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ABSTRACT

N-body cosmological simulations are an essential tool to understand the observed distribution

of galaxies. We use the MultiDark simulation suite, run with the Planck cosmological param-

eters, to revisit the mass and velocity functions. At redshift z = 0, the simulations cover four

orders of magnitude in halo mass from ∼1011M⊙ with 8783 874 distinct haloes and 532 533

subhaloes. The total volume used is ∼515 Gpc3, more than eight times larger than in previ-

ous studies. We measure and model the halo mass function, its covariance matrix w.r.t halo

mass and the large-scale halo bias. With the formalism of the excursion-set mass function, we

explicit the tight interconnection between the covariance matrix, bias and halo mass function.

We obtain a very accurate (<2 per cent level) model of the distinct halo mass function. We

also model the subhalo mass function and its relation to the distinct halo mass function. The

set of models obtained provides a complete and precise framework for the description of

haloes in the concordance Planck cosmology. Finally, we provide precise analytical fits of the

Vmax maximum velocity function up to redshift z < 2.3 to push for the development of halo

occupation distribution using Vmax. The data and the analysis code are made publicly available

in the Skies and Universes data base.

Key words: dark matter – large-scale structure of Universe.

1 IN T RO D U C T I O N

N-body cosmological simulations are essential tools to understand

the observed distribution of galaxies. In the last decades, devel-

opment of numerical codes (Teyssier 2002; Springel 2005, 2010;

Klypin, Trujillo-Gomez & Primack 2011; Habib et al. 2016) and

the access to powerful supercomputers enabled the computation of

high-resolution cosmological simulations over large volumes e.g.

MultiDark (MD hereafter; Prada et al. 2012) and DarkSkies (DS

hereafter; Skillman et al. 2014). Both simulations were run in the

paradigm of the flat � cold dark matter cosmology (�CDM; Planck

Collaboration XVI 2014). From MD emerged the most precise de-

scription to date of the dark matter (DM) halo (Klypin et al. 2016).

While finding and describing the haloes formed by the DM is now

well understood (Behroozi, Wechsler & Wu 2013; Knebe et al. 2013;

Avila et al. 2014), connecting galaxies to haloes is a proven compli-

cated subject. There are three main streams of galaxy assignment

in simulations, we order them by decreasing computational needs

and accuracy: (i) hydrodynamical simulations (HYDRO; Cen & Os-

triker 1993; Springel & Hernquist 2003), (ii) semi-analytical models

⋆ E-mail: comparat@mpe.mpg.de

of galaxy formation (SAMS; Cole et al. 2000; Baugh 2006), (iii)

halo occupation distribution or subhalo abundance matching (HOD,

SHAM; Cooray & Sheth 2002; Conroy, Wechsler & Kravtsov 2006,

respectively). The existing methods will hopefully converge in the

coming years (Knebe et al. 2015; Elahi et al. 2016; Guo et al. 2016).

The current and future cosmological galaxy and quasar surveys,

e.g. BOSS, eBOSS, DES, DESI, 4MOST, Euclid, will cover gi-

gantic volumes up to redshift 3.5 (The Dark Energy Survey Col-

laboration 2005; Laureijs et al. 2011; Dawson et al. 2013, 2016;

DESI Collaboration et al. 2016). These volumes are too large to

be entirely simulated with hydrodynamics. There is thus a need

to improve the predictive power of the SAMS and HOD to the

level of the expected two-point function measurements, i.e. around

the per cent level. This challenge needs to be handled from both

the hydrodynamical simulation point of view (Sawala et al. 2015;

Chaves-Montero et al. 2016) and from the DM-only simulation per-

spective (Carretero et al. 2015; Favole et al. 2016; Rodrı́guez-Torres

et al. 2016) to eventually join in an optimal semi-analytical model

(Knebe et al. 2015). Lastly, Castro, Marra & Quartin (2016) argued

that with such surveys, one would constrain directly the parameters

of the mass function to the level that it is estimated in N-body sim-

ulations, enhancing again the need of a precise model for the halo

mass function (HMF).
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From the DM-only simulation perspective, the most fundamental

statistic is the HMF. Observational probes, such as weak lensing,

galaxy clustering or galaxy clusters, also rely on the knowledge of

the HMF. The mass function denotes, at a given redshift, the fraction

of mass contained in collapsed haloes with a mass in the interval

M and M + dM. It was studied theoretically and numerically in

various simulations and different cosmologies (Press & Schechter

1974; Sheth & Tormen 1999; Jenkins et al. 2001; Sheth, Mo &

Tormen 2001; Sheth & Tormen 2002; Springel et al. 2005; Warren

et al. 2006; Tinker et al. 2008; Bhattacharya et al. 2011; Angulo

et al. 2012; Watson et al. 2013; Despali et al. 2016).

The theoretical formalism to describe the number density of

haloes was initiated by Press & Schechter (1974). Its latest for-

mulation by Sheth et al. (2001) and Sheth & Tormen (1999) in-

cludes the ellipsoidal collapse instead of spherical collapse. Heuris-

tically, it corresponds to a diffusion across a ‘moving’ or across a

mass-dependent boundary. The excursion-set formalism of the mass

function constitutes today a good description of what is measured

in N-body simulations. More precise predictions are actively be-

ing sought and eventually we might converge towards an ultimate

universal mass function. The variety of existing and tested func-

tional forms of the mass function are discussed and compared in

Murray, Power & Robotham (2013). The description of the errors

on the HMF is slightly less discussed subject. Nevertheless, Hu &

Kravtsov (2003) and Bhattacharya et al. (2011) provided a solid

background, used in this study, to model errors on the HMF and the

large-scale halo bias.

Numerically, the HMF was extensively studied with a cosmology-

independent (universal) model. The most recent measurements on

N-body simulations enabled models to predict any HMF to about

10 per cent accuracy; see Despali et al. (2016). It is to date the latest

HMF measurements in the Planck cosmology. We feel though, the

lack of a per cent-level-accurate model for the HMF in the Planck

cosmology.

The recent measurements of the cosmic microwave background

indicate a significantly higher matter content than suggested by

previous observations (WMAP; Komatsu et al. 2011). The matter

content of the Universe is a parameter that strongly influences the

HMF. We think it is thus necessary to revisit the parametrization

of the mass function and understand to what accuracy the mass

function is known in our best cosmological model. Previous works

could not assess thoroughly the uncertainties on the measurement of

the mass function due to the limited amount of N-body realizations

available. With the MD and DS simulations, extracting covariance

matrices becomes possible.

In this paper, we explore and model the HMF and its covari-

ance matrix. We describe the model in Section 2. In Section 3, we

describe the simulations used and we estimate the HMF, its covari-

ance and the large-scale halo bias. The HMF results are presented

in Section 4. Finally, in the Appendix we parametrize the redshift

evolution of the distinct and satellite halo velocity function.

Data base

All the data and the results are available through the Skies and

Universes data base.1 The code is made public via GitHub.2

1 http://projects.ift.uam-csic.es/skies-universes/
2 http://github.com/JohanComparat/nbody-npt-functions

2 M O D E L

2.1 Halo mass function

The formalism to describe the number density of haloes was initiated

by Press & Schechter (1974). They assumed that the fraction of mass

in haloes of mass greater than M at a time t, F( > M, t), was equal

to twice the probability, P , for the smoothed density field, δs, to

overcome the critical threshold for spherical collapse, δc i.e.

F (> M, t) = 2P(δs(t) > δc(t)). (1)

Assuming that δs is a Gaussian random field, they related the number

density of haloes to F

n(M, t)dM =
ρ̄

M

∂F (> M, t)

∂M
dM. (2)

The mass function depends on redshift and on halo mass. Rather

than mass, it is physically more relevant to use the root mean square

(rms) fluctuations of the linear density field smoothed with a filter

encompassing this mass

σ 2(M, t) = 4π
2

∫ ∞

0

P (k, t)W 2(k,M)k2dk, (3)

where P(k) is the linear power spectrum and W a top-hat filter.

Assuming that the initial Gaussian random density fluctuation

field evolves and crosses via a random walk the spherical collapse

barrier, these equations determine the number of regions in the

simulation that underwent collapse at a given time

n(σ, t)dM = fPS(σ )
ρ̄

M2

d ln σ

d ln M
dM, (4)

where the function f, called the multiplicity function has the follow-

ing expression:

fPS(σ ) =
√

2

π

δc

σ
exp

[

−
δ2

c

2σ 2

]

. (5)

‘PS’ stands for ‘Press–Schechter’. In other words, it is the fraction

of mass associated with haloes in a unit range of dln σ . Because the

threshold δc increases with time, smaller haloes are formed first and

then the larger ones (hierarchical clustering).

This model was revised using excursion-set theory by Bond et al.

(1991). They argued that σ diffuses across the spherical collapse

boundary or barrier, instead of crossing it via a random walk. This

leads to a new multiplicity function

fEPS(σ ) = fPS(σ )/(2
√

σ ), (6)

where ‘EPS’ stand for extended Press–Schechter.

Sheth & Tormen (1999) and Sheth et al. (2001) later explored the

ellipsoidal collapse to replace the assumption of spherical collapse.

Heuristically, it corresponds to a diffusion across a ‘moving’ bar-

rier (or across a σ -dependent boundary). They found the following

multiplicity function fST:

fST(σ, A, a, p)=A

√

2

π

[

1 +
(

σ 2

aδ2
c

)p] (√
aδc

σ

)

exp

[

−
a

2

δ2
c

σ 2

]

,

(7)

where ‘ST’ stands for ‘Sheth and Tormen’. It constitutes a further

improvement compared to fEPS.

The latter multiplicity function describes well the �CDM distinct

HMF with the parameters (A, a, p)=(0.3222, 0.707, 0.3). These

parameters were measured again by Despali et al. (2016) in the

latest Planck-cosmology paradigm. They found (A, a, p)=(0.333,
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0.794, 0.247). It remains a statistical scatter of the simulated data

around this model of the order of 5–7 per cent at the high-mass

end. More precise predictions are actively being sought (e.g. Pace,

Batista & Del Popolo 2014, Rei; Del Popolo, Pace & Le Delliou

2017). Eventually, we will converge towards an ultimate physical

model for the HMF.

Aside from the physical model of the mass function, exist a

variety of functional forms created to best fit the mass function as

measured in N-body simulations; see Murray et al. (2013) who com-

pare and catalogue them. Among others, Bhattacharya et al. (2011)

proposed a generalized form of the Sheth & Tormen (1999) function

that we use here. Note that this generalization is not theoretically

motivated by the excursion-set formalism.

The multiplicity function from Bhattacharya et al. (2011, equa-

tion 12–18) is

fBa(σ, z, Ā, ā, p̄, q̄) = Ā(z)

√

2

π

[

1 +
(

σ 2

ā(z)δ2
c

)p̄(z)
]

×
(

√
ā(z)δc

σ

)q̄(z)

exp

[

−
ā(z)

2

δ2
c

σ 2

]

. (8)

In the case, q̄ = 1, the parameters of equation (8) are the same as

that of equation (7) i.e. Ā = A, ā = a, p̄ = p. The addition of the q̄

parameter is strictly speaking not physically motivated, but provides

a better fit to the data, see further down in the paper.

We then use the formalism of Hu & Kravtsov (2003) and Bhat-

tacharya et al. (2011) to account for the large-scale halo bias and

the mass function’s covariance.

2.2 Large-scale halo bias

The large-scale halo bias function is written in terms of the con-

ditional, the unconditional mass function and a Taylor expansion

(Sheth & Tormen 1999; Bhattacharya et al. 2011). This allows its

formulation with the same parameters as the mass function

b(σ, z, ā, p̄, q̄) = 1 +
ā(z)(δ2

c /σ
2) − q̄(z)

δc

+
2p̄(z)/δc

1 + (ā(z)(δ2
c /σ

2))p̄(z)
. (9)

2.3 Covariance matrix

To model the covariance, we slightly adapt the notations from Hu

& Kravtsov (2003) and Bhattacharya et al. (2011) as follows.

Let ρ̄ be the average density of haloes. We assume the overdensity

of haloes at a position (z, x), denoted δhalo(σ, z, x), to be related

to the total mass density field δDM(x) by a biasing function, b(σ , z).

Note that, on large scales, this function is the bias mentioned in the

previous section,

δhalo(σ, z, x) = b(σ, z)δDM(x). (10)

Then, within a window Wa, the average number density of haloes,

na is given by

na(σ, z) = ρ̄

∫

dx Wa(x) b(σa, za)δDM(x). (11)

The covariance between the number densities na(σ a, za) and

nb(σ b, zb) within the windows Wa and Wb has two components:

the shot-noise variance, proportional to the inverse of the density

times the volume ∼(n̄V )−1, and the sample variance:

〈nanb〉 − n̄a n̄b

n̄a n̄b

= b(σa, za)D(za)b(σb, zb)D(zb)

×
∫

3d3k

(2π)3
Wa(k Rbox, a)W ∗

b (k Rbox, b)P (k),

(12)

where D is the growth factor, V the volume of the box, Rbox =
(3V /4π)1/3 and P(k) the DM power spectrum. We use top-hat win-

dow functions. The growth factor and the integral depend only on

the cosmological model (and redshift) but not on the mass func-

tion model. The model of the bias function is directly related to

the HMF model. Therefore once the mass function parameters are

determined, the covariance matrix should be predictable. Also, we

note how the large-scale structure makes number counts of haloes

in distinct volumes covary. Our model of the covariance matrix is

Cmodel(σa, σb)=
Q

√
n̄a n̄b(Va + Vb)

+
(

〈nanb〉 − n̄a n̄b

n̄a n̄b

)

, (13)

where the Q factor depends on the simulation size. This factor allows

us to rescale small-subboxes estimates of the covariance to much

larger computational simulations. We find the factor by observing

how covariance scales with the box size. In the next section, we find

that Q = −3.62 + 4.89log10 [Lbox(h−1 Mpc)] accounts well for all

of the estimated covariance matrices, see Fig. 7.

3 SI M U L AT I O N S

The MD simulation suite3 is currently the largest public data base

of high-resolution large volume boxes with ∼40003 particles. The

simulations were run in the Planck cosmology (Prada et al. 2012;

Klypin et al. 2016) in a flat �CDM model with the �m = 0.307,

�� = 0.693, �b = 0.048, ns = 0.96, h = 0.6777 and σ 8 = 0.8228

(Planck Collaboration XVI 2014). They provide haloes plus sub-

haloes for all written outputs and for some boxes merger trees are

also available. We found three other relevant simulation sets to be

compared with our study. Despali et al. (2016) is the current state-

of-the-art HMF in Planck cosmology. They ran a suite of 10243

particle simulations with different volumes and analysed the mass

function up to redshift 1.25. The DS simulations discussed in Skill-

man et al. (2014), also run in Planck cosmology, used up to 10 2403

particles and cover much larger volume, though the current data

release only provides data at redshift 0. The exact cosmological

parameters differ a little from the ones used in MD and Despali

et al. (2016). Ishiyama et al. (2015) provide a new suite of simula-

tion in Planck cosmology, the largest simulation (of interest for this

analysis) is not yet publicly available, so we did not include their

data in the analysis. Other simulations covering large volumes with

large amount of particles exist Angulo et al. (e.g. 2012) and Heit-

mann et al. (e.g. 2015), but they were run in a different cosmology

set-up and are not yet publicly available. For completeness, also

we mention the P-Millennium ∼40003 simulation although it is not

publicly documented and released yet. In this study, we therefore

use only the MD simulations and the redshift 0 data produced by

the DS simulation. These data sets constitute a non-negligible leap

forward, for both resolution and volume, compared to the data used

in Despali et al. (2016). Table 1 summarizes and compares the main

parameters of each simulation: length of the boxes, number of par-

ticles, force resolution, particle mass and number of snapshots. We

3 https://www.cosmosim.org
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Table 1. Basic parameters of the simulations. Lbox is the side length of the simulation cube. Np is the number of particles in the simulation. ǫ is the force

resolution at redshift z = 0. Mp is the mass of a particle. Ns is the number of snapshots available. The σ 8 column gives the input value and its measured

deviation at redshift z = 0. The column ‘cosmo’ refers to the cosmology set-up used to run the simulation: (a) refers to Planck Collaboration XVI (2014) and

(b) to Komatsu et al. (2011, WMAP). The column ‘ref’ gives the reference paper for each simulation: (1) stands for Klypin et al. (2016) h=0.6777, �m = 0.307,

(2) for Skillman et al. (2014) h=0.6846, �m = 0.299, (3) for Despali et al. (2016) h=0.677, �m = 0.307, (4) for Heitmann et al. (2015) h=0.71, �m = 0.27,

(5) for Angulo et al. (2012) h=0.73, �m = 0.25. (6) for Springel (2005) h=0.73, �m = 0.25. (7) for Ishiyama et al. (2015) h=0.68, �m = 0.31. A dash, ‘-’,

means information is the same as in the cell above. An empty space means the information is not available. The column nickname gives the naming convention

used throughout the paper, figures and captions.

Box Set-up parameters Ns σ 8 Cosmo Ref Nickname

name Lbox N
1/3
p ǫ Mp input, measured

Mpc kpc M⊙
SMD 590.2 3840 2.2 1.4 × 108 88 0.8228, −2.8 per cent (a) (1) M04

MDPL 1475.5 3840 7.3 2.2 × 109 128 –, +0.2 per cent – – M10

BigMD 3688.9 3840 14.7 3.5 × 1010 80 –, +0.5 per cent – – M25

BigMDNW 3688.9 3840 14.7 3.5 × 1010 1 –, +0.5 per cent – – M25n

HMD 5902.3 4096 36.8 1.4 × 1011 128 –, +0.4 per cent – – M40

HMDNW 5902.3 4096 36.8 1.4 × 1011 17 –, +0.4 per cent – – M40n

DS 11 627.9 10 240 53.4 5.6 × 1010 16 0.8355, +0.0 per cent (a) (2) D80

–, 2325.5 4096 26.7 7.1 × 109 – – – – DS

–, 1162.7 4096 13.3 8.8 × 108 – – – – –

–, 290.7 2048 6.7 1.1 × 108 – – – – –

–, 145.3 – 3.3 1.3 × 107 – – – – –

Ada 92.3 1024 2.2 2.8 × 107 15 0.829, (a) (3) De

Bice 184.6 – 4.4 2.2 × 108 15 –, – – –

Cloe 369.2 – 8.8 1.8 × 109 15 –, – – –

Dora 738.5 – 17.7 1.4 × 1010 15 –, – – –

Emma 1477.1 – 35.4 1.1 × 1011 15 –, – – –

Flora 2954.2 – 70.9 9.3 × 1011 15 –, – – –

ν2GC-L 1647.0 8192 3.2 × 108 0.83 (a) (7) ν2GC

ν2GC-M 823.5 4096 3.2 × 108 4 – (a) (7) –

ν2GC-S 411.7 2048 3.2 × 108 4 – (a) (7) –

ν2GC-H1 205.8 2048 4.0 × 107 4 – (a) (7) –

ν2GC-H3 205.8 4096 5.0 × 106 2 – (a) (7) –

ν2GC-H2 102.9 2048 5.0 × 106 4 – (a) (7) –

P-Millennium 800.0 1.5 × 108 271 (a) In prep. P-Mi

OuterRim 4225.3 10 240 7.0 2.6 × 109 34 0.84, (b) (4) OR

QContinuum 1830.9 8192 2.8 2.1 × 108 – – – – QC

Millennium XXL 4109.6 6720 13.7 1.1 × 1010 0.9 other (5) Mi-XXL

Millennium 684.9 2160 1.1 × 109 – – (6) Mi

Table 2. More parameters for the MD simulation

data used in this paper. The number of snapshots used

in the analysis is the one that has a distinction between

central and satellite haloes, which is a subsample of

the complete simulations.

Box Number of snapshots with parent IDs

all z < 3.5 z < 2.5

M04 9 9 8

M10 11 11 10

M25 10 10 9

M25n 1 1 1

M40 128 67 56

M40n 17 15 13

note the latest advances in software enabling 20 0003 particle simu-

lations to converge in reasonable computing time (Potter, Stadel &

Teyssier 2016).

We use a set of snapshots from each simulation to sparsely and

regularly sample the redshift range 0 < z < 2.5, i.e. to cover the

extent of galaxy surveys. Table 2 provides the number of snapshots

used per simulation in our analysis.

The rms amplitude of linear mass fluctuations in spheres of 8

h−1 Mpc comoving radius at redshift 0, denoted σ 8, holds a par-

ticular role when characterizing the abundance of haloes. To have

a more accurate estimate of the actual σ 8 in the simulation, we

compare the DM power spectrum at redshift 0 measured in each

simulation with the predicted linear power spectrum in the same

cosmology. The mean of the square-root of this ratio evaluated on

scales where the linear regime dominates gives the relative variation

of the value of σ 8. We find variation smaller than ∼2 per cent; see

Table 1. In the following, we compute the mass–σ (M) relation us-

ing the measured value of σ 8 in each simulation. To compute these

relations, we use the package HMFCALC
4 (Murray et al. 2013).

To visualize the challenges of bridging the gap between N-body

simulations and galaxy survey, we designed Fig. 1. In this figure, we

compare existing simulations with observed galaxy surveys in the

resolved haloes mass versus comoving volume plane. We consider

the resolved halo mass to be 300 times the particle mass of a sim-

ulation. The total comoving volume of our past light-cone within

redshift 3.5 projected on two-third of the sky is ∼1012 Mpc3, the

right boundary of the plot. We place the simulations enumerated

4 http://hmf.icrar.org

MNRAS 469, 4157–4174 (2017)
Downloaded from https://academic.oup.com/mnras/article-abstract/469/4/4157/3828093
by Inst. Astrofisica Andalucia CSIC user
on 06 July 2018

http://hmf.icrar.org


DM haloes mass and velocity functions 4161

Figure 1. Resolved halo mass versus volume. The resolved halo mass is taken as 300 times the particle mass. The set of simulations discussed in this paper

(black crosses, De: Despali et al. 2016; M04, M10, M25, M40: MD; DS, D80: DarkSkies; OR: OuterRim; QC: QContinuum; Mi: Millennium; nGC: ν2GC) are

compared to current and future spectroscopic galaxy surveys (blue triangles). The galaxy surveys are tentatively placed according to halo mass values obtained

with HOD models, the location is therefore not accurate but rather informative. Dashed diagonal lines relate the volume to the halo mass resolved assuming

a constant number of particles 10003–40 0003. Assuming a halo abundance matching model, a simulation encompasses a galaxy sample located above and

leftwards to its marker. We show a prediction of the redshift 0 cumulative HMF (blue curve). It is the mass of the least massive halo among the 1000 000 most

massive haloes expected in a simulation of the volume given in the x-axis. The total comoving volume of our past light-cone within redshift 2.5 is ∼1012 Mpc3,

the right boundary of the plot.

in Table 1 according to their resolved halo mass and total volume

(black crosses). We show with a set of dashed lines the relation

between number of particles, volume and halo mass resolved.

It shows how simulations progressed and our future needs (black

star on the bottom-right), from the top-left to the bottom-right. We

show a prediction of the redshift 0 cumulative HMF. It is the mass

of the least massive halo among the 1000 000 most massive haloes

expected in a simulation of the volume given in the x-axis. For

example, in a volume of 109 Mpc3, there are a million haloes that

have Mvir > 4 × 1013 M⊙. The galaxy surveys (blue triangles)

are tentatively placed according to halo mass values obtained with

HOD models. Given the uncertainty on the HOD model parame-

ters, the halo mass value used could shift around by say a factor of

2 or 3. The survey volumes are accurate. The galaxy surveys rep-

resented are VIPERS (Marulli et al. 2013), VVDS-Wide (Coupon

et al. 2012), VVDS-Deep (Meneux et al. 2008), DEEP2 (Mostek

et al. 2013), SDSS-LRG (Padmanabhan et al. 2009), BOSS-CMASS

(Rodrı́guez-Torres et al. 2016), ELG 2020 (Comparat et al. 2013;

Favole et al. 2016), ELG 2025 (DESI Collaboration et al. 2016),

QSO 2020 (Rodrı́guez-Torres et al. 2017) and QSO 2025 (DESI

Collaboration et al. 2016). If a simulation point is to the lower right

of a data point, it means the simulation is sufficient to construct at

least one realization of the observations (assuming a halo abundance

matching model). We note the challenge to simulate upcoming ELG

samples to be observed by DESI, 4MOST and Euclid. Indeed a sim-

ulation with Lbox ∼ 10 000 h−1 Mpc sampled with ∼20 000 cube

particles is needed. It seems that such simulations should become

available in the coming decade. However, we do not need to simu-

late in a single box the exact volume of the observations to extract

the cosmological information, see Klypin & Prada (2017) for an

extended discussion on the subject.

3.1 Halo catalogues

The halo finding process is a daunting task and in this analysis, we

do not enter in this debate (see Knebe et al. 2011, 2013; Behroozi

et al. 2015, for a review). For this analysis, we use the ROCKSTAR

(Robust Over density Calculation using K-Space Topologically

Adaptive Refinement) halo finder (Behroozi et al. 2013). Spherical

DM haloes and subhaloes are identified using an adaptive hierarchi-

cal refinement of friends-of-friends (FoF) groups in six phase-space

dimensions and one-time dimension.

ROCKSTAR computes halo mass using the spherical overdensities of

a virial structure. Before calculating halo masses and circular veloc-

ities, the halo finder removes unbound particles from the final mass

of the halo. We use haloes that have a minimum of a 1000 bound

particles, a very conservative threshold for convergence (some anal-

ysis use haloes with 300 particles, or even down to only 30 particles
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or so in the case of FoF haloes). We characterize the halo population

with two properties, Mvir and Vmax at present.

For the halo mass, we use Mvir, defined relatively to the critical

density ρc by

Mvir(z) =
4π

3
�vir(z)�m(z)ρc(z)R3

vir. (14)

Indeed, the halo Mvir function was found to be closest to an eventual

universal mass function (Despali et al. 2016). Throughout the anal-

ysis, we convert the mass variable to σ as defined in equation (3).

To do so, we measure the DM power spectrum (PDM) on each simu-

lation at redshift 0. Then, we take the mean of the ratio PDM/Plin on

large scales; where Plin is the predicted linear power spectrum by

CAMB using the cosmological parameters of the simulation. Finally,

we rescale the M–σ relation accordingly to align all simulations

to the input cosmological parameters. The value of the rescaling is

given in the σ 8 column of Table 1.

The maximum of the circular velocity profile is a measure of the

depth of the DM halo potential well. It is expected to correlate well

with the baryonic component of galaxies such as the luminosity

or stellar mass as followed from the Tully–Fisher relation (Tully &

Fisher 1977). The maximum circular velocity is defined by equation

(15). It has a very small dependence on radius and is therefore

robustly determined,

Vmax = max
r

(

√

GM(< r)

r
, over radius r

)

. (15)

3.2 Measurements

We divide each snapshot in 1000 subvolumes (on a grid of

10 × 10 × 10). We compute the histogram of the halo mass

in each subvolume. The bins start at 8 and run to 16 by steps

of � logM
10 = 0.05. We denote, Nbin i, the number count in a sub-

volume in a mass bin. Lukić et al. (2007) and Bhattacharya

et al. (2011) corrected the mass assignment according to the

force resolution of each simulation. We follow their corrections:

Mcorrected = [1 − 0.04(ǫ/650 kpc)] Mhalo finder. The masses were over-

estimated by 0.3, 0.3, 0.1, 0.1, 0.05, 0.02 per cent in the M40, M40n,

M25, M25n, M10, M04, respectively.

We estimate the uncertainty on the mass function using jackknife

re-samplings by removing 10 per cent of the subvolumes. We obtain

10 mass function estimates based on 90 per cent of each volume.

In each simulation snapshot, we select bins where the halo mass is

greater than a 1000 times the particle mass and where the number

of haloes is greater than 1000. We divide the number counts by the

volume to obtain number densities

dn(M) =
Nbin i

(

logbin
10 (Mi)

)

Volume
, (16)

that we further divide by the natural logarithm of the bin width, to

estimate the mass function, denoted interchangeably

n(σ, z) =
dn

d ln M
. (17)

The resulting mass function estimation for distinct and satellite

haloes at redshift 0 are presented in Fig. 2. The measurements

span the range 11 < log10(Mvir/M⊙) < 15(13.5) for the distinct

(satellites) haloes.

We find the DS HMF at redshift 0 to be 2 per cent lower than the

combined MD mass function. This is due to the lower matter content

in the DS simulation. Also due to its large volume, the resolution

Figure 2. Measurements of the differential halo Mvir function for distinct

haloes as a function of log10(σ−1) for the MD simulations at redshift 0.

The grey contours represent the best-fitting models discussed in Section 4.

The mean of the residuals for the distinct (satellite) HMF is 0.8 per cent

(0.4 per cent) and the standard deviation of the residuals is 1.6 per cent

(4.2 per cent), which are shown in the middle (bottom) panel. It means the

fit is very close to the data for the distinct haloes and a little further for the

subhaloes.
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does not enable to follow the mass function leftward of its knee,

which prevents from fitting reliably the mass function models solely

on the public DS data. The other DS simulations, which are smaller

and complementary, are not provided to the public. Therefore, we

do not push further the analysis with this simulation.

3.3 Covariance with mass

We construct two estimators of the uncertainty on the mass function

measurements. We consider the redshift fixed. For both, we slice

the simulations into 1000 subsamples of equal volume. The grid is

10 × 10 × 10. Each subsample has a volume 1000 times smaller

than the initial simulation. The first method goes as follows. On each

subsample, we estimate the mass function to obtain NR = 1000 of

them. We denote by fi(σ ) the multiplicity functions deduced. Then,

we compute the covariance matrix C defined by

C(σa, σb) =
�

NR
i (fi(σa) − f̄ (σa))(fi(σb) − f̄ (σb))

(NR − 1)
, (18)

where f̄ is the mean multiplicity function. Because each subsample

ends up being quite small, the matrices hereby obtained do not cover

a large dynamic range in mass.

The second method is the jackknife. We group the subsamples

by batches of 100 to obtain NR = 10 realizations of the mass func-

tion using the complementary 900 subsamples. The mass functions

obtained are not independent, but they cover a larger mass range.

From this method, we only infer the diagonal error

CJK (σ ) =
�

NR=10
i (fi(σ ) − f̄ (σ ))2

(NR − 1)
. (19)

We show the diagonal variances C(σ , σ ) and CJK(σ ) on Fig. 3.

There is one panel per simulation snapshot at redshift 0. We note

that both methods are in agreement when estimating the errors in

the low-mass regime. It is the regime where errors are dominated

by sample variance. The jackknife method seems less sensitive to

the shot-noise at the high-mass end. But this is simply a matter of

the volume considered when estimating the uncertainty. Indeed in

the jackknife method, we use 90 per cent of the volume whereas in

the covariance, we only use 0.1 per cent of the volume. Therefore, a

factor of
√

1000 ∼ 30 is expected between the two measurements.

At the low-mass regime, the sample variance seems underestimated

by the full covariance method. This discrepancy cannot be explained

by the difference in volume covered, we therefore assume that there

is a bias in the method.

The full covariance matrix varies smoothly with σ . The covari-

ance matrix is not decreasing around its diagonal as the covariance

matrix of the two-point correlation function does (see fig. 7 of

Comparat et al. 2016). Indeed, there is a large amount of correlation

between structures, i.e. the power spectrum of the DM is not zero.

The model of the covariance matrix and its use in the analysis have

been discussed in Section 2.

3.4 Covariance with redshift

The mass function at redshift 0 strongly depends on the mass func-

tion from previous redshifts i.e. on the complete formation history

of the haloes. Therefore, fitting the redshift evolution of the param-

eters of the mass function is somewhat degenerate. The additional

information between two redshift bins are the new (sub)haloes that

formed, the mass increase of previous (sub)haloes and the cross-

talk between the two functions (see Giocoli et al. 2010; van den

Bosch & Jiang 2016, for an exhaustive list of events occurring dur-

ing the evolution of the mass function). Due to the limited number

of N-body realizations (6 for MD), we cannot establish directly the

redshift covariance of the mass function.

We run a set of approximate DM simulations to estimate the red-

shift covariance of the mass function to wisely choose the redshift

sampling and avoid over-fitting in the later analysis. We run a set of

Parallel Particle-Mesh GLAM simulations (PPM-GLAM; Klypin &

Prada 2017) with lower resolutions and lower time-step resolution

than a typical high-resolution N-body simulation to obtain a set of a

100 simulations with density field catalogues spanning the redshifts

0 ≤ z < 3.2 every 0.5 Gyr (23 time steps). With MD, the number

of realizations available is 6, a rather small number to obtain vari-

ances. On each realization and at each time step, we estimate the

density field with a Cloud-In-Cell estimator. Table 3 summarizes

the PPM-GLAM runs.

We estimate the redshift covariance matrix, Cz, of the density

field function, fδ as

Cδ
z (za, zb) =

�
NR
i

(

f δ
i (za) − f̄ δ(za)

) (

f δ
i (zb) − f̄ δ(zb)

)

(NR − 1)
(20)

at fixed values of the density field δ. We deduce the Pearson product-

moment correlation coefficients R defined by

Rz(za, zb) =
Cδ

z (za, zb)
√

Cδ
z (za, za)Cδ

z (zb, zb)
. (21)

The DM density field function, fδ , for 1 + δ = ρ/ρ̄ > 10 looks

like a power law. At the highest densities, fδ is cut-off exponentially

(due to finite resolution of the PPM-GLAM simulations). In the

cross-correlation matrix, we find two regimes; see Fig. 4. At the

high-density field end, 1 + δ = ρ/ρ̄ > 1000, the cross-correlation

coefficient is smaller than 20 per cent between redshifts 0 and 10.

The off-diagonal cross-correlations coefficient are of the order of

10 per cent. Therefore, each snapshot brings significant informa-

tion in this regime. At the lower end of the density field func-

tion, δ = ρ/ρ̄ < 200, the cross-correlation coefficient is larger than

80 per cent. It means that using a single redshift gives most of the

information available. In between the transition is quite sharp, it

suggests we should retain for the analysis the z = 0 mass function

measurements and the high-mass end of the z > 0 mass function

measurements. A cut-off at ∼200 times the density field seems

reasonable. It corresponds to ∼1012.9 M⊙. For simplicity, in this

analysis we only use the redshift z = 0 data and push back the

question of accurate estimation of the redshift covariance for future

studies.

These simulations give a sense of the redundancy of the informa-

tion present in the data, but do not allow a robust estimation of the

covariance matrix. With these simulations, we cannot weight each

snapshot according to its information content. To do that, we would

need a large amount of N-body simulations with halo finders run to

estimate properly this covariance. Nevertheless, it allows rejection

of data with high covariance.

Our understanding of the redshift covariance matrix is that the

density field function at low overdensity is redundant with redshift.

We agree that between a density field function and an HMF, there is

a non-negligible step that is halo finding. Nevertheless, we think that

adding all measured mass function points (in all written snapshots

i.e. all the redshifts of the simulations) might lead to an incorrect

statement as points cannot be considered to be strictly independent

from one another.
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Figure 3. Diagonal component of the covariance matrix measured in each MD simulation (blue pluses) at redshift z = 0 compared to the errors obtained via

the jackknife method (red crosses). The model is decomposed into shot-noise and sample variance.
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Table 3. Parameters of the PPM-GLAM simulations run in Planck cosmology with σ 8 = 0.8229.

Name Lbox N
1/3
p Mp Grid dt da NR

Mpc M⊙ (Gyr)

pmA1 737.7 500 8.5 × 1010 1000 0.5 0.0004 100

pmA2 737.7 500 8.5 × 1010 1000 0.5 0.0002 100

pmA3 147.5 500 6.8 × 108 1000 0.5 0.0002 100

pmA4 1475.5 2000 1.1 × 108 2000 0.5 0.0002 10

pmB1 1475.5 1000 8.5 × 1010 1000 0.5 0.0002 10

pmB2 147.5 1000 8.5 × 107 1000 0.5 0.0002 10

pmB3 14.7 1000 8.5 × 104 1000 0.5 0.0002 10

pmB4 1.4 1000 8.5 × 101 1000 0.5 0.0002 10

Figure 4. Rz(za, zb), redshift cross-correlation coefficient matrix of the number counts for density field values of 1 + δ = 100 (left) and 1000 (right).

It seems that to further improve the accuracy of the HMF

and in particular its evolution with redshift, we need to prop-

erly work out its redshift covariance matrix, but this needs sig-

nificantly more simulations to be run, so we leave it for future

studies.

3.5 Large-scale halo bias

We compute the real-space two-point correlation function of the

halo population in mass bins (identical as the ones used for the

mass function) up separations to rmax = 20 h−1 Mpc. We fol-

low a method described in Martinez & Saar (2002) that goes as

follows.

We select all haloes in a mass bin [M, dM]. It constitutes the

complete sample of haloes (HC). Then, we select an ‘inner’ sam-

ple of haloes (HI) that are located at least rmax away from any

edge of the snapshot. We count all pairs between the HC and

HI sample using the scipy.spatial.ckdtree python library (Jones

et al. 2001). The histogram of the pair counts in bins of distance

gives the number of pairs found at separation r ± dr/2, denoted

Npairs(r, dr). The real-space two-point correlation function, ξ , is then

obtained by

1 + ξ (r, dr, M, dM) =
Npairs(r, dr)

#HC#HI

3Vsnap

4π((r + dr)3 − r3)
, (22)

where Vsnap is the volume of the snapshot and the distance binning

parameter dr = 0.1 h−1 Mpc. This is a fast and unbiased estimator

of the two-point function in simulations.

We compute the redshift 0 linear correlation function, denoted

ξ 0
lin, using CAMB and the Hankel transform (Szapudi et al. 2005;

Challinor & Lewis 2011).5

For scales 8 < r < 20h−1 Mpc, we divide the correlation function

measured by the linear one. We take the mean to estimate the large-

scale halo bias

b2
h(Mvir) =

1

Ni

∑

i

ξ (Mvir, ri)

ξ 0
lin(ri)

. (23)

We use the standard deviation of the latter ratio to estimate its

uncertainty.

Fig. 5 shows the halo bias measured at redshift 0 and the best-

fitting models. The agreement between the data and the model is

very good; see the discussion in the next section.

4 R ESULTS

The determination of the best-fitting model requires the assignment

of errors on the data points. The covariance matrix discussed in the

previous section is proportional to the product of the biases

C(σ1, σ2) ∝
b(σ1)b(σ2)

√
n̄(σ1)n̄(σ1)

. (24)

Thus, each line of the matrix is proportional to another lines of

the matrix, making it singular. It prevents from estimating the χ2

statistics for a given data-model pair, (D, M) via the inverse of the

covariance matrix χ2 = (D − M) · C−1 · (D − M)T.

5 https://pypi.python.org/pypi/hankel
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Figure 5. Large-scale halo bias versus halo mass. Error bars show the data

from the MD simulations at redshift 0. The bias predicted using the best-

fitting parameters obtained on the HMF is shown in grey and the bias model

fitted on the bias data is shown in magenta.

We circumvent this issue as follows. First, in Section 4.1 we use

the uncertainty estimated with the jackknife method on the mass

function and fit only the mass function data. Then in Section 4.2,

we fit the bias equation that involves the same parameters as the

mass function to obtain another constraint on the parameters based

on the covariance of the data. Finally in Section 4.3, we provide a

relation to predict the covariance matrix for a given simulation.

4.1 Distinct HMF

To determine the best parameters for the mass function of distinct

haloes, we use a χ2 minimization algorithm6 to obtain the set of

best-fitting parameters. We fit the mass function model from equa-

tions (7) and (8) to the data at redshift 0. We thus constrain the two

sets of parameters (A, a, p) and (Ā, ā, p̄, q̄). We determined the

parameters for different flavours of the data. ‘MD D(S)MF’ stands

for the distinct (satellite) mass function from MD data. ‘DS DMF´

stands for the distinct mass function from DS data. We use the Jack-

knife diagonal errors. The fit of equation (7) on the MD DMF gives a

reduced χ2 = 1.28. The model is not a satisfying statistical represen-

tation of the data as the probability of acceptance is 0.7 per cent. We

find parameters somewhat discrepant to what was found in Despali

et al. (2016). The fit of equation (8) to the MD DMF gives a reduced

χ2 ∼ 0.75, meaning it is an accurate description of the data. The

probability of acceptance is >99 per cent. We find (Ā(0), ā(0), p̄(0),

q̄(0))=(0.280±0.002, 0.903±0.007, 0.640±0.026, 1.695±0.038).

Table 4 hands out the best-fitting parameters obtained. We therefore

think that adding the q̄ parameter suggested by Bhattacharya et al.

(2011) enhances significantly the quality of the fit to the DMF. The

bottom panel of Fig. 2 shows the residuals after the fit of the model

given in equation (8). The mean of the residuals for the distinct

6 scipy.optimize.minimize: https://docs.scipy.org/doc/scipy-0.18.1/

reference/generated/scipy.optimize.minimize.htmldocs.scipy.org

HMF is 0.8 per cent and the standard deviation of the residuals is

1.6 per cent. It means the fit on average underestimates the HMF by

less than 1 per cent. Furthermore, except for a few outliers the MD

DMF is very well described by the model to the <2 per cent level.

We compare our fits to previous ones in Fig. 6. The mass func-

tion differs from up to a factor of 2 when compared to different

cosmologies. Our fit agrees within <10 per cent with other analysis

in Planck cosmology in the lower mass regime. At larger masses,

the disagreement between our measurements and previous ones

in Planck cosmology is due to the difference in the data used. In

this paper, we use extremely large simulations whereas in previous

analysis, the largest simulation were covering volumes 8–64 times

smaller. The high-mass end being modelled by an exponential, it

drives the fit to a different location in parameter space.

4.2 Large-scale halo bias

The fit of the model given in equation (9) suggests the following

set of parameters (ā, p̄, q̄) = (0.740 ± 0.008, 0.61 ± 0.02, 1.64 ±
0.03). These are in slight tension with that of the HMF model

(1σ contours do overlap); see Table 4 for a face-to-face comparison

of the figures. It is slightly higher for large masses and slightly lower

for low mass.

We are pleased to see that the excursion-set formalism works well

to describe the mass function and the large-scale halo bias precisely.

Such a low level of tension is worth the praise.

A joint fit to solve this issue is not straightforward. Indeed, the

large-scale halo bias is related to the uncertainty on the mass func-

tion. We leave this for future studies.

4.3 Covariance matrix

In the comparison of the diagonal errors estimated, see Fig. 3,

the two methods showed some disagreement: at the high-mass end

where errors are dominated by the shot-noise and at the low-mass

end where the errors are dominated by the sample variance. The

difference in shot-noise is understood as the volumes used to differ

in the two error-estimating methods. On the contrary, the difference

in sample variance is puzzling. Indeed when using a larger volume,

the sample variance estimated is higher than in the method using

a smaller volume. This seems rather strange, as we expected the

opposite. We take a conservative option. We consider the maximum

of the two error estimates to fit the model: the JK estimates at the

low-mass end and the covariance at the high-mass end.

According to the model, fitting all the coefficients of the covari-

ance matrix is redundant. The shot-noise component is a scaling

relative to the inverse of the density times the volume. The sample

variance depends on the product of the biases and on the cosmology.

Therefore, as soon as a single line of coefficient of the covariance

matrix is reproduced by the model, other coefficients should be in

line with the model. This is indeed what we observe. As data points,

we simply use the diagonal of the covariance matrix. Note that the

points are for Lbox[h−1 Mpc] = 40, 100, 250 and 400, a factor of 10

smaller than the boxes used for the mass function estimate.

We fit a linear relation between the Q factor and the log of the side

length of the simulations (i.e. the length of the simulations divided

by 10 due to the subsampling). The uncertainty on the coefficients

of the covariance matrix is unknown, so we perform a fit where

the data points are equally weighted. Using the large-scale halo
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Table 4. Best-fitting parameters of the model at redshift 0. D(S)MF stands for distinct (satellite) mass function. B11: Bhattacharya et al. (2011). D16: Despali

et al. (2016). A dash ‘-’ means the entry is the same as above.

A(0) a(0) p(0) χ2/n d.o.f P(X > x, d.o.f) Data Model Eq. Ref

0.333 ± 0.001 0.794 ± 0.005 0.247 ± 0.009 (7) D16

0.3170 ± 0.0008 0.818 ± 0.003 0.118 ± 0.006 238.69/ 187 = 1.28 0.7 per cent MD DMF – This paper

0.0423 ± 0.0003 1.702 ± 0.010 0.83 ± 0.04 31.03 / 84 = 0.37 100 per cent MD SMF – –

Ā(0) ā(0) p̄(0) q̄(0) χ2/n d.o.f P(X > x, d.o.f) Data Model Eq. Ref

0.333 0.786 0.807 1.795 (8) B11

0.280 ± 0.002 0.903 ± 0.007 0.640 ± 0.026 1.695 ± 0.038 138.76 / 186 = 0.75 99.6 per cent MD DMF – This paper

0.27 ± 0.02 0.92 ± 0.03 0.36 ± 0.68 1.6 ± 0.6 9.13 / 21 = 0.43 98.9 per cent DS DMF – This paper

Free 0.740 ± 0.008 0.61 ± 0.02 1.64 ± 0.03 8.36/141 = 0.059 100 per cent Halo bias – This paper

Figure 6. Comparison of mass functions with respect to the Despali et al.

(2016) fit. The line ‘this work Ba11’ corresponds to the fits of equation (8)

to the data and ‘this work ST02’ corresponds to the fits of equation (7) to the

data. Studies done in the Planck cosmology have solid lines whereas studies

in other cosmologies are shown with dashes. The difference at large masses

is due to the difference in the simulation volumes.

bias model from the previous subsection, we find that the following

fitting relation,

Q = −3.62 + 4.89 log10[Lbox(h−1 Mpc)], (25)

produces a covariance matrix model very close to the MD data at

redshift 0. Fig. 7 shows the Q versus the size of the simulation.

We find the model to account well for the measured covariance,

see Fig. 3 where the solid, dashed and dotted lines represent each

component of the model. By combining equations (25), (13) and√
Cmodel(σ, σ, Lbox), one predicts a reliable uncertainty on the dis-

tinct HMF for any simulation in the Planck cosmology.

4.4 Subhalo and substructure mass function

In this analysis, we do not enter into the debate of the definition

of subhaloes. We use the subhaloes as obtained by the ROCKSTAR

halo finder at redshift 0. The substructure hierarchy in DM haloes

was investigated in details by Giocoli et al. (2010) and van den

Bosch & Jiang (2016). They argue two functions are needed to

Figure 7. Q covariance rescaling factor versus side length of the simulation

and its linear fitting relation, see equation (25).

fully characterize in a statistical sense the subhalo population: the

HMF and the substructure mass function. The convolution of the

two gives the subhalo mass function.

We measure the subhalo mass function with the same method

as for the distinct HMF; see Fig. 2. We fit the subhalo mass

function (MD SMF in Table 4) with equation (7) and obtain a

reduced χ2 ∼ 0.37, meaning it is an accurate description of the

data (probability of acceptance 100 per cent). We find [A(0), a(0),

p(0)]=(0.0423±0.0003, 1.702±0.010, 0.83±0.04). Adding an ad-

ditional parameter q is not necessary. The mean of the residuals for

the subhalo mass function compared to this model is 0.4 per cent

and the standard deviation of the residuals is 4.2 per cent. So the

model is a little further away on average than for the MD DMF. To

further refine the model, a complete discussion on what a subhalo is

would be necessary. For the purpose of HOD, adding a subhalo mass

function with a 4 per cent precision is a non-negligible advance. We

warn the reader that the excursion-set formalism does not predict

the subclumps within haloes. We simply use the function (7) as an

analytical model to describe the data.

Then, for a subhalo of mass Ms we consider its relation to its

host, a distinct halo of mass Md, by studying the distribution of the

ratio Y = Ms/Md. In this aim, we measure the so-called substructure
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Figure 8. Substructure mass function for five distinct (host) halo mass bins. The model seems quite independent of the host halo mass bin.

mass function, defined by the left part of equation (26) and shown

on Fig. 8,

log10

[

M2
d

ρm

dn

dMs

]

(Y ) = NsubY
αsub e−βsubY γsub

. (26)

Note that Ms is not the mass at the moment of accretion of the

subhalo but the mass measured at redshift 0. We parametrize it

similarly to van den Bosch & Jiang (2016) with four parameters:

overall normalization, Nsub, power law at low-mass ratio, αsub, and

two parameters for the exponential drop: βsub and γ sub.
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Table 5. Number of distinct haloes–subhalo pairs at redshift 0 split in distinct halo mass bins. Best-fitting parameters for equation (26) for each

host halo mass bin are given below. The last column is the fit using all the data together.

Box 12.5–13 13–13.5 13.5–14 14–14.5 14.5–15.5 12.5–15.5

M04 515 922 504 923 441 228 284 992 144 352 1, 891 417

M10 938 628 879 394 729 358 480 041 200 699 3228 120

M25 788 780 1426 470 1337 316 833 535 325 951 4712 052

M25n 784 519 1414 136 1318 048 822 464 329 225 4668 392

M40 19 793 7963 12 1619 226 1199 845 467 090 4102 266

M40n 20 988 797 074 1578 780 1167 971 466 143 4030 956

Total 3068 630 5818 309 7023 956 4788 848 1933 460 22 633 203

Parameter Best-fitting values

−αsub 1.73 ± 0.03 1.76 ± 0.02 1.78 ± 0.01 1.799 ± 0.006 1.834 ± 0.004 1.804 ± 0.004

βsub 5.34 ± 0.16 5.95 ± 0.18 6.12 ± 0.16 6.32 ± 0.21 5.87 ± 0.27 5.81 ± 0.09

−log10Nsub 2.19 ± 0.05 2.15 ± 0.03 2.15 ± 0.02 2.25 ± 0.01 2.33 ± 0.01 2.250 ± 0.008

γ sub 1.95 ± 0.14 2.28 ± 0.11 2.46 ± 0.09 2.62 ± 0.09 2.92 ± 0.11 2.54 ± 0.05

The substructure mass function represents the abundance of sub-

haloes as a function of the mass ratio between the subhalo and its

host distinct halo (in a distinct halo mass bin); Giocoli et al. (2010,

see equation 2 and fig. 3) and van den Bosch & Jiang (2016, equa-

tion 6 and fig. 3). In these works, the authors consider a complete

world model of how subhaloes evolve. In this analysis, we focus on

the practical aspect of a relation that given a halo population, one

can predict the characteristics of its subhalo population. Therefore,

we do not apply the exact same formalism as in previous works, but

rather something more practical, at fixed redshift. We use the mean

density of the Universe to obtain a dimensionless measurement,

therefore the normalization parameters have a different meaning

than in previous studies. Subsequently, we adjust a four-parameter

model, given in the right part of equation (26) to five host halo mass

bins and to all the data simultaneously. Fig. 8 shows the substructure

mass function measured at redshift 0 in the mass bins delimited by

12.5; 13; 13.5; 14; 14.5; 15.5. The parameters obtained are given

in Table 5. The 22 633 203 subhaloes-halo pairs considered con-

stitute a sample that is more than an order of magnitude larger

than any previous study. The power law found is compatible with

−αsub = − 1.804 ±0.004 in every host mass bin. It confirms mea-

surements from previous analysis, though with greater accuracy.

The other parameters found are compatible between mass bins. To

a good approximation, the parameters −αsub = −1.8, βsub = 5.8

and −log10Nsub = 2.25, γ sub = 2.54 provide a good description of

the substructure mass function (whatever the host halo mass bin).

5 SU M M A RY A N D D I S C U S S I O N

In this analysis, we measured at redshift 0 the mass function for dis-

tinct and satellite subhaloes and the substructure mass function to

unprecedented accuracy thanks to the MD Planck simulation suite.

Indeed, these simulations encompass eight times larger volumes

than what was used in previous studies. We measured and modelled

the large-scale halo bias of the distinct haloes. Then, we estimated

for the first time the full covariance matrix of the distinct HMF

with respect to mass. To refine our knowledge of the satellite sub-

halo population, we also estimated and modelled the substructure

function.

We find that the Bhattacharya et al. (2011) model is a good

description for the measurements related to the distinct halo popu-

lation: its mass function, its large-scale bias and the covariance of

the mass function. This new set of models for the mass function

and for the velocity function should allow analytical HOD models

to reach better accuracy. We give practical fitting formula and their

evolution with redshift of the Vmax function in the Appendix.

Halo finding process

The halo finding is a difficult task, reason being that both the the-

oretical and the empirical definitions of, what a halo is, are not

precise.

About the empirical definition of a halo, Knebe et al. (2011, 2013)

and Behroozi et al. (2015) showed that when varying the halo finder

on a single simulation, one should expect variations in the distinct

HMF of the order of 10–20 per cent. This estimate, done on a rather

small simulation (500 h−1 Mpc) with a small number of particles

(10243), should be regarded today as an upper limit. Hopefully, such

an exercise will be repeated with current and future simulations to

reach a better empirical halo definition.

About the theoretical halo definition, it seems recent investiga-

tions on the extended spherical collapse models by Del Popolo et al.

(2017) point towards a modification of the Sheth & Tormen (1999)

along the lines of the modifications made by Bhattacharya et al.

(2011). So, there might be a physical reason behind the fact that the

Bhattacharya et al. (2011) is a better description of the data than

Sheth & Tormen (1999).

Unlike distinct haloes, the satellite subhalo definition has not yet

reached a consensus in the community. Theoretical advances are

pushing towards a unified subhalo model so this uncertainty should

hopefully vanish soon (van den Bosch & Jiang 2016). Neverthe-

less, we provided accurate fits of the statistics obtained with MD

combined with ROCKSTAR.

Redshift evolution of the mass function

The redshift covariance of the density field function indicates that

the debate about the universality of the mass function throughout

redshift might be an ill-posed question.

Given the covariance between different redshift bins in the low-

mass end of the density field function, it is hard to define properly

how its evolution with redshift should be modelled. Simply using

all the redshift outputs produced by the simulation is redundant.

We therefore think the question of the universality needs to be ap-

proached with a slightly different theoretical background. Many

more N-body simulations would need to be run to obtain deep

insights on the redshift covariance of the HMF. But it does not

seems reasonable to run a thousand MD of DS simulations? To save
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Table 6. Ratio between the HMF with and without baryonic effect as a function of halo mass, fhydro/fDM-only.

References are 1: Velliscig et al. (2014); 2: Vogelsberger et al. (2014); 3: Schaller et al. (2015); 4: Tenneti et al.

(2015); 5: Bocquet et al. (2016)

9–10 10–11 11–12 12–13 13–14 14–15 Simulation Reference

0.8 0.8 0.8 0.9 OWLS 1

0.8 0.8 1.1 1 0.9 0.9 Illustris 2

0.7 0.8 0.85 0.9 0.95 1 Eagle 3

0.8 0.85 0.85 0.9 0.95 1 Massive black 2 4

0.9 0.9 0.9 0.9 0.9 1 Magneticum 5

computation time, a possibility would be to study the evolution

of the density field with the new PPM-GLAM method. In this

paradigm, the number of realizations is not an issue and cosmolog-

ical parameters are easily varied.

About the effects of baryons on the HMF

The baryons hosted by DM haloes influence the total mass enclosed

in the halo. Supernovae and active galactic nuclei (AGNs) feed-

backs expel gas from the halo to the intergalactic medium. The

total mass enclosed in haloes where baryonic physics is accounted

for is of the order of 20 per cent or lower. Therefore, the HMF

estimated on DM-only simulations suffers a bias. It seems the num-

ber density of DM-only haloes is greater than that of DM+baryon

haloes by a factor ∼20 per cent at M ∼ 109 h−1 M⊙. In clusters, the

halo number densities seem in agreement. We summarize numbers

obtained from various studies in Table 6. At redshift 0, it seems

there is a consensus for clusters (impact negligible) and haloes with

log10M < 12 (−20 per cent effect). The evolution of this effect with

redshift is not clear. Vogelsberger et al. (2014) and Schaller et al.

(2015) show an effect more or less constant with redshift. The most

recent simulations (Bocquet et al. 2016) advocate the effect is neg-

ligible at redshift 2 and starts around redshift 1. Recently, Despali

& Vegetti (2016) tested these models by comparing with observed

strong lensing events. With current statistics, it does not allow us

to choose between feedback models, but with larger samples, the

strong lensing probe should decide this problem. Note that the trend

with mass vary from a simulation to another due to the differences

in the AGN feedback or the supernovae model used. This result is

indeed dependent on the recipe of AGN and supernovae feedback,

so the true value could be larger (or smaller) but it is difficult to

quantify by what amount.

Outlook

All in all, it seems assuming a few per cent statistical errors and

of the order of tens of per cents systematical errors reasonably

represents our current knowledge of the distinct HMF. To enable per

cent precision with mass function cosmology, these results call for

deeper investigations. First, about the redshift and mass covariances

of the distinct HMF to be able to do proper statistical fits on the data.

Secondly, about seeking a better empirical and theoretical definition

of what a DM halo is. Lastly, about the remaining n-point functions

that carry the next order of information about what haloes are and

how they behave.
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APPENDI X A : Vmax F U N C T I O N ,

M E A S U R E M E N T S A N D M O D E L

The peak circular velocity was proven more efficient than the halo

mass to map galaxies to haloes (Reddick et al. 2013; Guo et al.

2016; Rodrı́guez-Torres et al. 2016). The peak circular velocity

(Vmax) is less affected than mass by tidal forces and it is thus better

defined than halo mass. It traces best the assembly history of the

halo and its potential well (Diemand, Kuhlen & Madau 2007). Thus

exists an interest in formulating the halo model in terms of peak

velocities instead of mass to obtain more accurate predictions with

an analytical model. This section is aimed for a practical use in

future exploration of the accuracy of the SHAM/HOD.

Using similar estimators as for the mass function, we measure

the velocity function. Figs A1 and A2 show the differential velocity

function for distinct and satellite subhaloes at redshifts below 2.3.

We use jackknife as a proxy for errors to perform the fits. The

analysis of errors is not as careful as done previously because we

only pretend to provide fitting functions. The limits imposed on the

Vmax range are M04, [125, 450]; M10, [250, 800]; M25 and M25n,

[600, 1100]; M40 and M40n, [900, 1400] km s−1. We estimate a

dimensionless velocity function, V3/H3(z) dn/dlnV, the left part of

equation (A2). As in Rodrı́guez-Puebla et al. (2016), we model the

measurements as the product of a power law and an exponential

cut-off using four parameters

log10

[

V 3

H 3(z)

dn

dlnV

]

(V ,A, Vcut, α, β) (A1)

= log10

(

10A

(

1 +
10V

10Vcut

)−β

exp

[(

10V

10Vcut

)α]
)

, (A2)

where A is the normalization, Vcut is the cut-off velocity, α the

width of the cut-off and β the power-law index. We model the

redshift trends using an expansion with redshift of each parameter,

p(z) = p0 + p1z + p2z2 + p3z3···.
We fit first the parameters at redshift 0. Then, we fit their redshift

trends in the range 0 ≤ z ≤ 1 and then in the range 1 ≤ z ≤ 2.3. A

model with four parameters is sufficient at redshift 0.6 parameters

are used to describe the data in each further redshift ranges. At

redshift 0, the fits converge with a reduced χ2 = 1.43 for the distinct

haloes and χ2 = 0.2 for the subhaloes; see Fig. A3 that shows the

residuals of the redshift 0 fits in greater details. Table A1 provides

the parameters of the fits for both populations.

In the range redshift 0 ≤ z ≤ 1, a linear evolution of the param-

eters A and Vcut is sufficient for the fits to converge with a reduced

χ2 = 1.56 (0.54) for the distinct (satellite); see Fig. A1 (A2) left

column row of panels that shows the data, the model and the resid-

uals (from left to right). The parameters A and Vcut are compatible

in the three redshift bins, while the parameters α and β are not. If

we add an evolution term for α and β, the fits converge very slowly

and the error on these parameters becomes very large i.e. current

data do not allow us to constrain all the parameters at once. Among

the parameters, Vcut and A are best constrained.
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Figure A1. Measurements of the differential distinct halo Vmax function versus Vmax coloured with redshift (top row), its model (middle) and the residuals

around the model (bottom row). The first column shows the range 0 ≤ z ≤ 1 and the second column the 1 ≤ z ≤ 2.3 range. Residual around the 0 ≤ z ≤ 1

model are contained in ±15 and ±20 per cent for the high-redshift range.
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Figure A2. Continued Fig. A1 for the satellite subhaloes in the same redshift ranges. Residuals are of the same order of magnitude as for the distinct haloes.
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Figure A3. Residuals around the redshift 0 model are well ±5 per cent for the distinct haloes (left) and within ±10 per cent for the satellite haloes (right).

Table A1. Results of model fitting to the Vmax differential function. Errors are the

1σ errors. Empty cells mean the parameter was not fitted.

Distinct haloes

z p0 p1

0 A −0.74 ± 0.04

Vcut 2.94 ± 0.02

α 2.02 ± 0.08

β −0.79 ± 0.24

χ2 286.11/199 = 1.43

0 ≤ z ≤ 1 A −0.71 ± 0.08 −0.62 ± 0.03

Vcut 2.93 ± 0.09 −0.176 ± 0.001

α 1.782 ± 0.07

β −0.82 ± 0.07

χ2 2504.8/1599 = 1.56

1 ≤ z ≤ 2.3 A −0.71 ± 0.14 −0.62 ± 0.05

Vcut 2.85 ± 0.07 −0.15 ± 0.02

α 1.58 ± 0.77

β −0.77 ± 0.02

χ2 1555.6/1039 = 1.49

Satellite haloes

z p0 p1

0 A −1.66 ± 0.01

Vcut 2.69 ± 0.01

α 1.57 ± 0.02

β 0.36 ± 0.02

χ2 37.6/185 = 0.20

0 ≤ z ≤ 1 A −1.67 ± 0.07 −0.62 ± 0.08

Vcut 2.71 ± 0.05 −0.14 ± 1

α 1.626 ± 0.08

β −0.48 ± 0.01

χ2 591.8/1081 = 0.54

1 ≤ z ≤ 2.3 A −1.45 ± 0.08 −0.63 ± 0.05

Vcut 2.53 ± 0.05 −0.14 ± 0.03

α 1.23 ± 0.12

β 0.03 ± 0.11

χ2 274.0/470 = 0.58
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