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ABSTRACT In this correspondence, we present an accurate Magnetic Resonance (MR) image Super-

Resolution (SR) method that uses a Very Deep Residual network (VDR-net) in the training phase.

By applying 2D Stationary Wavelet Transform (SWT), we decompose each Low Resolution (LR)-High

Resolution (HR) example image pair into its low-frequency and high-frequency subbands. These LR-HR

subbands are used to train the VDR-net through the input and output channels. The trained parameters are

then used to generate residual subbands of a given LR test image. The obtained residuals are added with their

LR subbands to produce the SR subbands. Finally, we attempt to maintain the intrinsic structure of images

by implementing the Gaussian edge-preservation step on the SR subbands. Our extensive experimental

results show that the proposed MR-SR method outperforms the existing methods in terms of four different

objective metrics and subjective quality.

INDEX TERMS Deep learning, edge-preservation, MR imaging, residual network, stationary wavelet

decomposition, super-resolution

I. INTRODUCTION

T
HE motive of single-image Super-Resolution (SR) is to

generate a High Resolution (HR) image from an input

Low Resolution (LR) image. The generated HR image is

expected to possess adequate edge information with min-

imum artifacts. Single-image SR algorithms are currently

active in industrial and academic applications as well. Few

applications include medical imaging, crime investigation,

video surveillance, infrared image processing, and consumer

electronics [1]–[13]. In this work, we focus on improving

the resolution of LR Magnetic Resonance (MR) images to

benefit clinical applications. As a result, we can overcome the

limitations of MR imaging, such as a lower signal-to-noise

ratio and longer scan time. Research on single-image SR

has been classified into three categories, namely interpolation

methods, dictionary learning methods, and deep learning

methods.

Bilinear and bicubic methods are the widely used tradi-

tional interpolation algorithms in practice [14]. The bilinear

method considers four closest neighbor pixels, and the bicu-

bic method considers sixteen pixels to compute the unknown

pixels. Every missing pixel in the HR grid is obtained using

the neighboring pixels based on simple isotropic kernels. As

a result, the bilinear and bicubic methods fail to preserve

the intrinsic edge structures leading to severe blurring and

jaggy artifacts. Jaggies are unwanted high-frequency compo-

nents that appear along straight lines or curved edges in the

reconstructed image. These artifacts appear so widespread
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in digital display devices and remain an issue in the de-

sign of printing devices. To overcome these deficiencies,

edge-directed interpolation methods are proposed [15], [16].

These methods attempt to preserve the overall edge structures

of images but often produce speckle-noise around edges.

Besides, the performance of these methods degrades very

rapidly for scale factors above 2. To address this issue,

interpolation techniques are combined with wavelet trans-

forms. The Discrete Wavelet Transform (DWT) [17], [18],

Stationary Wavelet Transform (SWT) [19], lifting wavelet

transform [20], and dual-tree complex wavelet transform

[21] are used for wavelet domain interpolation. Recently, a

Rational Fractal Interpolation (RFI) model is constructed by

Zhang et al. [22] and Shao et al. [23] for preserving textural

details. The RFI function is more accurate and works better

than polynomial interpolation kernels [15], [16]. However,

the performance of interpolation methods [14]–[16], [22] is

inferior to learning-based SR methods.

Learning-based methods use an external LR-HR training

dataset to find the missing high-frequency details in an LR

image. These methods can be further categorized into two

types. The first category is based on dictionary learning, and

the second is based on deep learning. Dictionary learning

methods solve the SR problem based on statistical analysis

or intuitive understanding of many natural images. Neigh-

bor embedding approaches [24], [25] and sparse coding ap-

proaches [26]–[32] are the commonly used dictionary-based

methods in practice. In neighbor embedding approaches, an

input LR image is usually expressed as a weighted linear

combination of example patches from an LR dictionary. The

same weight combination is used with its HR dictionary to

reconstruct the output patch. This is because LR and HR

images share similar local geometric structures. However,

this approach leads to a quick expansion of dictionaries when

the desired training dataset is large.

On the other hand, sparse coding approaches address this

issue by enforcing an efficient representation using a sparse

linear combination. Yang et al. [26] applied this idea to the

SR problem by jointly training the LR-HR dictionaries using

similar sparse representations. Their algorithm first computes

a sparse representation vector from a given input patch and

uses the same sparse prior for computing the output patch.

Zeyde et al. [27] made significant improvements to Yang et

al.'s model [26] in terms of speed and quality. Other attempts

used centralized, nonlocally centralized sparse representa-

tions [28], [29], and statistical prediction model without

sparse invariance assumption [30]. Timofte et al. [31], [32]

attempted to reduce the running time of sparse coding ap-

proaches by combining sparse learned LR-HR dictionaries

with neighbor embedding approaches. However, these meth-

ods fail to yield superior SR results compared to the recent

deep learning-based methods [33]–[36].

The second category of learning-based SR methods uses

deep learning technology by applying Convolutional Neu-

ral Networks (CNNs) [33]–[47]. This class of SR methods

has gained considerable attention from many researchers in

recent times. Dong et al. [37], [38] introduced the first deep

convolutional network to solve the SR problem. Motivated

by this work, several other problems like depth map SR [39]

and face hallucination [40] have produced state-of-the-art

results. Unlike the traditional learning-based methods [24]–

[32], Dong et al.'s method [38] directly learns a non-linear

mapping between LR and HR spaces. This end-to-end map-

ping in deep networks trains all the model parameters more

efficiently, leading to an accurate inference. Inspired by this,

Wang et al. [41] developed a network with a set of cascaded

sparse coding networks in each mapping layer. However, the

sparse coding solver cannot guarantee the optimal mapping

accuracy of this approach.

Dong et al. [42] modified their network [37], [38] in terms

of the number of mapping layers, filter sizes, and feature

dimensions. The resultant network provides fast upscaling

with improved accuracy. In addition, it operates directly on

LR images without the initial bicubic interpolation. In other

approaches, generative adversarial networks were used to

recover fine textures and edges [43], [44]. Self-exemplars

were used in [45] where LR-HR training examples exploit

self-similarity to enhance the output SR quality. Cui et al. [46]

introduced a deep cascade network for gradual upscaling of

LR patches after each layer. A deep joint SR model was

developed in [47] using a high complex convolutional auto-

encoder network.

In this paper, we exploit the idea of residual learning [34]

in the stationary wavelet domain and attempt to preserve the

intrinsic structure of images. The input LR image is subjected

to 2D SWT for decomposing into its low-frequency and high-

frequency subbands. We prefer SWT to overcome the shift

variance and inferior directionality of DWT. The decom-

posed LR subbands are fed forward through the trained VDR-

nets using the four input channels to produce corresponding

residual subbands. These residuals are added to the LR

subbands to yield the SR subbands. Finally, we apply the

edge-preservation step on the SR subbands using Gaussian

operation and then fuse the resulting subbands to generate

the output SR image.

In the following, we discuss the deep learning methods in

our related work module in Section 2. The network architec-

ture and SR reconstruction process of our proposed algorithm

are given in Section 3. Section 4 describes the image datasets,

methods, metrics, and implementation details, followed by a

discussion on experimental results. Finally, conclusions are

drawn in Section 5.

II. RELATED WORK

More recently, Very Deep Residual networks (VDR-nets)

[33]–[36] have shown great improvement over the existing

deep learning networks with faster convergence rates and

accurate SR performance. Unlike traditional networks, the

VDR-net does not directly reconstruct HR images. Instead,

it emphasizes on the residuals between LR-HR image pairs

and reduces the training time significantly. In particular, we

focus on the VDR-net presented by Kim et al. [33], [48] in
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FIGURE 1: VDR-net configuration for prediction of LR-HR output residual image

their work.

A. VDR-NET

The structure of the VDR-net is shown in Fig. 1. As illus-

trated, the network has M layers, namely an image input

layer, M − 2 middle layers, and a regression layer. The filter

details of these layers are briefed as follows.

• Image input layer: This is the first layer in the network

that operates on input image patches. It consists of 64
filters of size 3× 3.

• Middle layers: All the middle layers are similarly pa-

rameterized with 64 filters of size 3 × 3 × 64 in each

layer.

• Regression layer: This is the last layer in the network

which reconstructs the output residual image. It has a

single 3× 3× 64 sized filter.

All these convolution layers except the regression layer are

followed by Rectified Linear Unit (ReLU) layers. The func-

tion of ReLU is to introduce nonlinearity in the network by

replacing negative values with zeroes. As a result, the time

required to estimate the output residual is minimized.

B. DATA MODELING

To compute the output residual for a given LR image, we

train the VDR-net using numerous LR-HR example images.

Let {L(i), H(i)}
N

i=1 represents the training dataset, where L

denotes an interpolated LR image and H represents its HR

version. The network learns a model f , which accepts the LR

training images and predicts the corresponding HR images.

The model can be represented as

Ĥ = f(L), (1)

where Ĥ is an estimate of the original HR image H . The

resultant mean square error is modeled as a loss function

which has to be minimized by averaging over the training

dataset.

loss =
1

2
‖H − f(L)‖

2
2 . (2)

In Eq. (2), the mean squared error-l2 is considered while

computing the loss function. l2 is convex and differentiable

in nature which is very advantageous while solving opti-

mization problems. These properties led to l2's widespread

adoption in regression problems, signal and image processing

as the dominant error measure.

The objective of the VDR-net is to estimate the residual

between input and output images rather than the HR images

directly. Now, if R = H −L represents the residual between

LR-HR images, the loss function can be modified as

loss =
1

2
‖R− f(L)‖

2
2 . (3)

The VDR-net is trained by minimizing the loss function

in Eq. (3), and the weights and biases are computed. The

Stochastic Gradient Descent with Momentum (SGDM) tech-

nique [49] is used for obtaining the optimum parameters of

the network. These parameters are used in the testing phase

of our method to generate the residual image for a given LR

image.

III. PROPOSED METHOD

In this section, we present the details of our network struc-

ture, training, and SR reconstruction process.

A. NETWORK STRUCTURE AND LOSS FUNCTION

The task of SR is to restore the maximum lost high-frequency

details of an image. An efficient way to achieve this is to

process the low-frequency and high-frequency content of an

image separately. For this, we apply SWT on a given image I

to decompose into its low-frequency LL and high-frequency

LH,HL, and HH subbands.

{LL,LH,HL,HH} = SWT(I) (4)

Eq. (4) represents the subband decomposition of an image I

using SWT operation. Here LL represents the approximation

coefficient, whereas LH,HL, and HH are the detail coef-

ficients along horizontal, vertical, and diagonal directions.
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FIGURE 2: Proposed Network Structure

Similarly, for a given training dataset {L(i), H(i)}
N

i=1, the LR

subbands are given as {LLL, LHL, HLL, HHL} and the

HR subbands as {LLH , LHH , HLH , HHH}. Considering

all these subbands together, we solve the SR problem in the

wavelet domain.

Fig. 2 illustrates the structure of our deep CNN used in

the training phase. The network has four input and four

output channels connected to the VDR-net. The input chan-

nels couple each LR subband with VDR-net, transform-

ing into the corresponding output residual subbands at the

output channels. The output residuals corresponding to the

LR subbands {LLL, LHL, HLL, HHL} are represented by

{LLR, LHR, HLR, HHR}.

As described in Section 2, the VDR-net has an image input

layer, M − 2 middle layers, and a regression layer. The input

layer consists of 64 filters of size 3×3, the middle layers have

64 filters of size 3× 3× 64 in each layer, and the regression

layer has a single 3×3×64 sized filter. Here the objective of

VDR-net is to train a model f that accepts the LR subbands

and outputs the residuals between LR-HR subbands. From

Eq. (3), the loss function corresponding to each channel is

given as

CH loss
i =

1

2

∥

∥JR
i − f(JL

i )
∥

∥

2

2
, (5)

where Ji ∈ {LL,LH,HL,HH} for i = {1, 2, 3, 4}.

We minimize the loss function using the SGDM technique

[49] and solve for the optimum network parameters. The

momentum and L2 regularization parameter are set to 0.9
and 0.0001 during the optimization process. The obtained

network parameters are used in the testing phase to generate

the residual subbands for a given set of LR image subbands.

B. SR RECONSTRUCTION

The proposed SR reconstruction scheme is outlined as a

block diagram in Fig. 3. The given LR test image L is first

interpolated using the bicubic filter with a factor s and then

subjected to 2D SWT decomposition.

From Eq. (4):

{LLL, LHL, HLL, HHL} = SWT(L). (6)

The LR subbands {LLL, LHL, HLL, HHL} are fed for-

ward through the VDR-net using the four input channels. The

VDR-net transforms the LR subbands into the corresponding

output residual subbands {LLR, LHR, HLR, HHR}. By

adding these residuals to the LR subbands produces the SR

subbands {LLS , LHS , HLS , HHS}.

JS
i = JL

i + JR
i , (7)

where

Ji ∈ {LL,LH,HL,HH} for i = {1, 2, 3, 4}. (8)

In the SR problem, bicubic interpolation in the prepro-

cessing stage leads to the loss of high-frequency compo-

nents. This loss is due to the averaging effect caused by

the interpolation filters. As a result, the SR subbands are

deficient in edge information causing poor reconstruction

quality. To increase the quality of the SR image, preserving

edge information is essential. We apply the Gaussian low

pass filter on all the SR subbands and subtract the Gaussian

smoothed output from the SR subbands.

The necessity of Gaussian edge-preservation can be under-

stood from Fig. 4. In Fig. 4(a)-Fig. 4(b), we present one pair

of the proposed SR results without and with the Gaussian op-

eration, respectively. Similarly, Fig. 4(c)-Fig. 4(d) represent

another pair of our SR results. From these figures, we can see

that the SR images in Fig. 4(a) and Fig. 4(c) suffer from poor

4 VOLUME x, 2021
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FIGURE 3: Proposed SR reconstruction

FIGURE 4: SR result pairs on the IXI-MR test images:
(a) without Gaussian (b) with Gaussian (c) without Gaussian
(d) with Gaussian

edge information. Whereas the SR images in Fig. 4(b) and

Fig. 4(d) have better edge details and are visually pleasing.

The Gaussian process extracts the edge details from each

SR subband which are then added back to the SR subbands.

The resultant SR subbands have more edge details leading to

superior SR reconstruction quality when fused using Inverse

SWT (ISWT).

IV. RESULTS AND DISCUSSION

In this section, we conduct experiments to evaluate the per-

formance of our method. First, we present the details about

image datasets, methods, and metrics used for comparison.

Next, the parameter settings for training and testing are given.

Finally, we provide a discussion on the results and assess the

quality of SR algorithms.

A. EXPERIMENTAL CONFIGURATION

Image datasets- The VDR-net is trained using the pub-

lic IXI-MR image dataset (http://brain-developme-nt.org/ixi-

dataset) [50]. The dataset has 600 MR-HR images collected

from three different hospitals with Philips 3T , Philips 1.5T ,

and GE 3T systems, respectively. We have randomly selected

500 subjects with augmentation for training and performed

selective testing on the other 100 subjects.

For a fair comparison with the state-of-the-art methods,

we also train the VDR-net by employing three bench-

mark datasets, namely 91 image dataset from Yang et al.

[26], BSDS200, and BSDS300 from Berkeley segmentation

datasets [51]. A total of 591 HR images are used in the train-

ing phase with data augmentation. For SR image reconstruc-

tion, we employ two benchmark datasets in the testing phase.

‘Set5’ [25] and ‘Set14’ [27] containing 5 and 14 images

respectively. Total 19 images are used with three different

scaling factors (2, 3, and 4). We use the luminance channel

information alone for both training and testing phases. This

is because humans are more sensitive to changes in intensity

than in color.

Methods and metrics- To compare the SR performance,

twelve classic and recent state-of-the-art methods are in-

volved in testing. These methods are based on interpolation,

dictionary learning and deep learning. Interpolation methods

include bicubic, new edge directed interpolation (NEDI)

[15], local RFI (LRFI) [23]. SR via sparse representation

(SCSR) [26], statistical prediction model based on sparse

representations (SPMSR) [30], adjusted anchored neighbor-

hood regression (A+) [32] are dictionary learning techniques.

Cascaded deep sparse coding based networks (SCN) [41],

SR using deep CNNs (SRCNN) [38], accelerating SRCNN

VOLUME x, 2021 5
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(FSRCNN) [42], SR using very deep CNNs (VDSR) [33],

deep wavelet prediction for SR (DWSR) [35], multi-scale

saliency and deep CNNs for SR (MSSCNN) [36] are based

on deep learning.

To assess the performance of SR methods, four full-

reference objective assessment indices are reported. They

are Peak Signal-to-Noise Ratio (PSNR), Structural Similarity

Index Measure (SSIM), perceptual blur (Qblur), and ringing

(Qring) metrics [52]. PSNR and SSIM metrics have been

widely in the field of digital imaging for several decades.

However, many researchers argue that these simple fidelity

metrics do not provide a precise correlation with human per-

ception. Hence, we report two additional metrics Qblur and

Qring along with PSNR and SSIM. Qblur and Qring metrics

enable us to measure the artifacts present in SR images and

better assess the algorithms. For better performance, high

PSNR, SSIM, low Qblur, and Qring indices are desired.

B. PARAMETER SETTINGS

Training-During the training phase, the images are subjected

to one level 2D SWT with Haar wavelet function. It decom-

poses the HR images into {LLH , LHH , HLH , HHH} sub-

bands. These subbands are then down-sampled and upscaled

using the bicubic filter by the same factor s (s = 2, 3, and 4)

to yield the LR image subbands {LLL, LHL, HLL, HHL}.

On subtracting the LR subbands from the HR subbands

produces the residual subbands {LLR, LHR, HLR, HHR}.

The VDR-net is trained using the LR and residuals sub-

bands individually for each subband type. The subbands are

cropped to 41×41 sub-images with no overlap. The depth of

the VDR-net is set to M = 20, and the weights and biases are

updated by minimizing the loss function in Eq. (5) using the

SGDM optimizer. For SGDM optimization, the momentum

and L2 regularization parameter are set to 0.9 and 0.0001,

respectively. The gradients threshold is set to 0.01 using norm

clipping. The initial learning rate is 0.1 and decreases by a

factor 10 for every 10 epochs. After 100 epochs, the VDR-

net is fully converged, and it takes about 12 hours to train all

the subbands with a single GPU.

Testing-We consider the ground truth images from the

IXI-MR dataset, ‘Set5’ [25], and ‘Set14’ [27], for full ref-

erence image quality assessment. These images are down-

sampled and upscaled using bicubic interpolation by a factor

s (s = 2, 3 and 4) to generate the LR test images. We use one

level 2D SWT with the Haar wavelet function for subband

decomposition. The Gaussian low pass filtering is applied on

the SR subbands with standard deviation σ = 0.9. For SR

reconstruction by a factor s, we use the weights and biases of

the VDR-net trained with the same factor s.

C. QUALITY ASSESSMENT

We assess the quality of SR algorithms for three different

upscaling factors. Figs. 5-7 present the SR results on three

different test images from the IXI-MR dataset for s = 4,

s = 3, and s = 2 respectively. Figs. 5(a)-7(a) represent the

ground truth MR images. The results based on interpolation

are depicted in Figs. 5(b)-7(b) for bicubic and Figs. 5(c)-

7(c) for LRFI. In Figs. 5(d)-7(d) and Figs. 5(e)-7(e), we

present the results of deep learning methods VDSR and

MSSCNN, respectively. When compared with interpolation

methods and deep learning methods in Figs. 5(b)-7(b), Figs.

5(c)-7(c), Figs. 5(d)-7(d), and Figs. 5(e)-7(e), the SR images

of the proposed method in Figs. 5(f)-7(f) appears close to the

ground truth images. Besides, the proposed method has high

PSNR and SSIM indices with minimized Qblur and Qring

artifacts.

To prove the effectiveness of the proposed method, we fur-

ther trained VDR-net using Yang et al. [26] dataset, BSDS200,

and BSDS300 datasets [51]. The results are tested on stan-

dard ‘Set5’ [25] and ‘Set14’ [27] images. Figs. 8-13 present

visual comparisons of SR methods on ‘Set5’ and ‘Set14’ test

images. Fig. 8 and Fig. 9 show the SR results for s = 4, Fig.

10 and Fig. 11 show the SR results for s = 3, and Fig. 12

and Fig. 13 show the SR results for s = 2. Fig. 8(a) and

Fig. 9(a) represent the ground truth images of Comic and

Woman images. Fig. 8(b) and Fig. 9(b) are the results ob-

tained using bicubic interpolation. The results of dictionary

learning methods, namely SCSR, SPMSR, and A+ are de-

picted in Figs. 8(c)-8(e) and Figs 9(c)-9(e). Whereas the deep

learning methods SCN, SRCNN, FSRCNN, VDSR, DWSR,

and MSSCNN are shown in Figs. 8(f)-8(k) and Figs. 9(f)-

9(k). The SR reconstruction results of the proposed method

are outlined in Fig. 8(l) and Fig. 9(l). The bicubic method

suffers from blurred and ringing artifacts. The SR images

of dictionary learning methods are distorted and fuzzy in

nature. The deep learning methods generate images with less

distortion and a minimized number of artifacts. However,

the details of the flower (Figs. 8(f)-8(k)) and the textures of

the hat (Figs. 9(f)-9(k)) in the cropped regions are not well

preserved. The flower details of Comic image and the hat

textures of Woman image are more efficiently preserved in

the proposed method, as shown in Fig. 8(l) and Fig. 9(l).

Figs. 10(a)- 13(a) represent the ground truth images of

Bird, Flowers, Baby, and Coastguard images, respectively.

The results of different SR methods are shown in Figs. 10(b)-

10(l) and Figs. 11(b)- 11(l) for s = 3, Figs. 12(b)- 12(l)

and Figs. 13(b)- 13(l) for s = 2. Figs. 10(b)-13(b) show the

bicubic interpolated images. Figs. 10(c)-13(c), Figs. 10(d)-

13(d) and Figs. 10(e)-13(e) represent the dictionary learning

methods. The images generated by deep learning methods

are given in Figs. 10(f)-13(f), Figs. 10(g)-13(g), Figs. 10(h)-

13(h), Figs. 10(i)-13(i), Figs. 10(j)-13(j) and Figs. 10(k)-

13(k). The proposed method is outlined in Figs. 10(l)- 13(l).

As shown in Figs. 10-13, the bicubic method has severe

blurring and ringing artifacts. The performance of dictionary

learning methods SCSR, SPMSR, and A+ is inferior to that of

the deep learning methods SCN, SRCNN, FSRCNN, VDSR,

DWSR, and MSSCNN. However, the edge-preservation in

some of these methods is still unsatisfactory (e.g., Fig 10(f),

Fig 11(k), and Fig 13(j)). The proposed method has a better

performance compared with other methods and is capable

of preserving the sharpness of edges (e.g., Fig. 10(l) and

6 VOLUME x, 2021
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FIGURE 5: Factor 4 SR results on the IXI-MR test image: (a) Ground truth image (b) bicubic (c) LRFI (d) VDSR (e) MSSCNN
(f) Proposed

FIGURE 6: Factor 3 SR results on the IXI-MR test image: (a) Ground truth image (b) bicubic (c) LRFI (d) VDSR (e) MSSCNN
(f) Proposed

FIGURE 7: Factor 2 SR results on the IXI-MR test image: (a) Ground truth image (b) bicubic (c) LRFI (d) VDSR (e) MSSCNN
(f) Proposed

Fig11(l)).

Table 1 presents PSNR, SSIM, Qblur and Qring indices

for s = 4. Each metric value in the table represents the

average of 19 test images from ‘Set5’ and ‘Set14’. Similarly,

the average metric indices for s = 3 and s = 2 are listed in

Table 2 and Table 3, respectively.

It can be noticed that the proposed method achieves better

results in terms of PSNR for all scaling factors. SSIM index

of the proposed for s = 4 is slightly inferior to MSSCNN

method, but superior for s = 3 and s = 2. In addition, our

method produces low Qblur and Qring indices for the three

scaling factors and is comparable with A+ and deep learning

methods. We noticed that LRFI also yields low Qblur values

for s = 2 and s = 3. However, its Qring values are higher

than A+ and the deep learning methods. Also, SCSR and

SPMSR methods have low Qblur and Qring values for s = 2,

but much higher values for s = 3 and s = 4. For better

performance of an SR algorithm, high PSNR, SSIM, low

Qblur, and Qring indices are desired. Considering all the

four objective metrics together, it is evident that the proposed

method is quantitatively superior to the existing methods.

In Table 4, we show the running times of different SR

methods for s = 4. Each value in the table represents the

average of 19 test images. The experiments are conducted in

Matlab on a system with 8 GB RAM and Intel(R) Core(TM)

i5-7400 CPU: 3.00 GHz. It is noticed that bicubic, A+,

DWSR, and MSSCNN are the fastest methods that can ex-

ecute in 1 second. SCN, FSRCNN, VDSR, and the proposed

method consume less than 5 seconds. NEDI, SPMSR, and

SRCNN require 10 seconds approximately. LRFI and SCSR
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FIGURE 8: Factor 4 SR results on Comic image: (a) Ground truth image (b) bicubic (c) SCSR (d) SPMSR (e) A+ (f) SCN
(g) SRCNN (h) FSRCNN (i) VDSR (j) DWSR (k) MSSCNN (l) Proposed

FIGURE 9: Factor 4 SR results on Woman image: (a) Ground truth image (b) bicubic (c) SCSR (d) SPMSR (e) A+ (f) SCN
(g) SRCNN (h) FSRCNN (i) VDSR (j) DWSR (k) MSSCNN (l) Proposed

FIGURE 10: : Factor 3 SR results on Bird image: (a) Ground truth image (b) bicubic (c) SCSR (d) SPMSR (e) A+ (f) SCN
(g) SRCNN (h) FSRCNN (i) VDSR (j) DWSR (k) MSSCNN (l) Proposed
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FIGURE 11: Factor 3 SR results on Flowers image: (a) Ground truth image (b) bicubic (c) SCSR (d) SPMSR (e) A+ (f) SCN
(g) SRCNN (h) FSRCNN (i) VDSR (j) DWSR (k) MSSCNN (l) Proposed

FIGURE 12: Factor 2 SR results on Baby image: (a) Ground truth image (b) bicubic (c) SCSR (d) SPMSR (e) A+ (f) SCN
(g) SRCNN (h) FSRCNN (i) VDSR (j) DWSR (k) MSSCNN (l) Proposed

FIGURE 13: Factor 2 SR results on Coastguard image: (a) Ground truth image (b) bicubic (c) SCSR (d) SPMSR (e) A+ (f) SCN
(g) SRCNN (h) FSRCNN (i) VDSR (j) DWSR (k) MSSCNN (l) Proposed
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TABLE 1: PSNR, SSIM, Qblur and Qring metrics for upscal-
ing factor 4.

Method PSNR SSIM Qblur Qring

Bicubic 26.64 0.795 12.94 118.48

NEDI 23.83 0.705 12.31 142.23

LRFI 23.42 0.697 11.02 129.46

SCSR 26.85 0.803 12.34 111.24

SPMSR 26.68 0.797 12.74 117.13

A+ 28.09 0.840 09.77 071.73

SCN 28.16 0.839 09.78 076.97

SRCNN 28.29 0.841 09.37 071.65

FSRCNN 28.41 0.844 08.74 061.92

VDSR 28.88 0.855 10.05 078.60

DWSR 28.90 0.856 10.03 079.09

MSSCNN 28.87 0.871 04.96 025.27

Proposed 29.03 0.858 09.79 076.62

TABLE 2: PSNR, SSIM, Qblur and Qring metrics for upscal-
ing factor 3.

Method PSNR SSIM Qblur Qring

Bicubic 28.29 0.864 10.09 74.08

LRFI 24.82 0.766 06.41 49.88

SCSR 28.87 0.878 09.41 62.41

SPMSR 27.97 0.871 09.24 62.70

A+ 30.03 0.901 08.02 48.11

SCN 30.04 0.899 08.25 51.26

SRCNN 30.20 0.902 07.65 44.69

FSRCNN 30.41 0.905 07.44 42.18

VDSR 30.79 0.909 07.98 48.06

DWSR 29.99 0.902 08.04 47.79

MSSCNN 30.51 0.907 07.73 45.32

Proposed 30.87 0.910 07.74 45.25

TABLE 3: PSNR, SSIM, Qblur and Qring metrics for upscal-
ing factor 2.

Method PSNR SSIM Qblur Qring

Bicubic 31.14 0.941 7.19 30.77

NEDI 28.39 0.898 7.46 41.25

LRFI 27.75 0.877 5.80 31.97

SCSR 32.60 0.955 6.44 22.69

SPMSR 33.05 0.961 5.96 19.23

A+ 33.39 0.964 6.20 19.09

SCN 33.43 0.963 6.16 18.75

SRCNN 33.56 0.964 5.64 16.43

FSRCNN 33.78 0.965 5.67 15.79

VDSR 34.18 0.966 6.06 17.74

DWSR 34.26 0.967 6.07 18.18

MSSCNN 34.29 0.968 5.92 16.35

Proposed 34.57 0.969 5.81 16.84

TABLE 4: Comparison of running times for upscaling factor 4.

Method Bicubic NEDI LRFI SCSR SPMSR A+

Time 0.22 7.30 36.20 116.96 11.39 0.38

SCN SRCNN FSRCNN VDSR DWSR MSSCNN Proposed

1.70 9.23 2.53 4.96 0.11 0.78 4.22

TABLE 5: Comparison of running times with 1024×1024 pixel
images for upscaling factor 4.

Method Bicubic NEDI LRFI SCSR SPMSR A+

Time 0.61 22.35 38.20 597.67 32.65 1.46

SCN SRCNN FSRCNN VDSR DWSR MSSCNN Proposed

6.72 25.25 9.36 65.00 0.32 0.99 6.10

are the slowest methods, with execution times 37 seconds and

117 seconds.

In Table 5, we show the running times of different SR

methods for s = 4. However, all the 19 test images are first

resized to 1024 × 1024 before downsampling and upscaling

operation by a factor s. We can notice that bicubic, A+,

DWSR, and MSSCNN execute in 1 second approximately.

SCN, FSRCNN, and the proposed method require less than

10 seconds. NEDI, LRFI, SPMSR, and SRCNN have an

execution range between 20 to 50 seconds. Whereas VDSR

and SCSR demand 65 seconds and 598 seconds.

From the discussion based on Tables 1-3 and Figs. 5-

13, we summarize that our method is superior in terms of

objective and subjective quality assessment. Besides, the low

computational time is advantageous for real-time implemen-

tation.

V. CONCLUSION

In this work, we presented a new single-image MR-SR algo-

rithm using the VDR-net in the stationary wavelet domain.

The idea of residual learning and the wavelet subbands

increase data sparsity in the training and testing phases. As

a result, our algorithm has less computational complexity

and hence suitable for 24fps real-time implementation. SWT

promises shift-invariance and superior directionality features

when compared to DWT. Besides, the edge-preservation

using Gaussian operation helps to maintain the intrinsic

structure of the SR images. We have shown improvements

over the conventional and state-of-the-art SR methods in

PSNR, SSIM, Qblur, and Qring metrics. In addition, the

edge-preserving nature of the proposed SR method can be

identified from the subjective analysis.
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