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As circuits become larger and more complicated, logic simulation plays an important role in design
verification and is widely used. However, unknown values in three-value simulation may cause the
unknown value propagation problem that produces indeterminate output values. In this article, a new
simulation algorithm is developed that can efficiently overcome the unknown value propagation prob-
lem. The algorithm is based on the partitioning approach. The experimental results using benchmark
circuits prove the effectiveness of the new simulation algorithm.
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1. Introduction

Two integral and important aspects of the total process
of designing and manufacturing printed circuit boards or
VLSI chips are verifying and validating a set of diagnostic
tests for the products. It is clear that simulation [1, 2], at var-
ious levels, is essential and commonly used for verifying
the design of digital systems. As circuits become larger and
more complicated, the speed and accuracy of simulation
are emphasized more. Efficient simulation should be able
to produce the accurate outputs of the given circuit. Two-
value simulation using logic values 0 (low) and 1 (high)
can neither deal with the unknown values nor initialize cir-
cuits. Therefore, three-value logic simulation that includes
X (unknown value), in addition to 0 and 1, is widely used.
Also, five-value logic simulation that includes R (rising)
and F (failing), in addition to three-value logic, is used
for more accurate results. The unknown value (X) is used
to represent the signals that cannot be changed to values
other than 0 or 1, such as initialization of the logic net,
spikes, hazards, and so forth. However, the unknown val-
ues may cause the unknown value propagation (X- propa-
gation) problem [3, 4], which results in indeterminate out-
puts. Therefore, it is necessary to have a way of handling
the unknown value propagation problem efficiently.

An example of the X-propagation problem is shown in
Figure 1. In this figure, the output should be 1 since one
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of the two inputs of the OR gate is always 1. However,
three-value simulation produces an output with value x in-
stead of the correct output value of 1. The timing diagram
for the X-propagation problem using the nominal delay
model and the rise-fall delay model are shown in Figure 2
and Figure 3, respectively.

To solve the X-propagation problem, various methods
[5-10] have been devised. Four-value simulation using 0,
1, X, and X [IS THERE A WAY TO DISTINGUISH
THIS FROM THE PREVIOUS X?] (complement of X)
is another method. This method can determine unknown
values, as shown in Figure 4. However, this method is appli-
cable only to special cases in which an unknown value and
its complement coverage into one of the next gates along
the path to the primary outputs. As shown in Figure 5, due
to undiscriminated unknown values, this method can pro-
duce incorrect outputs. We can avoid the pessimistic cases
[8] by discriminating unknown values and by determining
outputs with the following Boolean algebra.

Xn + Xn = 1,

Xn × Xn = 0.

If an unknown value passes through a gate that is not a
not gate, then it is recognized as another unknown value
different from the previous one, as shown in Figure 6. For
large circuits, the number of unknown values becomes too
large to be manipulated, so only a small number of un-
known values can be determined. Since determining the
outputs of a gate requires many different unknown values
that increase during the simulation, this simulation method
consumes a lot of time.
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Figure 1. Example of the X-propagation problem

nominal  delay = 1

Figure 2. Example of the nominal delay model

In Chandra and Patel [9], a highly accurate simulation
method is proposed using a Karnaugh map. Unknown val-
ues can be found and determined by finding all redun-
dant prime implicants in the Karnaugh map of a circuit
and by adding those terms to the circuits. Since finding all
prime implicants is time-consuming and almost impossible
for large circuits, the algorithm is identified as not practi-
cal [10]. Therefore, applying this method to large circuits
could be inappropriate.

An efficient method should be reasonable in terms of
time and accuracy, but there is a trade-off between the
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Figure 3. Example of rise-fall delay

Figure 4. Four-value logic for the X-propagation problem
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Figure 5. Counterexample of using four-value logic
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Figure 6. Cascading unknown values

two. Therefore, an optimized method should be used in
terms of time and accuracy. The methods that solve the
X-propagation problem can be roughly classified into two
kinds: one is based on formal analysis, and the other is
based on the logic simulator. The method that is based on
formal analysis is very accurate but too time-consuming
to be practical. On the other hand, logic simulation–based
methods are efficient in terms of time, but the drawback
of these methods is that they cannot always provide ac-
curate results. Consequently, neither the former nor the
latter methods can provide a complete solution for the X-
propagation problem. In recent years, since timing is a crit-
ical issue in design verification, the increasing complexity
of integrated circuits has made it possible to apply methods
based on formal analysis. As a result, the methods based on
logic simulation seem to be appropriate for this problem.

Therefore, to reduce the unknown output value in an
efficient way, we present a practical method that is based
on logic simulation. In this article, a partitioning method
has been suggested to handle the X-propagation problem,
and a newly developed simulation algorithm based on the
partitioning method has been introduced.

2. Partitioning Approach

As shown in the previous section, there are many simula-
tion methods in which unknown values can be determined
in various ways. Partitioning has been used in simulation
and test generation to reduce a complex problem into sev-
eral small problems [11-13]. In this application, to simu-
late large circuits involving a lot of unknown values, we
develop a new partitioning method in which the circuit is
partitioned into several subcircuits and the logic values of
primary outputs are determined on the basis of the simu-
lation results of the subcircuits. When the circuit is par-
titioned, the circuit is modeled as a Huffman model, and
only the combinational part of the circuit is considered. In
order words, a partition is a combinational logic.

A large partition of an example circuit is represented in
Figure 7. A partition begins at a node where the number
of fan-outs of a gate is more than 1 and ends at a node
into which the fan-outs reconverge. There may be many

partitions in a circuit, and only the partitions where both
the start gate and the end gate have unknown values can be
modified. In Figure 7, three small partitions and one large
partition that includes the three small partitions are illus-
trated. The three small partitions begin from gate 1, gate 2,
and gate 3, respectively, and end at gate 13. There are two
different simulation methods based on partitioning. One is
to perform simulation for each small partition separately,
changing the input value of each one. Then, the whole
circuit is simulated using the simulation results of small
partitions. The other is to determine the unknown logic
value of a large partition by applying the exhaustive pat-
ters [PATTERNS?] to the inputs of the large partition. The
simulation time of the large partitioning method increases
as O(2n), where n is the number of small partitions that
merge into the large partition. Accordingly, this method
consumes more time than the small partitioning method.
But the number of newly determined values is almost the
same as that of the small partitioning method. Therefore,
in this article, the small partitioning method is adopted to
determine unknown values.

3. Simulation Algorithm

The simulation algorithm based on the small partitioning
method is shown in Figure 8. The simulator parses the
netlist, levelizes it, and then finds partitions in the cir-
cuit by find_partition(). Before performing the partition-
ing simulation, the circuit is simulated with routine sim-
ulate(), which is normal-mode simulation. Normal-mode
simulation means three-value gate-level simulation with
logic tables or equations. In the routine simulate(), the
logic values of all the gates are determined, and the gates
where unknown values can be generated are examined. The
flowchart shown in Figure 9 explains the idea of the new
simulation.

In the routine simulate_partition(), the unknown out-
put value of each partition is determined by the routine
p_simulation(). As shown in Figure 10, a small partition
is simulated and the output value of the partition is de-
termined in the routine p_simulate() using the small par-
titioning simulation method. To avoid useless simulation,
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Figure 7. A large partition including three small partitions

main() // partitioning       mode            simuation
{

parse(); // parse  the   input    circuit 
levelize(); // levelize       the                                          circuit
find_partition(); // find      

while (get_input_value())
{

simulate(); // normal mode                             simulation
simulate_partition(); // small partition                simulation
simulate(); // simulation

}
}

with                modified          values

partitions                                         in     the                                             circuit

Figure 8. Algorithm of partitioning-mode simulation

we search for the partitions, where both the input and the
output values are unknown values, by p_simulated() be-
fore the output value of each partition is determined. Then
we examine whether the output value of the partition is
changed while the input value is changed from logic value
0 to logic value 1 by the routine p_simulate(). If the output
value is not changed, then the unchanged value is fixed as
the newly determined value. For example, in Figure 7, since
logic value 0 and logic value 1 are applied to the inputs of
the three small partitions, alternatively, it needs to be sim-
ulated 6(2 × 3) times to determine the unknown value of
Figure 7 in p_simulate(). By means of this procedure, we

can determine some unknown values of the outputs of the
small partitions and then, with those values fixed, carry out
one more normal-mode simulation to determine the logic
values of primary outputs of the whole circuit.

In partitioning-mode simulation, the degree of the limi-
tation of the partitioning depth is an important factor for the
simulation performance. The number of newly determined
values from unknown values is in proportion to the degree
of the limitation of the partitioning depth. But the large
limitation of the partitioning depth makes simulation more
complicated. Also, it requires a lot of simulation time. The
simulation method that requires a large amount of time
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Figure 9. Flowchart of partitioning-mode simulation

cannot be practical because the time to market the chips is
a crucial point. Therefore, the degree of the limitation of
the partitioning depth should be optimized so that the algo-
rithm can be a practical suggestion, with the performance
of the system taken into consideration. The goal of this
article is to suggest a practical algorithm that can be used
in place of other time-consuming methods. Therefore, we
limit the partitioning depth to a reasonable level according
to diverse circuits.

The partitioning example is shown in Figure 11, which
starts at gate 1 and ends at gate 9, illustrating a sim-
ple example of finding a partition whose circuit level is
3. The find_partition() algorithm is represented in Figure
10. At first, all the possible partitions in the circuit are
searched for by the find_partition() routine, which calls
the test_partition() routine. The reconvergent fan-outs are
searched for, and the detected partitions are included in
partition_list.

To reduce the huge size of the search space, the
user can limit the search depth of the tree. The routine

test_partition() is a recursive function that checks whether
the multiple fan-outs of a gate reconverge into a fan-in of
another gate, using check_index. The variable check_index
is initialized as the number of fan-outs of the start gate
from which the partition begins. In search_partition(),
check_index of the start gate is copied onto the follow-
ing gates, which are connected with it through the first
fan-out. Next, check_index of the start gate is decreased
by 1, and the decreased value is copied onto the following
gates, which are connected with it through the second fan-
out. For copying the check_index, if the order check_index
value already exists and s is bigger than the check_index
value to be copied, then a partition is found. If the parti-
tion is found, the gates included in them are stored in the
partition_list in sequence according to the gate level. For
the reminding fan-outs, this procedure is repeated. If the
previous check_index value and the check_index value to
be copied are the same, then a small partition is included
in a bigger one, as shown in Figure 11. This case can be
discarded since this can be checked later.

Volume 79, Number 2 SIMULATION 5



Kang and Szygenda

find_partition() {
    temp=head of simulation list; // initialize
    while (temp != NULL) {
        if (gate[temp->index].num_fanout > 2) // find gate with more than 2 fanouts

test_partition(); // lool for partition
        temp = temp -> next; // set temp as next list
    }
}

test_partition() {
    if (gets[index].value > check_index)
        add_partition_list(index); // store founded partitions
    else 
        if (gets[index].value < check_index)

gate[index].value = check_index; // set value as check_index
    if (depth_limit > 0) {
        depth_limit--;
        test_partition(); // find partitions recursively
    }
}

simulate_partition() { // simulation for all partitions
    temp=head of partition linked list; // initialize
    while (temp != NULL) {
        if ((gate[temp->start].value==DONOT_CARE) 
          && (gate[temp->end].value==DONOT_CARE)) {

suspected++; // increase suspected
p_simulation(te mp);

        }
        temp = temp->next;
    }
}

p_simulation(*te mp) { // simulation for each partition
    p =temp->p_sim_list; // pointer for each partition
    gate[temp->start].value =0; // initialize start gate of partition
    value_0 = operate(p); // simulate only suspected partitions
    gate[temp->start].va;ue =1; // change start gate
    value_1 = operate(p);
    if (((value_0 == 0) && (value_1 ==0)) || 
       ((value_0 ==1) && (value_1 ==1))) {
        detected++; // increase detected
        gate[temp->end].flag = value_0; // save the value
    }
}

Figure 10. Algorithms of find_partition() and simulate_partition()

4. Results

We have implemented the new simulation algorithm as part
of a high-performance logic simulator. The simulator was
implemented in approximately 13,000 lines of C. The logic
simulator is based on an event-driven simulator and uses
three logic values. The timing model of the logic simulator
is nominal delay. The procedure of the logic simulation is
illustrated in Figure 12. The circuit description of the IS-
CAS 85 bench format is parsed, and then the data structure
is set up accordingly. After input vectors for logic simula-

tion are translated, logic evaluation is performed using the
library of logic primitives, in which the new simulation al-
gorithm is applied. The user interface is command driven
and has the functionality that any other simulators pro-
vide. A timing wheel is used as a scheduler that schedules
the events at the right time by considering logic primitive
delays. The simulation results are generated through post-
processing.

The ISCAS 85 combinational benchmark circuits [14]
were used to evaluate the performance of the logic simula-
tion based on the partitioning simulation algorithm. All the
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Figure 11. Example of finding partition

results were run on a 233-MHz Pentium chip system. The
results demonstrate the high performance of the new algo-
rithm and show the relationship between the partitioning
depth and the required memory size.

The logic simulation methods suggested in Jea and Szy-
genda[5], Szygenda and Thomson [6], and Abramovici,
Breuer, and Friedman [8] cannot solve the X-propagation
problem properly, so comparisons are not possible with our
simulation techniques. On the other hand, the logic simula-
tion method presented in Chandra and Patel [9] guarantees
the simulation result to be highly accurate. The method is
identical to the partitioning simulation method in which the
degree of the limitation of the partitioning depth is the max-
imum depth of the whole circuit. Consequently, the amount
of calculations is so large that it is very time-consuming.
It is clear that the new method is more efficient in terms
of time and is less efficient in terms of accuracy than the
method suggested in Chandra and Patel.

The comparison between the large partitioning simula-
tion method and the small partitioning simulation method
is given in Table 1. As conjectured, the inefficiency of the
large partitioning simulation has been proved. As small
partitions merge into large partitions, the simulation time
increases as the order of O(2n)), where n is the number of
the merge [MERGING?] small partitions, and the proba-
bility of the unknown output values of the large partition
being determined is inversely proportional to it. Therefore,

the small partitioning method is used in the new partition-
ing simulation method.

The comparison between normal-mode simulation and
partitioning-mode simulation is represented in Table 2.
Normal-mode simulation means three-value gate-level
simulation using logic tables or logic equations. One thou-
sand random patterns are applied, and one-third of the total
input values are unknown values. The normal-mode sim-
ulation time is shown in the sixth column of Table 2, and
the partitioning-mode simulation time is shown in the sev-
enth column. In the last column, the number of newly de-
termined values from known values is presented. A large
number of unknown values were newly determined with
the specified logic values. If conventional approaches had
been used, these unknown values would not have been de-
termined. In order words, if the new simulation approach
is not used and conventional simulation is performed, the
outputs of simulation include lots of X values that should
be deterministic values. Therefore, it has been proved that
the accuracy of logic simulation increases by adopting the
partitioning. From the results, we may infer the capabil-
ity of the partitioning-mode simulation in solving the X-
propagation problem. The partitioning-mode simulation
consumes four to eight times more time than the normal-
mode one, except for the C499 circuit. The simulation time
linearly increases proportional to the partitioning depth.
However, the number of newly determined values from

Volume 79, Number 2 SIMULATION 7
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Figure 12. Block diagram of logic simulator

Table 1. An example of the X-propagation problem

C2670 C5315

Simulation Determined Simulation Determined
Partition Time (sec) Unknown Values Time (sec) Unknown Values

Depth Small Large Small Large Small Large Small Large

3 6.18 6.34 396 400 12.61 13.22 1418 1473
5 6.60 7.31 673 701 14.61 16.37 2019 2150
7 9019 12.04 1013 1027 18.29 22.42 2642 2892
9 11.57 2807 1214 1235 23.78 338.67 2893 2956

11 13.50 21.12 1591 1634 26.19 1780.31 3049 3160

unknown values does not linearly increase as the partition-
ing depth increases. This is because almost all the unknown
values that may be newly determined have been already de-
termined in a certain partitioning depth for each benchmark
circuit. Consequently, we may assert that the performance
of the partitioning is greatly affected by the partitioning
depth.

Therefore, selecting a proper partitioning depth is an
important factor for saving simulation time. According to
the circuit topology, all partitions and the circuit level for
each partition are determined. When the maximum among
the circuit levels of all partitions is selected as the partition

depth of the circuit for the simulation, no X-propagation
problem exists. If the partition depth is the same as the
maximum level of the circuit, it may take a plenty of simu-
lation time. However, in most cases, many circuit levels of
all partitions are far less than the maximum, and the max-
imum is not large enough. Therefore, the partition depth
is usually decided less than the maximum. Also, the parti-
tion depth can be incrementally decided while performing
simulation.

In Table 3, the relationship between the ratio of un-
known values in the input patterns and the simulation time
is represented. It has been observed that the partitioning-
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Table 2. An example of a nominal delay model

Number Number Number Number Partitioning Determined
of of of Mode Mode Unknown

Circuit Inputs Outputs Gates Depth (sec) (sec) Value

C432 36 7 160 10 0.52 3.11 126
C499 41 32 202 10 0.61 9.17 169
C880 60 26 383 10 0.90 3.18 279

C1355 41 32 880 10 1.18 6.46 163
C1908 33 25 546 10 1.48 8.01 634
C2670 233 140 1669 10 2.57 12.76 1406
C3540 50 22 2307 8 2.75 20.03 374
C5315 178 123 2307 10 4.38 25.65 2941
C6288 32 32 2416 10 4.29 33.20 377
C7552 207 108 3513 5 6.06 22.91 1342

Table 3. An example of rise-fall delay

Unknown C2670 C5315 C6288
Value Ratio (sec) (sec) (sec)

1/3 11.97 24.98 29.32
1/7 8.15 17.18 23.55

1/11 6.76 14.17 20.86
1/15 5.77 12.47 17.86
1/19 5.23 11.62 17.34

mode simulation time decreases as the ratio of unknown
value decreases, indifferent to the normal simulation time
decreases as the ratio of unknown values decreases, in-
different to the normal simulation time, which does not
change [PLS. CLARIFY SENTENCE]. This is due to
the fact that this partitioning simulator simulates only the
partition in which both the input and the output values are
unknown. Therefore, the simulation time increases as the
number of unknown values increases.

This partitioning-mode simulation is efficient in the case
of a small number of unknown value inputs. Let Tn be
the normal-mode simulation time for one input pattern,
and let Tp be the partitioning-mode simulation time for
one input pattern. Also, let P be the number of simulation
patterns and p the number of the cases in which one or
more unknown values are derived at primary outputs of a
simulated circuit from applying P input patterns. The new
simulation time, Tnew, and the old simulation time, Told , are
given as follows:

Tnew = P × Tn + p × Tp,

Told = P × Tp.

The new simulation time is much shorter than the old
one, which is the simulation time when the partitioning-
mode simulation is adopted for all the cases, regardless of
whether the logic values of the primary outputs are un-
known. We can see that Tp is much longer than Tn as a

result of the experimental results. Hence, if p is so large,
Tnew may be too long, and the new simulation method based
on partitioning would be less effective. Fortunately, in real
cases, p is so small that Tnew is reasonable from a practical
point of view. Thus, this method is an efficient means of
solving the X-propagation problem, especially when p is
a small number.

The efficiency of the simulator is determined accord-
ing to the accuracy. The accuracy means that the output
of the simulation is the same as that of the physical im-
plementation of the circuit. In logic simulation, due to the
unknown value problem, there exist X values at the out-
put of the simulator, while the real circuit provides 0 or
1. This makes the simulator inaccurate. To overcome this
problem, we provide a new approach in this article. Us-
ing the new algorithm, the simulation time is longer than
the conventional simulation. However, the new algorithm
is more accurate. There is a trade-off between simulation
speed and accuracy. The bottleneck is caused by the sim-
ulation of the small partition before the simulation of the
entire circuit can be done. Despite the bottleneck, when
accuracy is more important than speed in the simulation
environments, the new approach is practical and valuable.

5. Conclusion

Since efficient simulation should be fast and accurate, the
simulation output should be equivalent to the real physi-
cal implementation. However, logic simulation cannot pro-
vide accurate output in source cases due to the unknown
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value propagation problem. To overcome this problem, we
have developed a new simulation method using partition-
ing. The new algorithm is based on the fact that there is
a trade-off between simulation time and accuracy. If an
optimized partitioning depth is selected according to the
computational resources, the time efficiency and accuracy
of the simulation can be achieved. In addition to achieving
maximum performance, the partitioning-mode simulation
is performed only in cases when both the input and output
values of a partition are unknown. The experimental re-
sults show the efficiency of the new simulation method. To
achieve high-performance simulation, the hybrid method
that uses BDD [PLS. SPELL OUT] instead of the small
partition simulation should be investigated.
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