora of methods for tracking the trajectory of a moving

person using RF sources.

A. Device-bound Localization

Device-bound localization systems deal with the problem

of positioning an entity equipped with an RF-emitting device.

Researchers working in this direction propose to use different

wireless techniques ranging from Infrared (IR) [40], Ultra-

sonic [18], RFID [24], Bluetooth [13] or WiFi [4], [44], [6],

[48]. Among these, WiFi signals are most widely adopted due

to popularity and low cost. For example, as described in [4],

the proposed RADAR system first builds an a priori fingerprint

map by gathering the WiFi RSS measurements at different

locations in the training phase, and then deduces the location

by minimizing the Euclidean distance between online RSS

measurements and corresponding measurements in the radio

map during the test phase. The accuracy can be further im-

proved by using CSI measurements from revised commodity

WiFi devices and clustering techniques for localization [32]

[33], where experimental evaluation asserts error distances

smaller than 0.5m. Recently, Xie et al. [47] and Vasisht et

al. [38] released new tools, Splicer and Chronos respectively,

both of which can measure the CSIs from a much wider

spectrum band and adjust the errors of amplitude and phase of

the gathered CSIs, further improving the precision of indoor

localization. Except for the utilization of fine-grained CSI

measurements, in order to improve the positioning accuracy,

some recent studies propose to either exploit other extra

wireless signal measurements [47] or to design a novel scheme

for accurate fingerprint generation [44]. Apart from accuracy,

efficiency of location estimation is of significant importance

for a positioning system as well. To this end, Cai et al. [6]

introduce CRIL, which can quickly adapt to the changes of

dynamic environments and thus improve the efficiency of an

indoor localization system while preserving the localization

accuracy.

B. Device-free Localization

The assumption that a device is always carried by a subject

is not realistic. A device-free system was first introduced by

Youssef et. al [51] for the localization of a non-equipped

entity. In recent years, various RF device-free localization

schemes have been proposed [51], [49], [46], [42], [43], [19].

These schemes mainly constitute fingerprint-based and model-

based solutions. Model-based algorithms use statistical models

to establish a mathematical relationship between the radio

signals and the location in indoor environments and thus do

not require the laborious effort to construct and maintain

the radio map. However, in most cases, due to the cluttered

indoor environments, an accurate model cannot be built to

capture the complicated relationship between radio signals and

coordinates of indoor spaces. On the other hand, fingerprint-

based algorithms do not assume any prior knowledge of the

relationship between RF signals and positions while requiring

considerable effort to construct and calibrate the radio map.

We focus on the most relevant systems below.

Fingerprint-based indoor localization systems require to

construct an offline radio map, and then compare it with the
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collected online measurements to estimate the location of the

targeted person [51], [49], [46], [31]. Seifeldin et. al [31]

present an RSS-based large-scale device-free localization sys-

tem, Nuzzer, by analyzing the human-induced RSS statistics

with probabilistic techniques. It presumes the RSSI samples of

each AP-MP stream to be Gaussian distribution. Furthermore,

Xu et. al [49] employ linear discriminant analysis from RSS

to recognize different cells of locations, which significantly

mitigates NLoS effects and thereby achieves better accuracy

in cluttered indoor environments. Furthermore, to ease the

effort of building a radio map, a transferring positioning model

based device-free system is proposed in [25], which can collect

training measurements in a certain indoor environment and

apply them into other different indoor spaces with the aid of

floor plans. Also, some other studies try to construct radio

maps using simultaneous localization and mapping (SLAM)

approaches [14], [17]. In order to better characterize the

influence of the target on wireless signals and extract suitable

statistical features, Wang et. al [39] propose a deep learning

approach to automatically learn discriminative features. With

the evolution of WiFi PHY layer techniques, Xiao et al. [46]

initially estimate the position of a passive entity from CSI-

related patterns. On observing that CSI samples are susceptible

to presence of a subject and immune to temporal variance,

the authors propose the Pilot system to utilize correlations of

CSI from 802.11n wireless cards as the discriminant feature

to determine the location of passive subjects by a two-

stage detection approach. Since CSI measurements provide

more accurate channel information, the reported localization

precision is dramatically increased compared to that achieved

by other state-of-art RSS-based schemes. While the correlation

feature enables the classification among different locations, it

only represents the temporal characteristics of motion-induced

variance of CSI samples. Furthermore, in Pilot, an abnormal

environment should be detected by determining whether the

correlation between the current CSI sample and normal CSI

readings is smaller than a manually selected threshold before

triggering the second-stage localization process. In this work,

we propose a probabilistic fingerprint-based DfP localization

scheme to analyze human-induced variance of CSI measure-

ments. Differing from Pilot, we model the CSI change vector

as a multivariate Gaussian distribution. Our system is further

capable of tracking the trajectory of an individual by the

adoption of Bayesian filtering techniques.

In terms of model-based localization systems, an approxi-

mate model is required upon which the localization algorithms

can map the changes of RF measurements to the location of

a targeted person [42], [43], [19]. For instance, Wilson and

Patwari utilize Radio Tomographic Imaging (RTI) on the two-

way RSS variance [42] or RSS mean fluctuations [43] between

nodes arranged in a rectangle surrounding the monitored area

for robust localization. To reduce the density of RF nodes, they

develop a novel solution using RF transceivers in motion [19].

Recently, Kaltiokallio et. al [21] propose to model the RSS

measurements of the indoor radio propagation channel as a

three-state process, which can further increase the localization

accuracy. Instead of leveraging RSSI measurements as raw

source, Qian et. al [28] introduce a novel system Widar, which,

by modeling the relationship between the CSI measurements

and the user’s location and velocity, can yield a decimeter-level

accuracy.

C. Device-free Tracking

Regarding mobility tracking systems, a generic approach is to

exploit the multiple measurements in time series to reduce the

positioning errors iteratively [12], [9]. In terms of device-free

tracking systems, several solutions have been proposed [42],

[53], [5]. For instance, in [42], [53], the authors exploit the

Kalman filter for tracking a single person using the location

results from Variance-based RTI and subspace Variance-based

radio tomography respectively. Furthermore, they extend their

work to track multiple persons [5]. Instead of using Kalman

filter, the problem of tracking multiple persons is formulated as

a data assignment problem (DAP) and solved by minimizing

the total cost of DAP.

III. BACKGROUND AND MOTIVATION

A. Channel State Information

In the standard of the 802.11 protocol, RSS is defined as

an indicator for the quality of a link, which characterizes

the overall received signal power in the channel. With the

wide adoption of multiple input multiple output-orthogonal

frequency-division multiplexing (MIMO-OFDM) PHY tech-

nology in many wifi-class devices, RSS is no longer regarded

as an accurate metric, since the data streams are transmitted on

various orthogonal subchannels independently and the quality

of these subchannels differs one by one. In contrast to RSS,

CSI contains link information in the granularity of a single

MIMO-OFDM subcarrier. Therefore, it holds the potential for

more accurate indoor localization. With the release of the

CSI tool for commodity WiFi cards by Halperin et. al [16],

we can aggregate both the amplitude and phase information

for each MIMO-OFDM subcarrier. Let t, r be the number

of transmit (TX) and receive (RX) antennas, and w the

total number of subcarriers for a TX-RX pair. Based on the

functionality of the CSI tool, a CSI vector can be obtained

per packet, containing t · r · w values of subchannels as

C = {Cmi,k}, i ∈ [1, t], k ∈ [1, r], m ∈ [1, w], for each

value Cmi,k, it reflects both amplitude and phase of the RF

signal Cmi,k = |Cmi,k|e
j sin θ modulated at the subchannel m from

transmit antenna i to receive antenna k.

The received signal strength (RSS) is a practical metric for

the quality of a link, which characterizes the overall received

signal power in the channel. As shown in Figure 1, RSS

estimation can be acquired from the overall received channel

power (e.g 8-bit information in WiFi 802.11 standards). With

the adoption of OFDM modulation, as depicted in Figure 1, the

CSI estimation can be obtained from reference signals (RSs)

transmitted over various subcarriers. Thus, in contrast with

RSS, it can represent the link quality in the granularity of

subcarriers independently.

B. Unpredictable Nature of CSI in Indoor Environments

It is of great importance to know the sources of errors and

biases to design a robust indoor localization system. Regarding

the RSS-based solutions, various experiments demonstrate that

multiple effects are of concern for the location precision. For
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Figure 1: Flow diagram of signal processing in 802.11n

standard

instance, in [49], Xu et. al have a subject stand within the Line-

of-Sight (LOS) path between a single channel TX-RX link in

a cluttered indoor environment and find that the blocking of

the LOS path induced by humans may not lead to a decrease

in RSS, which demonstrates the unpredictability of mulitipath

fading induced bias. In the context of MIMO-OFDM, since

the RSS is no longer a reliable indicator for the entire channel

quality [16], in this section, we investigate the challenges

posed by CSI measurements in solving the location estimate

problem of cluttered environments. As aforementioned, both

amplitude and phase information can be attained from CSI

readings. Regarding the phase information, as also mentioned

in [54], [47], [45], [29], compared with amplitude information,

it contains significant random noise and, without phase cor-

rection and sanitization, cannot be leveraged for RF sensing

applications. Therefore, we solely adopt the CSI amplitude

measurements to design our indoor localization system.

To verify the multipath fading of subchannels, we carry out

experiments in a typical domestic home and install a transmit-

ter (access point) and a receiver (laptop) within a distance of

4 meters at a height of 1.4m from the floor. As we need to

explore the signal fluctuation of CSI measurements before and

after blocking the LOS path, at first, the CSI measurements

are recorded when no subject is present in the room. Then, we

gather CSI readings while a subject stands in or out of the LOS

path and extract the average values of non-subject occupied

CSI measurements from them. We coin the term of destructive

(or constructive) probability to refer to the probability that

the amplitude of the CSI measurement from a subchannel

decreases (or increases) induced by the presence of a subject

in the area of interest. Figure 3 illustrates the destructive and

constructive probability of the CSI measurement changes from

all 30 subchannels respectively when a subject blocks the LOS

path. From this figure, we observe that the human-induced CSI

change in LOS areas can be destructive as well as constructive.

More specifically, for two certain subchannels, Figures 2a,

and 2b show the histograms of the CSI amplitude change from

subchannel 3 and 14 in both LOS and NLOS areas. From

Figure 2a, we notice that the amplitude of CSI measurements

in subchannel 3 decreases with probability of over 90% due

to the blocking of the LOS path, while for subchannel 14, the

strength of the signal attenuates with a probability smaller

than 60%. From these figures, we conclude that the CSI

measurements observed over diverse subchannels change in

an unpredictable manner. Therefore, rather than employing

a deterministic model of CSI measurements to estimate the

distance, we propose to exploit a probabilistic approach for

location discrimination.
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Another underlying assumption of our system is that the

height of the tracking subjects is higher than that of radio

devices and resilient to different persons. To validate this, we

select two different representative subjects (a man with height

of 1.8m and a woman with height of 1.5m) to conduct the

identical experiments with the setup. Figure 4 quantifies the

constructive probability of the CSI measurement changes from

all 30 subchannels for different persons at various deployment

height of AP and laptop, which validates our assumption.

These results are due to fewer number of impacted signal

paths once the height of an subject is lower than that of radio

devices. Likewise, subjects with various height experience

similar signal variation when the placement of radio devices

is below the height of them.

IV. SYSTEM DESIGN

A. Problem Formulation

Here, we formulate the indoor localization problem and define

the terms and variables used in our system. Let us consider

a cluttered indoor environment, which is rich of multipath

propagation. We virtually divide the space into a set of small

square cells with the same size, say a set K of K cells. Within

the area of interest, we deploy m transmitters (TX) and n
receivers (RX), forming a set L of L = n ·m TX-RX links.

We denote L-dimensional CSI measurement space as C. In

C, each value is L-dimensional vector, where every element

is a CSI reading vector from a TX-RX link. As mentioned in

Section III-A, we refer to this CSI reading vector as C.

During the training phase, a CSI measurement fingerprint
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map is built. To construct it, we have a subject stand at

all K cells and, at each cell k, we collect a number of

T CSI readings from all L links, forming the fingerprint

map, Cmap. Concretely, let Ctk(l) be the t-th CSI reading

vector collected at cell k from the l-th link. Hence, The

collected T CSI readings at cell k from the l-th link can

be presented as Ck(l) = {C1k(l), C
2
k(l), ..., C

T
k (l)}. For the

CSI readings from all L links at cell k, it can be presented

as Ck = {Ck(1), ...,Ck(l), ..., Ck(L)}. Therefore, the stored

CSI readings in the fingerprint map can be represented as

{C1,C2,...,CK}= Cmap.

During the online test operation, when a person is present

in the monitored area, we gather a CSI reading vector without

the cell number, say C test. Therefore, the location problem

becomes, given a CSI measurement vector received in the

online phase, C test = C, we want to find a cell y which

maximizes the probability P (Y = y|C test = C) using the prior

knowledge in the radio map, Cmap.

B. Probabilistic Method for Location Discrimination

As aforementioned, due to the random and unpredictable

characteristics of CSI measurements, we propose a probabilis-

tic fingerprint-based indoor localization system. More specific,

we adopt Bayes estimator for the positioning problem. Since

Bayes classifier is derived based on the Bayes’ theorem, the

conditional probability that a fingerprint C test = C collected

during the test phase belongs to a certain cell Y = y is given

by

P (Y = y|C test = C) =
P (C test = C|Y = y) · P (Y = y)

P (C test = C)
, (1)

which is called posterior distribution. Obviously, the loca-

tion discrimination problem of our system is to find the cell

which maximizes the probability of posterior distribution, say

ŷ = argmax
y

P (Y = y|C test = C).

Since we suppose that the targeted person resides within

the area of interest without any biased place, we can safely

consider that each location y is equally likely, and thus the

probability of P (Y = y) is the same at every cell1. Also,

let P (C test = C) be identical for all possible locations y, as

we suppose we gather fingerprints across all the cells with

the same possibility during the test phase. To find the optimal

solution for the posterior distribution P (Y = y|C test = C)
is equivalent to having the maximum likelihood estimate of

P (C test|Y ). More specifically, the predicted cell for the location

of the subject is therefore ŷ = argmax
y

P (C test = C|Y = y).

As addressed in existing researches (cf. [10]), we model the

amplitude of every CSI reading at location y to approximately

follow a multivariate Gaussian distribution with mean µy and

common covariance matrix Σ. Therefore likelihood estimate

of P (C test|Y ) is described mathematically as
P (C test = x|Y = y) =

1√
(2π)p|Σ|

e−
1
2
(x−µy)

′

Σ−1
(x−µy),

(2)

where p = L · t · r · w.

To estimate the parameters µy and Σ, we utilize the

fingerprint map collected at training phase. The process is

1If we have the prior knowledge about the user profile, the probability of
P (Y = y) is a constant variable and can be used in Equation (1).

detailed as follows. At first, we convert Equation (2) to an

equivalent description in the log-scale as

δ(x|y) = −
1

2
ln(|Σ|)−

1

2
(x− µy)

′

Σ−1(x− µy)−
y

2
ln(2π).

(3)

Given the set of T training CSI readings at cell y in the

fingerprint map, Cy = {C1
y, C

2
y, ...,C

T
y }, we assume each CSI

measurement, C
t
y, t ∈ [1, T ], to be i.i.d2. Then, taking the

derivative w.r.t. µy of log-likelihood function (Equation (3))

and setting it to 0, we obtain

µ̂y =
1

T

T∑

t=1

C
t
y.

Similarly, we take its derivative w.r.t. Σ−1 of (Equation (3))

and let it be 0, leading to

Σ̂ =
1

T

T∑

t=1

(Ct
y − µ̂y)(C

t
y − µ̂y)

′

.

Therefore, using the collected fingerprint map, Cmap, the CSI

readings at cell y, Cy can be represented by a multivariate

Gaussian distribution with mean µ̂y and covariance matrix Σ̂.

In the test phase, using the collected CSI readings C test and

substituting the two parameters µ̂y and Σ̂ into Equation (2), we

can calculate the probability of generating these CSI readings

at cell y. Once the system yields the probability of C test at every

cell, the cell in which we achieve the optimal probability, say

ŷop, is exactly the estimated location of the subject.

C. Dimensionality Reduction

To apply indoor location systems into some practical large-

scale scenarios, one main concern that pose a challenge in

positioning a subject in real time is the high dimensionality of

the data set. A large number of solutions have been proposed

for the raised issue in RSS-based indoor localization systems

(cf. [50], [11]). Since we leverage CSI measurements as the

source signals, which has a much higher dimension than RSS

indicators, so that it is severer to solve the problem that the

high dimensional CSI readings bring about.

In this study, we adopt principal component analysis (PCA)

to project every CSI reading in the data set to a lower

dimensional subspace. In particular, assuming that we would

like to reduce each p-dimensional CSI measurement to a q-

dimensional vector (q < p), we require to choose the q
dimensionalities with largest variances and ignore the other

less significant ones. These resulting q-dimensional features

are called principal components.

For our system, we take the following procedures to cal-

culate the q principal components. At each location y, we

have T p-dimensional vectors, Cy = {C1
y, C

2
y, ...,C

T
y }. We

write C
′

y as a T × p data matrix D. Since PCA requires

a mean-centered matrix U in order to calculate variations,

the first step for projecting CSI vectors is to find the mean

vector γ of the data matrix D and subtract it from each

row vector of D to obtain U , where γ = ( 1
T

T∑
t=1

C
t
y)

′. Let

V be the covariance matrix of U , which can be computed

2Our assumption is that every CSI reading has the same probability
distribution and is independent with each other.
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by V = U
′

U/T . Then we can calculate p eigenvectors and

eigenvalues of V . We can form the p − q PCA projection

matrix by choosing the q eigenvectors of V which have the

q largest eigenvalues Φpca = [xpca
1, xpca

2, ... xpca
q ]. For any p-

dimensional CSI vector d = (Ci
y)

′ = (d1, d2, ... dp), collected

at location y, we project it into a corresponding q-dimensional

vector by dpca = (d− γ) · Φpca.

V. TRACKING

In this section, we investigate the implementation of two

Bayesian estimators including Kalman filter (KF) and particle

filter (PF) for continuously tracking the trajectory of a moving

person. Firstly, we review the derivation of KF and PF and

theoretically analyze the availability of the two Bayesian

Estimators to their typical estimation problems. Then, we

present the formulation of our tracking problem and derive

the CRB from the proposed tracking model in the estimation

context which can be solved using KF and PF.

A. Bayesian Estimators

Assuming the parameters needed to be estimated are packed

in a state vector, x, an estimation problem is to predict the

state vector using given information including system model,

control input and measurement model. Mathematically, the

system model is written as

xk = f(xk−1,uk−1,wk) (4)

and the measurement is modeled as

zk = h(xk,vk) (5)

where xk is the state vector at the k-th iteration, f(·) is

the system dynamics function, uk is system input, wk is the

process noise, h(·) is the measurement function and vk is the

measurement noise.

Upon the basic laws of probability, Bayesian filtering tech-

niques solve the estimation problem by recursively predicting

the probability density function (PDF) of current state vector

(xk) with the prediction stage and measurement update stage,

which can be expressed as follows:

Prediction: predict the current state, xk, using previous mea-

surements up to (k − 1)-th iteration by

p(xk | z1:k−1,u0:k−1) =

∫
p(xk |xk−1,u1:k−1)

·p(xk−1 | z1:k−1,u0:k−2)dxk−1

(6)

Update: update the predicted xk using the measurement

obtained at k-th iteration by

p(xk | z1:k,u0:k−1) =
g(zk |xk) · p(xk | z1:k−1,u0:k−1)

p(zk | z1:k−1,u0:k−1)
,

(7)

where g(zk |xk) is the likelihood, p(xk | z1:k−1,u0:k−1) is

prior probability and p(xk | z1:k,u0:k−1) is posterior proba-

bility.

1) Kalman Filtering

If the conditions that 1) both system model f(·) and

measurement model h(·) are linear functions of state vector xk

and input uk, and 2) both system noise wk and measurement

noise vk are Gaussian noise are satisfied, Equation (4) and (5)

can be written in the form as

xk = Axk−1 +Tuk−1 +wk, (8)

zk = Hxk + vk, (9)

where A is the state transition matrix, T is the input matrix

and H is the measurement matrix. With these conditions, the

prior and posterior PDF in Equation (6) and (7) can be an-

alytically calculated by Kalman Filter algorithm as described

in [41].

2) Particle Filtering

For nonlinear systems or non-Gaussian noise systems, it is

impossible to analytically calculate the posterior PDF in Equa-

tion (7), since the calculation of the prior PDF ((6)) requires

integration over the state space. For the objective of estimating

these systems, PF is applied to approximate Equation (7) with

a number of particles, which can be expressed as:

p(xk | z1:k−1,u0:k−1) ≈

M∑

m=1

wm
k δ(xk − ξmk ) (10)

where ξmk is the m-th particle at the k-th iteration, wm
k is

the normalized weight of ξmk , δ(·) is Dirac delta function and

M is the number of particles. Therefore, to approximate the

posterior PDF is equivalent to calculate the weight of each

particle. With the adoption of sequential sampling importance

resampling (SIR) PF [3], the weight of each particle can be

calculated as

wm
k ∝ wm

k−1

g(zk | ξ
m
k )p(ξmk | ξ

m
k−1)

q(ξmk | ξ
m
k−1, zk)

, (11)

where q(·) is the importance density function.

As demonstrated in Algorithm 1, the SIR PF algorithm

iteratively works in three procedures : 1) sampling, 2) weight

calculation and 3) resampling.

B. Cramér-Rao Bound for Bayesian Filtering

The Cramér-Rao Bound (CRB) can provide a lower bound

on the mean square error (MSE) of any unbiased estimator

[37], [36]. As for Bayesian filtering, Let Ck denote the CRB

of the estimated state vector xk, which is the inverse of the

bayesian information (BIM) Jk = C−1
k . Also, let ∆η

ϕ be the

partial derivatives with respect to vector η and ϕ. Following

[36], the BIM can be calculated in a recursive way

Jk+1 = Ωk − (D12
k )T (D11

k + Jk)
−1D12

k + Γk+1, (12)

where

D11
k = Ex

{
−∆xk

xk
ln p(xk+1 |xk)

}
(13)

D12
k = Ex

{
−∆

xk+1

xk
ln p(xk+1 |xk)

}
(14)

Ωk = Ex

{
−∆

xk+1

xk+1
ln p(xk+1 |xk)

}
(15)

Γk+1 = Ez,x

{
−∆

xk+1

xk+1
ln p(zk+1 |xk+1)

}
(16)

J0 = Ex

{
−∆x0

x0
ln p(x0)

}
. (17)
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Algorithm 1 Sequential Importance Sampling with Resam-

pling

• Draw a particle ξm0 from ξm0 ∼p0(x0) and set wm
0 =

1/M, m = 1, ...,M
⊲In the first place, initialize M particles from the distribu-

tion p0(x0) and set their weight is equally likely.

• For k = 1, ..., N recursively do

1. Sampling

− Draw (ξmk , m = 1, ...,M) from ξmk ∼p(xk | ξ
m
k−1)

2. Weight Calculation

− Compute the updated importance weights

wm
k =

g(zk | ξ
m
k )p(ξmk | ξ

m
k−1)

q(ξmk | ξ
m
k−1, zk)

3. Resampling

− Normalize importance weights

wm
k =

wm
k∑M

n=1 w
n
k

, m = 1, ...,M

− Resample particles according to importance weights

{ξmk , 1/M} ← {ξmk , wm
k }, m = 1, ..., M

• End for

C. Tracking with Bayesian Estimators

1) Tracking System Model

In our tracking system, we assume the targeted person

to walk with nearly constant velocity, hence, the motion of

the subject within the time interval ∆t from k to k + 1
can be described by an approximately fixed velocity with

random acceleration. Let the state vector xk be defined as

xk = [pxk, pyk, vxk, vyk]
′

, where (pxk, pyk) and (vxk, vyk)

is the coordinate and velocity of the subject respectively. The

system model is

xk+1 = Axk +Bnk,
where

A =




1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1


 ,B=




1

2
∆t2

1

2
∆t2

∆t
∆t




.

We assume that the random acceleration nk at any time

interval ∆t is a zero mean white Gaussian noise with the same

variance, say nk∈ N (0, σ2
n). Let the covariance of Bnk be

Qk. Since both nk and B do not depend on k, Qk is expressed

as Qk = σ2
nBBT .

For measurement model, since we can directly measure the

coordinate zk =(p̃xk, p̃yk) of the tracked person from our

localization system, the measurement equation of our tracking

system is formulated as

p̃xk = pxk

p̃yk = pyk, (18)
hence, the measurement matrix H is given by

H =

[
1 0 0 0
0 1 0 0

]
.

We denote the noise of measurement zk be uk, which follows

zero-mean normal distribution Rk. More specifically, let the

two-dimensional vector uk be defined as uk =

[
ux
k

u
y
k

]
,

where ux
k , u

y
k are the measurement noise at x-axis and y-

axis respectively. We assume they are uncorrelated and have

identical variance, say ux
k = u

y
k ∈ N (0, σ2

u).

Therefore, under the circumstance of this tracking system,

the equations (13)-(16) can be computed as

D11
k = ATQ−1

k A (19)

D12
k = −ATQ−1

k (20)

Ωk = Q−1
k (21)

Γk+1 = HR−1
k+1H. (22)

Applying the recursion form described in [2], the CRB on

our tracking system can be expressed as

C−1
k+1 = Jk+1 = (Qk +AJ−1

k AT )−1 +HR−1
k+1H. (23)

2) Tracking with KF and PF

Our tracking system can be modeled to satisfy the condi-

tions of KF estimator. Concretely, assuming the subject walks

with fixed velocity in the indoor environments, for this case,

the assumption of nk∈ N (0, σ2
n) holds.

In the realistic scenarios of our tracking system, we also al-

low the person to walk with random velocity and acceleration.

Under this circumstance, the assumption of nk∈ N (0, σ2
n) is

not true, so that the conditions for KF cannot be satisfied.

In this case, PF is applied for estimating the trajectory of

the subject by approximating the posterior PDF using state

particles.

For applying the Algorithm 1 into our tracking problem,

we suppose p0(x0) = N (x0; 0, σ) and p(xk | ξ
m
k−1) =

N (xk; ξmk−1 + ve(ξ
m
k−1) · th,

∑m
k−1), where ve(ξ

m
k−1) is

the velocity of the m-th particle at the (k − 1)-th iteration

and
∑m

k−1 is the covariance matrix of this distribution. We

approximate the velocity as ve(ξ
m
k−1) = ξmk−1−ξ

m
k−2. Also, the

importance density function q(xk |x
m
k−1, zk) we chose is equal

to p(xk |x
m
k−1) and weight is set to wm

k−1 = 1/M . Therefore,

the weight update equation can be given by wm
k ∝ g(zk | ξ

m
k ).

Since the likelihood, g(zk |xk), is equivalent to the mea-

surement function yk = h(xk)+vk and in our system, we

model the measurement function as zk = xk + uk, where

uk ∼ N (0, Rk), hence, wm
k = N (ymk ; ξmk , Rk).

VI. EXPERIMENTAL SETUP

A. Hardware Description and Data Aggregation

To evaluate the performance of our system, we deploy a

wireless sensing network to aggregate required CSI measure-

ments as our testbed. In our study, we use TP-LINK WR841N

wireless APs with an IEEE 802.11n compliant radio operating

in the 2.4GHz unlicensed band as transmitters. The receivers

utilized in our system are lenovo laptops integrated with Intel

WiFi Wireless Link 5300 Cards. By using the modified driver

released by [16], the receivers can probe one CSI reading per

packet. The placement of APs and laptops is fixed and known

a priori. Each laptop deployed in the targeted environment is
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synchronized with each other and receives 10 beacons from

each AP per second.

During the training phase, we collect CSI measurements

from a male volunteer with a height of 176cm. Specifically, in

all the experiment settings, to aggregate the training data and

construct the fingerprint map, we divide the indoor areas of

interest into 0.75m×0.75m cells and record 100 CSI readings

(approximately 10 seconds) from every TX-RX link in each

cell. Note that all laptops can receive packets from all APs

concurrently, since we run multiple processes to download data

from the IP addresses of corresponding APs. To mitigate the

bias induced by different orientation and movement, we collect

5 datasets (500 CSI measurements) in which the subject faces

towards four different directions and walks randomly within

a specific cell. During the test phase, a different subject (a

female participant with a height of 160cm) is located at a

random cell with random orientation. The subject may either

stand still or walk at the cell. We collect CSI measurements at

500 locations (some locations are tested multiple times) and

record samples with a duration of 5s (roughly 50 values) per

cell.

B. Experiment Layouts

To confirm the validity of our system on various experimen-

tal scenarios, we carry out experiments in 4 different indoor

environments. These environments are used for diverse func-

tionalities and thus equipped with different domestic appli-

ances and furnishings. As illustrated in Figure 5, Environment

1 is a corridor without any objects, Environment 2 and 3

are typical office environments with various space size and

Environment 4 is domestic home equipped with household

furniture. For all four indoor spaces, transmitters and receivers

are placed as depicted in Figure 5.

C. Performance Metrics

We introduce three performance metrics to evaluate the

performance of our proposed device-free indoor localization

system.

1) Cell Estimation Accuracy

The cell estimation accuracy quantifies the ratio of the

number of cells where the positions of the target person are

correctly estimated during the test phase to that of all cell

locations and is calculated as

ǫtest =

Ntest∑

i=1

I(yi = ŷi)/Ntest,

where Ntest is the total number of testing cell locations.

2) Median Distance Error

At the test phase, we consider the location of a cell to be

misclassified if the estimated cell does not match with the

human occupied cell. Under such circumstances, we take into

account the average mismeasured distance between the center

points of the estimated cells and actual ones, termed as median

distance error. Formally, the median distance error is given by

σtest =

Ntest∑

i=1

||yi − ŷi||/Ntest,

where ||yi − ŷi|| is the Euclidean distance between yi and ŷi.

3) Average Processing Time

In our system, to address the problem of parameter estima-

tion with high-dimensional datasets, we adopt PCA projection

for dimension reduction. To validate the efficiency of PCA, the

average processing time with different proportion of principle

components to classify a testing location is measured on a

MacBook Pro laptop (2.2 GHz Intel Core i7 processor, 16 GB

1600 MHz DDR3 memory, SSD storage).

VII. EXPERIMENTAL RESULTS

A. Comparing Various Localization Methods

In this section, we evaluate the performance of our system

and compare it against other indoor localization systems

including Nuzzer [31], PC-DfP [50] and Pilot [46]. The

characteristics of these systems are summarized as follows:

Nuzzer: Nuzzer is a RSS-based device-free indoor local-

ization system which constructs an offline radio map

at the training phase and then estimates the location

of an entity using a Bayesian-based inference algo-

rithm. In Nuzzer, the distribution of RSS follows the

Gaussian assumption.

PC-DfP: PC-DfP is also a Bayesian probabilistic classifi-

cation based device-free indoor localization system

using RSS measurements. To tailor the system to

cluttered indoor environments, PC-DfP assumes that

the density of the RSS mean vector of all the links

at each location is multivariate Gaussian and adopts

linear discriminant analysis for classification.

Pilot: Pilot is a two-stage device-free indoor localization

which exploits the correlation feature of CSI mea-

surements to achieve a better performance compared

to RSS-based schemes. Pilot will detect the presence

of a human in the first stage and then trigger posi-

tioning phase to track the coordinate of the human

in the second stage.

We conduct experiments in the 4 representative indoor envi-

ronments as depicted in Section VI. Figure 6 and 7 illustrate

the cell estimation accuracy and median distance error respec-

tively. We should note that for Pilot it is possible that the sys-

tem does not provide any prediction on the location. For this

case, we define the error distance to be min(width, length)
of the testing room. In all indoor environments, we ob-

serve that our system outperforms the other three device-free

localization systems. Compared to the RSS-based schemes

(Nuzzer, PC-DfP), we attribute the better performance to

more implicit information carried by CSI measurements in

our system compared to RSS readings leveraged by Nuzzer and

PC-DfP. Furthermore, in comparison with the other CSI-based

localization system, Pilot, the performance gain of our system

demonstrates that only one correlation feature and the two-

stage location classification method adopted in Pilot are less

effective than the location discrimination approach proposed

in our system.

B. Impact of Principal Components

As aforementioned, parameter estimation is time-consuming

due to the high-dimensionality of CSI vectors. In this section,
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Figure 5: Layout sketches of our experimental indoor spaces. Environments (a), (b) and (c) are in the same building with walls

mainly made of concrete. Environment (c) features a different penetration of walls which are made of wood and gypsum.
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we study the impact of using PCA dimensionality reduc-

tion on different evaluation metrics, including cell estimation

accuracy (Figure 10), median distance error (Figure 9) and

average processing time (Figure 8). From the three figures,

we notice that a significant reduction in the PC-proportion

(from 1 to 1/5) barely worsens the localization performance

(see Figure 10 and 9), while dramatically saving processing

time and thus improving the efficiency of our system (see

Figure 8). Nonetheless, if we further reduce PCs (e.g. from 1/5
to 1/10), the classification accuracy will decline severely (see

Figure 10) and error distance will hike sharply (see Figure 9);

meanwhile the processing time can only reduce mildly, and its

increasing rate progressively declines (see Figure 8). Thus, it is

important to choose an appropriate number of PCs to balance

the accuracy-efficiency trade-off for indoor localization.

C. Impact of Diverse Participants

To further validate that our system is resilient to diversity of

participants, we recruited 8 subjects (6 males, 2 females; age:

23-31 years; height: 158-183 cm) to conduct the experiments

in the environment of the domestic home and captured two

datasets in two different days. We conduct three tests with

different training data. First, we utilize the data of all 8 partic-

ipants captured on one day for training and the 8 participants’

CSI measurements from another day for testing. Then, we
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evaluate the classification performance of our system for leave-

one-out cross validation, in which the data from one subject

captured on two different days is utilized for classification and

the data from all the other subjects for training. Furthermore,

for each subject, we measure localization accuracy using the

data from one day for training and the data from another

day as the classification data. Figure 11 shows the results,

which demonstrate that three cases using distinct training data

achieve comparable accuracy. Moreover, we also observe the

use of the training data of all the 8 participants results in a

slight increase in localization accuracy. In order to mitigate

the impact of dataset diversity captured at different time, our

system can perform a CSI calibration scheme, which further

increases the performance of all the three cases. (see Section

VII-F)

D. Influence of Data Aggregation Parameters

During the data aggregation procedure in our system, at each

cell, we sample the CSI measurements from all the L TX-RX

links, where each transmitter periodically broadcasts at a rate

of P packets per second with a duration of Ttrain for the training

phase and Ttest for the test phase. Table I summarizes the default

data aggregation parameters used in our experiments. In the

following, we vary the values of these parameters and discuss
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Table I: Default data aggregation parameters used in our

experiments

Parameter Notation
Default

value

Number of links

between TX-RX pairs L 12
Packet broadcasting rate

per second P 10
Time duration for data aggregation

per cell at training phase Ttrain 10s

Time duration for data aggregation

per cell at test phase Ttest 5s

the influence on the performance of our system.

1) Packet Reception Rate

From Figure 12a, we observe that we can achieve a cell

estimation accuracy of over 90% by sampling the packets

beyond a rate of 8 pks/s. This confirms a similar result

reported in [35] for feasible RSS sample rates. Also, Fig-

ure 12b indicates that a reduced packet reception rate raises the

performance of our system in terms of computation efficiency,

which can be ascribed to the fewer data required to process a

location.

2) Number of Links

Aggregating data from fewer TX-RX links can lead to

significant reduction on the computational complexity of our

system. However, it may also lead to a decrease in terms of

localization accuracy. The experimental results achieved with

different number of links are shown in Figure 13a and 13b.

The results support the above conclusion that a smaller number

of links deteriorates the cell estimation accuracy and reduces

the localization processing time.

3) Time of Collecting Data

For fingerprint-based indoor localization schemes, the con-

struction of a radio map is arduous, hence, reducing the time

of collecting data at each cell can alleviate the effort during the

training phase. With respect to the test phase, spending less

time to collect the test measurements can make localization

systems more responsive for locating the targeted people.

Table II (Table III) shows the average localization delay

and the cell estimation accuracy/distance error with different

time of collecting data during the training phase (test phase)

using the same test dataset (training dataset) in all the indoor

environments. There is a clear tradeoff between the cell
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Figure 12: Influence of packet reception rate on the perfor-

mance of our indoor localization system
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Figure 13: Influence of number of links on the performance

of our indoor localization system

estimation accuracy/distance error and localization delay with

respect to the time of collecting data.

E. Tracking Results

1) Data Set

In the set of experiments, we collected datasets of CSI

measurements when the targeted person is moving in all

four indoor environments as depicted in Figure 5. More

specifically, at each environment, the subject walks along a

random trajectory in the spaces following two walking types:

(1) fixed velocity (approximately 2m/s) and (2) free-style

velocity, at which the subject can walk at any speed or stand at

a certain location, for about 5 minutes. To obtain the ground-

truth information where the subject is walking, we record

videos. Table IV lists the experimental parameters used in the

Table II: Influence of time frame of data aggregation on the

performance of our indoor localization system during training

phase
Ttrain (s) 2 4 6 8 10

Cell estimation
accuracy (%)

84.4 88.5 88.9 91.7 92.9

Distance error (m) 0.77 0.72 0.73 0.68 0.60

Processing time (ms) 443 491 507 656 720

Table III: Influence of time frame of data aggregation on

the performance of our indoor localization system during test

phase
Ttest (s) 1 2 3 4 5

Cell estimation
accuracy (%)

79.5 82.1 89.8 91.7 92.9

Distance error (m) 0.86 0.80 0.74 0.66 0.60

Processing time (ms) 473 534 590 655 720
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Table IV: Experimental parameters used in our tracking system
Parameter Notation Value

covariance of process noise for
Kalman filter

Qk 2I4

covariance of measurement noise
for Kalman filter

Rk 5I2

number of particles for particle
filter

M 1000

time frame of each iteration for
both filters

th 1s

study.

2) Tracking Accuracy

We use both filters described above to track the trajectories

of the subject with two different walking styles. Note that

participants are not restricted in their body motion during

walking. Table V shows the mean absolute errors (MAEs)

of various methods for each environment. As illustrated in

this table, among all situations, applying the Kalman filter

to the dataset of the subject moving with fixed velocity,

achieves the best tracking precision with an average MAE of

0.63m. This is a 0.17m improvement compared to particle

filter based tracking with the same dataset. Whereas, when

the subject mimics the walking style in real life (walk at

random speed and stop freely), the average MAE at all the four

indoor environments using particle filter is 0.92m, a 0.31m
improvement compared to that using Kalman filter. These

results validate that Kalman filter is an optimal solution for

linear dynamics systems (constant walking speed), in which

all noise satisfies the normal distribution (we assume Qk

and Rk are Gaussian noise). Under nonlinear circumstances

(free walking), the experimental results support the conclusion

that particle filter is to be preferable to Kalman filter. More

intuitively, for walking with random velocity at Env. 3, Figure

14 shows the tracking trajectory results from both Kalman

filter and particle filter, from which we also observe that

Kalman filter is inferior to particle filter for tracking the

subjects with random walking velocity3.

3) Comparison to the CRB

We further compare the tracking performance of KF and

PF in the two scenarios against CRB on our modeling system

recursively derived via Equation (23). The results achieved at

the conference room are shown in Figures 15, 16 (Results

achieved in the other three indoor environments are omitted

due to space constraints. However, similar performance can be

obtained compared to that at the conference room). As shown

in Figure 15, with constant walking velocity, MSE computed

by KF can achieve (or close to) the bound, which confirms

that KF is an optimal filter under the conditions described

in Section V-A1. In contrast, as plotted in Figure 16, when

the motion of the subject is not nearly constant, the MSE of

state estimates obtained from KF cannot achieve the bound

because the random acceleration nk is not a zero mean white

Gaussian noise any further. Compared with the performance

achieved by KF, MSE of state estimate derived from PF is

3Other figures of tracking trajectory results with different walking style
performed at the other indoor spaces are omitted due to space constraints.
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Table V: Average MAEs (in meters) from our proposed

tracking approaches
Env.1 Env.2 Env.3 Env.4

Kalman filter

(fixed velocity) 0.57 0.66 0.77 0.63

Kalman filter

(free-style velocity) 0.91 0.97 1.13 1.02

particle filter

(fixed velocity) 0.63 0.70 0.81 0.69

particle filter

(free-style velocity) 0.86 0.88 0.94 0.91

much closer to the bound since the averaged estimation error

of weighted state measurement particles ξmk , m = 1, ..., M,
is much smaller than that achieved via Kalman filter equations.

F. Combating with Environment Dynamics

Our system relies on static indoor environments for construct-

ing the radio map, however, over time, changes in the environ-

ment occur, such as temperature, humidity and placement of

furnishings. As a consequence, the created training fingerprint

map cannot precisely reflect the operational environment at a

different time. Thus, the calibration of this training map will

be required to alleviate the effect of environment changes.

In the context of device-bound localization systems, some

approaches in [15] have proposed to continuously calibrate

the these systems and tailor them to time-varying phenomena.

Inspired by [15], we propose a CSI adjustment scheme for

system calibration. The rational for this scheme is that we

assume, at any cell, the CSI change induced by the presence of

a subject is irrelevant with time. Specifically, at time t1, let CSI

measurements of empty environment and cell k be CSIemt1 and
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Table VI: Localization results of two time-varying CSI mea-

surement datasets with or without CSI calibration
Case 1 Case 2 Case 3

Acc. (%) Acc. (%) Acc. (%)

w/o calibration 77.6 72.2 70.4

w/ calibration 84.9 83.2 91.3

Table VII: Results of the different furniture layouts with or

without CSI calibration
Cell Estimation Median Distance

Accuracy (%) Error (m)

w/o calibration 64.8 1.58

w/ calibration 81.3 0.96

CSIkt1 respectively. Likewise, at time t2, CSIemt2 and CSIkt2
represent the CSI measurements of the two conditions. Ac-

cording to our assumption, we can obtain that CSIkt1 -CSIemt1
= CSIkt2 -CSIemt2 . Hence, to adjust the CSI measurements at

each cell at time t2, we only need the information of CSI

measurements of every cell at time t1 and the change of CSI

measurements induced by environment dynamics within the

time interval from t1 to t2, say CSIemt2 -CSIemt1 . Based on this

idea, when the subject is absent from the indoor environments,

we routinely collect the CSI measurements and compute

the variance of CSI measurements between two sequential

periods, say ∆CSIem, which can be used to correct every

training CSI measurement in the fingerprint map. After each

calibration, the training CSI measurement at cell k is updated

via CSIktr +∆CSIem 7→ CSIktr. Note that the timings when

to collect the CSI feature vector of empty environment are pre-

defined, which should be determined accordingly. For instance,

for domestic home, it can be measured when the subject is at

work. As for the conference room, it can be collected out of

office hours.

To validate the effectiveness of the CSI adjustment scheme,

we sanitize the CSI measurements utilized in Section VII-C,

two datasets of which are captured in two diverse days. After

the CSI measurement configuration scheme, we re-evaluate

the performance of the three cases mentioned in Section

VII-C, results of which are shown in Figure 17. By comparing

the results achieved with or without the CSI measurement

adjustment in Figures 11 and 17, the localization performance

of all the three cases is enhanced, each of which has an overall

accuracy gain of 7.7%, 11.0% and 20.9% respectively, shown

in Table VI.

We further conduct experiments in the conference room

with a different furniture layout to validate the efficiency

of the proposed calibration scheme (we remove some desks

in this case). As Table VII shows, with the correction of

CSI measurements, we can achieve an estimation accuracy

of over 80%, an increase of 16% compared to that obtained

without the CSI sanitization. Similarly, the performance of

median distance error is also improved with the adjusted CSI

measurements.

VIII. DISCUSSION

In this section, we discuss several unsolved issues in this

paper and raise possible solutions to address these problems,

which could further enhance the performance of our system.

A. Identification and Localization of Multiple Persons

One limitation of fingerprint-based techniques is that the

training phase consumes a significant amount of time and

effort. This situation is particularly true when we scale our

system to simultaneously identifying multiple subjects, since

the training overhead increases exponentially with all possible

combinations of subjects. In the context of the device-based

active localization systems, RF-propagation tool [30] and the

approach in [23] are applied to ease the effort of the radio

map construction. These techniques may be also experimented

with our device-free system to generate different radio maps

for multiple persons. Another promising solution might be to

isolate multiple persons in separate spaces from each other

and match them one by one using the known single-person

radio map.

B. Using Different Hardware

IWL5300 is the first commodity wireless NIC which reports

CSI information. Recently, other CSI tools, such as Splicer

[47] and Chronos [38], enable to be integrated with other types

of NIC cards by the modification of wireless drivers. Thus,

another extension of our system is to consider the effect of

using NIC cards from different vendors. The challenge for

this case is the CSI samples captured in the training phase

with one particular model of NIC vary considerably with those

collected by another model of NIC in the test phase. One

promising approach is that using a small number of recent CSI

observations at some specific cells as new training samples

to calculate the calibration parameters that then can used to

update the radio map.

IX. CONCLUSION

We have presented a fingerprint-based device-free system

that enables precise localization in indoor spaces. In our

system, we aggregate the CSI measurements from commodity

802.11n WiFi devices, so that fine-grained subchannel infor-

mation can be utilized to localize a subject. Classification is

done comparing testing CSI readings with the CSI fingerprints

and determine the location with highest probability by Bayes

Classification. The performance of our system can be further

enhanced by reducing dimensionality with PCA. The experi-

mental evaluation in four different indoor environments shows

that the system can outperform the state-of-the-art systems

including Nuzzer, PC-DfP and Pilot in terms of both cell

estimation accuracy and error distance. We further present

a model for tracking the coordinates of the moving subject.

Based on the tracking model, we derive the Cramér-Rao Bound

which provides a lower bound for the mean square error of

any estimators. We apply Kalman filter and Bayesian filter as

two estimators for recursively predicting the coordinates of the

moving target. Experimental results demonstrate that Kalman

filter is a preferred option for tracking the subject with fixed

walking speed, while particle filter is more robust to these

scenarios where the subject walks randomly. Experimental

results also show that the performance of Kalman filter can

achieve the CRB, which further verify that it is an optimal

estimator for the linear systems with additive white Gaussian

noise.
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