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Figure 1. The images on the left show the Minkowski sum of Brake Hub and Rod models. The Minkowski sum is obtained by sweeping
one object around the other. The images on the right show the offset of the Bunny model. Offset of an object is obtained by sweeping

a sphere around the object. It is a special case of the Minkowski sum with a sphere.

Abstract try processing, robotics, dynamic simulation and computer
animation. The Minkowski sum of two sef3and( is the

We present an algorithm to approximate the 3D setof points{p + ¢ |p € P, g € Q}. Minkowski sum
Minkowski sum of polyhedral objects. Our algorithm de- has a number of applications. They are useful as a tool
composes the polyhedral objects into convex pieces, generto compute collision-free paths in robot motion planning
ates pairwise convex Minkowski sums and computes theif20], computer-aided design and manufacturing [18], satel-
union. We approximate the union by generating a voxel lite layout [4], penetration depth computation and dynamic
grid, computing signed distance on the grid points and per- simulation [16]. They have also been used for morphing
forming isosurface extraction from the distance field. [15], offset computation [21] and mathematical morpholog-

The accuracy of the algorithm is mainly governed by the ical operations [23].
resolution of the underlying volumetric grid. Insufficient ~ Our goal is to compute the boundary of the 3D
resolution can result in unwanted handles or disconnected Minkowski sum of two polyhedral models. The Minkowski
components in the approximation. We use an adaptive subsum of two convex polytopes (with features) can have
division algorithm that overcomes these problems by gen-O(n?) combinatorial complexity and is relatively simple to
erating a volumetric grid at an appropriate resolution. We compute. On the other hand, the Minkowski sum of non-
guarantee that our approximation has the same topology convex polyhedra can have complexity as highC¥s.°)
as the exact Minkowski sum. We also provide a two-sided[13]. One of the commonly used approach to compute
Hausdorff distance bound on the approximation. Our al- Minkowski sums decomposes the two non-convex polyhe-
gorithm is relatively simple to implement and works well dra into convex pieces, computes their pairwise Minkowski
on complex models. We have used it for exact 3D trans-sums and finally the union of the pairwise Minkowski sums.
lation motion planning, offset computation, mathematical The main bottleneck in implementing such an algorithm is

morphological operations and bounded-error penetration computing the union of pairwise Minkowski sums. Given
depth estimation. m polyhedral primitives, their union can have combinato-

rial complexityO(m?) [2] andm can be high in the context
. of Minkowski sum computation (e.g. a few thousand). Fur-
1 Introduction thermore, robust computation of the boundary of the union
The problem of Minkowski sum computation arises in and handling all degeneracies remains a major issue [13, 1].
many applications including solid modeling, digital geome- As a result, no practical algorithms are known for robust



computation of exact Minkowski sum of complex polyhe- e Application to motion planning, offset, and penetration
dral models. depth computation.
Main Results: We present a novel algorithm to approx-
imate the Minkowski sum of polyhedral models. In- To the best of our knowledge, this is the first algorithm
stead of computing the exact union, we use distance field-that can compute a topologically accurate approximation of
based techniques to approximate the union of the pairwiseMinkowski sum of complex polyhedral models.
Minkowski sums. Our algorithm generates an adaptive vol- Organization
umetric grid, computes a distance field, and performs iso- The rest of our paper is organized as follows. In Section
surface extraction from it to obtain an approximation to the 2, we review the earlier work on Minkowski sum computa-
Minkowski sum. The accuracy of the algorithm is mainly tion. Section 3 gives an overview of our approach. In Sec-
governed by the rate of sampling, i.e., the resolution of the tion 4, we present our approximate algorithm to compute
underlying volumetric grid. Insufficient resolution can re- the boundary of Minkowski sum. Sections 5 discusses its
sult in unwanted handles or disconnected components in theapplication to motion planning, offsets and morphological
approximation. Due to lack of resolution, the approxima- operations, and penetration depth computation. We high-
tion may not capture many of the features, e.g. small holes,light its performance on various benchmarks in Section 6.
present in the exact Minkowski sum. We use an adaptive Sections 7 discusses some limitations of our approach.
subfjiyision algorithm that generates a volume.tric grid ata, Previous Work
sufficient resolution such that a faithful approximation can ) i ) )
be obtained by performing isosurface extraction on the re- !N this section, we give a brief survey of the related work.
sulting grid. We ensure a good quality of approximation Many algorithms have been proposed for Minkowski sum
by guaranteeing the correct topology as well as boundingcomputatmn in computational geometry and solid modeling
the two-sided Hausdorff distance between the approxima-120, 12, 9, 11]. A survey can be found in [13].
tion and the exact Minkowski sum. Guibas and Seidel [12] proposed an output-sensitive al-
In order to speed up the computation, we employ two gorithm for Minkowski sum of convex polytopes. They de-
types of culling techniques during adaptive subdivision. fined an operation, called convolution, on 2D planar trac-
Our algorithm performsell culling to eliminate the grid  ings. Basch etal. [3] extended the convolution computation
cells that do not contain a part of the Minkowski sum 0 3D and defined it on polyhedral tracings. Convolution is
boundary. Our algorithm also takes advantagprohitive a superset of the Minkowski sum and the exact Minkowski
culling and performs efficient distance and inside/outside SUM is extracted using arrangement computation.
queries by only considering a small subset of primitives, ~Seong et al. [22] proposed an algorithm to compute
while preserving the correctness of these queries. In pracMinkowski sum of surfaces generated by slope-monotone
tice, these culling techniques improve the performance of closed curves. Flato and Halperin [10] presented algorithms

the algorithm by more thatwo ordersof magnitude. for robust construction of planar Minkowski sums and used
We have used our Minkowski sum approximation algo- it for computing 2D configuration space obstacles.
rithm for a number of applications. These include: Lozano-Perez [20] used Minkowski sum to construct

i , , i configuration space obstacles and used it for path planning.
e Exact robot motion planning of robots with translation .1 and Rossignac [15] proposed use of Minkowski sums
degrees of freedom. for morphing and computer animation. They used weighted
e Offsets and mathematical morphological operations. Minkowski sum to construct a parameterized interpolating
) o ~ polyhedron (PIP) that smoothly interpolates between two
polyhedra with tight error bounds. faces form a superset of the Minkowski sum boundary.
Ghosh [11] presented a unified algorithm for computing
2D and 3D Minkowski sum of both convex and non-convex
polyhedra based on slope diagram representationThey
reduce the problem of Minkowski sum into computing the
slope diagrams of the two objects, merging their slope di-
agrams and extracting a boundary from the merged slope

Our algorithm is simple to implement and we have tested its
performance on a number of benchmarks. The underlying
polyhedral models consist of several hundreds of triangles.
The computation of Minkowski sum takes few minutes on
a 2 GHz Pentium IV processor.

Some of the novel results of our approach include:

diagram.
e Approximate algorithm for computing Minkowski Many of the above algorithms compute only a superset
sum of polyhedral models. of surfaces that contribute to the Minkowski sum boundary

[15, 3]; they do not explicitly compute the boundary. Evans
et al. [9] present an approach for computing an explicit
boundary of Minkowski sum of polyhedral models. Their
e Guaranteed topology and 2-sided Hausdorff distancealgorithm is based on decomposing the two polyhedra into
bounds on the approximation. a collection ofaffinecells, computing pairwise Minkowski

e Culling techniques to improve the performance of
adaptive subdivision and sampling scheme.



sums between pairs tfansversakffine cells, and comput- 3.3 Convex Decomposition
ing their exact union. Affine cells correspond to features of
the polyhedron such as a face, vertex, or an edge, etc. The
have presented results on Minkowski sum of simple polyhe-
dral models with a low polygon count. Although our over-
all approach is similar in some respects, there are crucial
differences. We decompose the two polyhedra into convex
pieces instead of affine cells. This produces fewer pieces
compared to the number of affine cells. Moreover, instead
of computing an exact union, we compute an approximate
union. We believe this makes our algorithm applicable to
more complex models. To the best of our knowledge, none
of the previous algorithms can robustly compute Minkowski
sum of complex polyhedral models.

The problem of computing an optimal convex decomposi-
Yion of a non-convex polyhedron is known to be NP-hard.
Chazelle proposed one of the earliest convex decomposition
algorithms [5], which can genera€(r?) convex parts and
usesO(nr3) time wheren andr the number of polygons
and notches in the original polyhedron. However, no robust
implementation of this algorithm is known. Most practical
algorithms for convex decomposition perform surface de-
composition or tetrahedral volumetric decomposition [6, 8].
Typically, these methods can generéén) convex parts
and each of them has a few faces.

We used a modification of the convex decomposition
. . . scheme available in a public collision detection library,
3 Minkowski Sum Computation SWIFT++ [8]. This method is an implementation of the
In this section, we present some background on Minkowski algorithm presented in [6]. It performs surface decomposi-
sum computation and give a brief overview of our approxi- tion and generates a set of convex patcehissof the object
mate approach. boundaryoP. Furthermore, we compute a convex hull of
3.1 Notation each surface patch;, and denote the resulting polytope by
C;. TheC;’s constitute a convex decomposition of object
P. C;'s consists of two types of faceseal facesthat be-
Aong to the original polyhedron andrtual facesthat are
artifacts of the convex hull computation. In general, the
union of C;’s need not cover the entire volume Bf C;’s
may create some undesirable voids in the interioPdhat
are bounded by the virtual faces. We disregard these voids
by explicitly checking for virtual faces in our distance and
inside/outside queries.
The Minkowski sum,P @ @, is defined as a set of pairwise Given two polyhedraP and Q each withn triangles,

sums of points from” and@. In other words,P © Q = the convex decomposition method typically divides each

{p+alpePqel}. , , polyhedron intaO(n) convex parts. In practice, each con-
Itis relatively easier to compute Minkowski sums of con- | oy part usually has very few polygons £ 8 on an av-

vex polytopes as compared to general polyhedral modelsgrage). Computing pairwise Minkowski sums between all
Minkowski sum of two convex polyhedra can haWén?) pairs of convex pieces results(n?) pairwise Minkowski

complexity. However, for flon-convex polyhedra in 3D, the g ms. Although this quadratic complexity may seem high,
Minkowski sum can have(n”) worst-case complexity [7]. it should be viewed in context of the high complexity of

One common appro_ach for computing M|nkowsk_| SUM Minkowski sum O(n%)). Even though we may need to

of general polyhedra is based @onvex decomposition  compyte the union of a large number of primitives (pair-
[20]. It uses the following property of Minkowski sum. If  \ise Minkowski sums), the primitives themselves are rel-
P=PUb,thenP o Q=(P1oQ) U (PoQ). The  aiively simple and typically have low combinatorial com-

resulting algorithm combines this property with convex de- pexity. Our approximate algorithm is well suited to this
composition for general polyhedral models: problem.

We use lower case bold letters suchpag to refer to points

in R3. We denote the complement of a $easS. All our
primitives are closed solids. We use upper case letters suc
asP,Q, P, P, to refer to themdP denotes the boundary
of a primitive P. The letterC' denotes a grid cell used for
sampling. The exact Minkowski sum and our approxima-
tion are denoted as1 and.A respectively.

3.2 Overview

1. Compute a convex decomposition for each polyhedron3.4  pairwise Minkowski Sum Computation

2. Compute the pairwise convex Minkowski sums be- We compute the pairwise Minkowski sums between all pos-
tween all possible pairs of convex pieces in each poly- sible pairs of convex pieces; and CJQ, belonging toP
hedron. andQ@, respectively. Let us denote the resulting Minkowski

sum asM;;. We use aconvex hull algorithnmto compute

M;;. lts complexity isO(n?) wheren is the number of

After the second step, there can li&(n?) pairwise polygons inCiP and C%. While more efficient (in terms

Minkowski sums. The pairwise convex Minkowski sums of time complexity) aIigorithms are known, e.g. [12], the

are convex. Their union can haggn®) complexity [2]. constant factors in the time complexity can be high and it is
Our algorithm for Minkowski sum computation is based non-trivial to implement them robustly. Moreovér;”, c@

on the above framework. We now discuss each of the aboveand M;; usually have a constant combinatorial compfexity.

steps in detail. Hence we use the simpler convex hull algorithm described

3. Compute the union of pairwise Minkowski sums.



Complex Cell Tests

Star-shaped Test
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Figure 2. This figure shows the different cases corresponding to the complex cell and star-shaped test. Figs (a), (b), (c) and (d)
show cases of complex voxel, complex face, complex edge, and topological ambiguity. The white and black circles denote positive
and negative grid points respectively. Fig. (e) shows the case where the surface is not star-shaped w.r.t a cell.

below. 2. Operation: For each geometric operation (e.g.,
Convex Hull Approach: It is based on the following union), perform a min/max operation on the signed
property: distance field of the primitives.

PoQ=CH({vi+tvjlvieVp,v;eVa}) (1) 3. Reconstructiont Use some variant of Marching Cubes
Here,CH denotes the convex hull operator, dre, Vo, rep- algorithm [19, 14] to perform isosurface extraction
resent the sets of vertices, respectively in polyhdeiand from the distance field. The extracted isosurface is our
Q. Based on this fact, we compute the Minkowski sum as approximation to the boundary of the Minkowski sum.
follows:

4 Minkowski Sum Approximation

1. Compute the vector sum between all possible pairs of | this section, we present our approximation algorithm and
vertices from each polytope. show its application to Minkowski sum computation.

2. Compute their convex hull. 4.1 Approximate Algorithm

i , Varadhan et al. [26] have presented an algorithm for com-
3.5 Union Computation puting topology preserving isosurfaces and have used it for
Our goal is to computeM, the boundary of the final solid  performing Boolean operations. We apply their algorithm
that corresponds to the result of the Minkowski su to the problem of Minkowski sum computation. We pro-
is given by the union of the pairwise Minkowski sums: vide a brief description of their algorithm. It is based on the
M = U; ;M;;. However, computing an exact union of the sampling and reconstruction approach presented in Section
pairwise Minkowski sums is not practical. This is due tothe 3.5, Given a Boolean expression defined over a set of prim-
large number of pairwise Minkowski sums. In our bench- itives, it generates an adaptive volumetric grid. Eetle-
marks, M is defined by union of tens of thousands of prim- note the boundary of the final solid defined by the Boolean
itives (pairwise Minkowski sums). Exact boundary evalua- expression. The algorithm starts with a single grid cell that
tion of this size is slow and prone to robustness problems.encloses. It performs two tests;omplex cell tesandstar-
Abrams and Allen [1] discuss these problems in context of shaped testo decide whether to subdivide a grid cell.
computing union of polyhedral models for swept volume Complex Cell Test: A cell is complexif it has acomplex
computatlon. The commercial CAD s_ystems ha\(e not beenvoxel face edge or anambiguous sign configuratioie
designed to perform Boolean operations on a high numberdeﬁne a voxel (face) of a grid cell to wemplexf it inter-

of primitivgs (e.0. thousands of polyhedra). As a resglt, sectst and the grid vertices belonging to the voxel (face) do
they are either not robust or too slow in terms of computing not exhibit a sign change (see Figs. 2(a) & 2(b)). The sign

thel untiondoffa high nt_lmber of p;)llyhedral mod_els.t it of a vertex is positive if it lies withirf, negative otherwise.
hstead of computing\1 exactly, we approximate it us- A eqge of the grid cell is said to lemplexf € intersects

ing distance field-based techniques. For each closed prim—the edge more than once. It is well known that Marching

itive P°, we compute a signed distance figll A signed 05 hroduces topologically ambiguous output for certain

distance fieldD(p) .is a continuous function that at a point sign configurations (see Fig. 2(d)). We classify grid cells
p measures the distance betwaemnd the surface of. with such sign configurations as complex

Thilﬁtvl?lue |stp%5|t|v:ai<r)1r ir:jeg?gwe Fepznd:{:]?itci)\;] wh[()aitrlegthe Intuitively, the complex cell criterion ensures that the
PO es outside or nside he closed p €. DISIance o, tace intersects the grid cell in a simple manner in most

fields are aFtractive lbecause_ the_y map geometric op_eration%ases_ If a grid cell is complex, it is subdivided and the
such as union and intersection into min/max operations Onalgorithm is recursively applied to each of its children.

the distance fields of the primitives. Our overall approach )
proceeds in the following steps: Star-shaped TestThis test ensures that the surfatae-

stricted to a cell istar-shapedvithin that cell. LetS be a
1. Sampling: Generate an adaptive voxel grid and com- nonempty subset dR”. The set KernglS) consists of all
pute the signed distance field at its grid points. s € S such that for anye € S, we haves + A\(x — s) €



S,VA € [0,1]. S is star-shapedf Kernel(S) # 0. In- d;j < —l/2 < 0. Thisis becaus€' is contained insidé/;;;.
tuitively, a star-shaped primitive has a representative pointWe obtain a lower bound on the distance to\t by com-
(called the origin) such that all the points in the primitive putingmin,; d;;. We haved < d;; < —{/2 or |6] > /2.
are visible from the origin. IE is not star-shaped w.r.t the As a result, our voxel intersection test guarantees that the
cell (see 2(e)), the cell is subdivided and the algorithm is final surface does not intersect In this manner, our adap-
recursively applied to the children cells. tive subdivision algorithm disregards céll and does not

In this manner, by applying the above two tests, the algo- consider it for further subdivision.
rithm generates a volumetric grid. It uses Marching Cubes4 22  Primitive Culling
to perform isosurface extraction on the resulting grid. The

; T T ly th mplex cell an r-sh r algo-
extracted surface is an approximatiortto 0 apply the complex cell and star-shaped tests, our algo

varadh t al 26 dist rithm needs to perform two types of queries. These in-
aradhan et. al. [26] use max-norm distance com- clude distance and sign (inside/outside status) computation.

putation and linear programming to perform the Comp'ex These queries are performed several times for each grid cell
cell and s_tar-_shape tests respeg:tlvely. Max-norm distance;ng therefore impact the overall performance of the algo-
computation is used to determine whetléintersects a

A > & rithm. These queries agdobal in scope in that the answer
voxel/face/edge of the cell or not. Linear programming is d g P

) : to the query depends on all the primitive®/{;'s). For ex-
used to check vyhetha restricted to a cell is gtar-shapeq ..ample, to check whether a point lies outside the union, we
or not. Performing these tests does not require an explicit

tation of . Th b ‘ d he need to check if it lies outside every primitive. Given the
representation ob. They can be performed even when large number of primitives, this can slow down the overall
is defined as a Boolean combination of a number of primi-

; . ) Igorith i ly.
tives. We refer the reader to [26] for a detailed explanation. aggrljr gnbj(;%?sg?;i%yperformcal queries such that the

4.2 Application to Minkowski Sum Computation answer to the query depends only on a small subset of prim-
We use the approximate algorithm described above to theitives. In particular, when performing a query within a cell,
problem of Minkowski sum computation. In particular, we Wwe would like to inspect only those primitives that intersect
approximate the union of the pairwise Minkowski sums the cell. Of course, we have to do this in a manner that
M;;'s. A naive application of the approximate algorithm preserves the correctness of the query.
can result in poor performance. This is because in the con- Suppose we want to perform the inside/outside query
text of Minkowski sum computation, we are dealing with a to determine whether a point lies inside the Minkowski
very large number of primitives\(;;'s). We presentanum-  sum, i.e., ifp € UM;;. We take advantage of the fact that
ber of culling technigues to improve the efficiency of the this query does not have to be performed within cells that
algorithm. Together, they improve the overall performance are eliminated due to cell culling. Suppogés contained
significantly. within a cell C. If C C M;;, thenC would have been
4.2.1 Cell Culling eliminated due to cell culling (see Sec. 4.2.1). Therefore it
suffices to consider the case wheng M;; for all prim-
itives M;;. For such a cell, it is sufficient to consider the
setM¢ consisting of primitives\/;; that intersecC. The
following theorem guarantees the correctness of the query.
A similar result holds for the distance query.

During Boolean operations, only a subset of the bound-
aries of the primitives contribute to tHaal surface the
boundary of the solid defined by the Boolean operation.
Let Cy,; be the set of cells intersecting the boundary of
a primitive M;;. ThereforeuCyy,; is the set of cells in-
tersecting the boundary of some primitive. Only a_SUbsetTHEOREM 1
of cellsCny C UCyy,; contain the final surface. Typically Gi . . L .
g . iven a point p contained within a grid cell C' such that

|Cam| << |UChy,. |- We use max-norm distance to deter- L

; CATE . C ¢ M;; tor all primitives M;;, we have
mine whether a cell intersects the final surface or not. Our
algorithm disregards those cells that lie inside a primitive CUIM Y e pec UM € M,
and are guaranteed not to intersect the final surface. This P _ {0} _ __p (Mg c}
process is cell culling. It considerably improves the perfor- Proof: Consider any primitivél,,; ¢ Mc:. In other words,
mance of our algorithm. the boundary of\i},; does not intersect cefl. Two cases

We use avoxel intersectionest to determine whether the ~ arise: eitheiy, lies completely outsidé’ or it encloses.
final surface intersects a cell (cube-shaped voxel) or not.In the first casep ¢ M;; and so we have
Our test is based on the following fact: the surface intersects ) .
a voxel if and only if the unsigned max-norm distance be- peUM; == peU{My|i # korj # 1}
tween the center of the voxel and the surface is less than half.e., M;,; does not make a difference to the answer. In the
the voxel length. This test can also be generalized to axis-second case, we hav¥e C My,; which is a contradiction.
aligned cells by suitably defining a weighted max-norm.  This concludes the proof.

Suppose a cell’ lies within a primitive M;;. Let d;; The above result is important for Minkowski sum com-
denote the signed max-norm distanceMg; at the cen-  putation because we are dealing with a very large number of
ter of C. Let [ denote the length of cell’. We have primitives. For example, the Minkowski sum benchmarks
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shown in Fig. 5 consist of tens of thousands of primitives. it for designing an exact path planner. Our planner is guar-
Using the above theorem, each query only considers a smallnteed to find a path, if one exists, even through narrow
subset — on an average arourt) to 200 — of primitives. passages. Details can be found in [25]. Fig. 3 shows appli-
This drastically improves the overall performance of the al- cation of our algorithm to assembly planning. It consists of
gorithm. two parts each with pegs and holes. The goal is to assemble
We can extend the above result to perform additional the two parts so that the pegs of one part fit into the holes

culling. Given a primitiveP intersecting cel”, we can de-
composeP into two primitivesP; = PNC andP, = PNC
whereC' denotes the complement 6f. Given a pointp
contained withinC', we havep € P < p € P;. In
other words the inside/outside statuspoflepends only on
the subset of the primitive that is contained within the cell.

We use this property to achiewdgangle culling We
are dealing with triangulated primitives. An inside/outside
query for a triangulated primitive takes time proportional to
the number of triangles in the primitive. L&}; be the set
of triangles in)M;; andT}; C T;; be the subset of triangles
that lie within C. T = U T is the set of all the trian-
gles contained withirC'. To determine the inside/outside
status ofp, we only need to considéFf®. In this manner,
our algorithm disregards triangles outside

4.3 Geometric and Topological Guarantees
The following guarantees follow from the results in [26].
THEOREM 2
If all the cells in the volumetric grid satisfy the complex cell
and star-shape tests, then

1. Geometric Guarantee: Given any ¢ > 0, our algo-

rithm outputs a Minkowski sum approximation A such
that Two-sided Hausdorff Distance( A, M) < e.

2. Topological Guarantee: Our Minkowski sum approx-
imation A has the same topology as the exact surface

M.

of the other. This problem can be reduced to a motion plan-
ning problem by treating one of the parts as a robot and the
other as the obstacle.

il

Figure 3. Assembly Planning This benchmark shows
application of our algorithm to assembly planning. The
four images on the left shows a path that the robot can take
so that the two parts could be assembled. The rightmost im-
age shows the Minkowski sum and the path of the robot in
configuration space. This is a challenging example because
the goal configuration is lodged within a narrow passage in
the configuration space. Our algorithm tooR secs to find

a valid path (shown in blue).

5.2 Offsets and Mathematical Morphological Opera-
tions

We apply our approximation algorithm to perform mathe-
matical morphological operations. Mathematical morphol-
ogy has been used in image analysis for a long time. A
systematic treatment is given in [23]. The primary morpho-
logical operations, from which many others are constructed,

Together, the geometric and topological guarantees ensurére dilation and erosion. Dilation of an obje€tby an ob-

a good quality of the Minkowski sum approximation.
5 Applications

ject @ is same as the Minkowski su & Q. Q is usually
referred to as the structuring element. Erosion of an object
P by structuring elemer® selects the locus of points swept

We describe three applications of our approximate algo- by the origin of(Q where P entirely contains the translated
rithm. These are motion planning, morphological opera- (). Erosion can be expressed in terms of the Minkowski

tions, and penetration depth computation.
5.1 Motion Planning
Motion planning is an important problem in algorithmic

sum operation asP @ ' whereQ’ denotes a copy of)
reflected about the origin. Our Minkowski sum approxima-
tion algorithm can be used to perform morphological oper-

robotics. The basic problem is to find a collision-free path ations on polyhedral models.

for a robot among rigid objects. We consider the case of a  Aninteresting case of morphological operations is where
3D polyhedral robot undergoing translation motion among the structuring elemer@ is a sphere. In this special case,
3D polyhedral obstacles. This problem is often formulated dilation reduces to theffsetoperation [21]. The offset of a
using a configuration space approach. The free configura-solid is obtained by adding to the solid all the points that
tion space is the set of all possible positions in which the lie within a distancer. Mathematically it is defined as
robot avoids contact with the obstacles. It can be expressedffsetP) = {p |3 q € P, |[p — q|| < r}. Offsetis a

as the complement of the Minkowski sum of the robot and special case of Minkowski sum — it can be expressed as the

the obstacles [20].

Minkowski sum with a sphere. The exact computation of

For the purpose of path planning, it suffices to have a rep-the offset is difficult because it requires union computation
resentation that captures the connectivity of the free config-0f a large number of higher order surfaces.

uration space. We have used our Minkowski sum approxi-

The offset of a triangulated objed® consists of three

mation algorithm to compute such a representation and usedypes of regions:



Cup (1,000 tris) Cup@ Sphere Gear 2( 382 tris) Gear®d Sphere

Figure 4. Offsets: The figures show two models, Cup and Gear, with0 and 2, 382 triangles respectively. Our approximation
algorithm computed their offsets by computing their Minkowski sum with a sphere. R3aoid 84 secs to compute the offsets for
the two models. The approximate boundary consistdd @f95 and 22, 742 triangles.

e A spherical region around a vertexof P. This region from the actual PD and there are no tight error bounds on
is part of a spheré; of radiusr centered at;. the estimate.

We can use our Minkowski sum approximation al-
gorithm to obtain a penetration depth estimate that
is arbitrarily close to the actual value. Given any
e > 0, we compute an approximatiod., such that
e A planar region due to a trianglg of P obtained by ~ Two-sided Hausdorff Distan¢el., M) < ¢ (Theorem

displacingt;, along its outward normal by a distance ~ 2). Our penetration depth estimadeis given by =

This results in a triangular prisif. D(Og-p,Ae). Itis easy to prove that our estimadeis

_ . close to the actual PD. In particular, we can show that
LetO = U; SiUUjCj JUkPy. The dilationP & S is u particu w W

~ . d—e<PD(P,Q)<d+e.Thusa =d—eandf=0+e¢
same as o_ffset oP and is given byPU_O. The erosion provide bounds on the PD. By decreasigve can obtain
P o Sisgiven byP \ O. In case of erosion, the triangular

fisms.P. are obtained by displacing the triangle alona th arbitrarily tight bounds on the actual PD.
prismst7; are obtained by displacing the triangie along the -, 2 ydition to the penetration depth estimate, the above
inward normal. : .
. . .. boundsa and 8 can be used to obtain a potential set of
In this manner, the problem of performing mathematical

morphological operations (with sphere as the structuring el- penetrating features. Due to space limitations, we skip the
P 9 P . P . 9 € Jetails. The potential set of penetrating features is obtained
ement) reduces to performing Boolean operations on poly-

hedra, triangular prisms, spheres, and cylinders. We us by considering a set of features belonging to the pairwise

our approximation algorithm described in Sec. 4 to performeM'nkOWSkI sums that lie within an annulus of radiiand3

these Boolean operations. Note that this approach does no.%entered atthe origin.

require convex decomposition of the object. For an object6 Implementation and Performance

e A cylindrical region around an edge of P. This re-
gion is part of a cylinde€; of radiusr and whose axis
is same as;.

with n triangles, we perform a Boolean 8nn + 1 primi- — |n this section, we describe the implementation of our ap-
tives. Figurel shows the offset of thBunnymodel. Fig. 4 proximation algorithm and demonstrate its performance on
shows offsets of two models. different benchmarks.
5.3 Penetration Depth Computation 6.1 Implementation

We use our Minkowski sum approximation algorithm to es-

timate the penetration depth between two polyhedral mOd.'with 1 GB main memory. We used the Extended Marching

els.. We_ guarantee that our estimate of penetratiqn depth ICubes (EMC) algorithm [17] to perform the isosurface ex-
arbitrarily close to the actual value. The penetration depth . ion |t requires computing directed distance at the grid

°f_tV_V° intersectling po:yg_edrﬂ’ anﬂQ, PD(]:’?’ is lthhe q points. Our algorithm is simple to implement. It only re-
minimum translational distance that one of the polyhedra quires performing distance and inside/outside queries. Di-

must underdgo totrhendergrem df'sjo'm' Itt_ IS V;’r?" II;rIBO\gmtthat rected distance [17] and max-norm distances [24] to convex
one can reduce In€ probiem of computing the € Weenprimitives: can be computed efficiently.

P and @ to a minimum distance query on the surface of
their Minkowski sum P & —Q. 6.2 Performance

Based on this approach, [16] presented an approximaté/Ne tested our algorithm on a number of complex models.
algorithm to estimate the PD using graphics hardware. ThisThe model complexity (Table 1) varied from several hun-
approach is very efficient and can compute penetrationdred to few thousand triangles. Figuregnd 4 show the
depth of complex models quickly. One limitation of this offset of three modelsBunny Cup and Gear. Figure 1
approach is that due to the limited precision of the raster- shows the Minkowski sum dBrake HubandRodmodels.
ization hardware, the estimated PD can be very different The final Minkowski sum has a number of narrow holes that

We implemented our algorithms on a 2 GHz Pentium IV PC
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S

Knife (516 tris) Scissors {36 tris)

Anvil & Spoon

Wrencha Spiral

Knife @ Scissors

(Union oft, 446 prims, 15K tris)

(Union 0f38. 703 prims,25 K tris)

(Union o062, 790 prims,26 K tris)

Figure 5. Benchmarks: This figure shows three different benchmarks. The left two columns show the two primitives whose
Minkowski sum is being computed. The triangle counts for the two primitives are shown in brackets. Two views of the approx-
imation computed by our algorithm are shown in the right. For the three models, the Minkowski sum reduced to computing the
union of4, 446, 38, 703 and 62, 790 primitives respectively. Our algorithm to@, 316 and 778 secs respectively to generate an
approximation. The approximate boundary consistsidt, 25 K and 26 K trianqlgs respectively (see Table 1).

contribute to a high genus. Our algorithm produces an ap-
proximation with the correct topology. Fig. 5 shows the
Minkowski sum of a number of CAD models. Fig. 6 shows
a complex benchmark consisting of t@rates This is a
very challenging scenario as the resulting Minkowski sum
has very high complexity. It has numerous thin and needle-
like features. Our algorithm was able to reconstruct all the
complex features. Fig. 3 shows an application to motion
planning. Table 1 shows the model complexity and perfor-
mance of our algorithm on these benchmarks. Sampling is
the most time consuming step in the algorithm. Fig. 7 high-
lights the performance of our algorithm on different bench-
marks, showing the level of subdivision.

The culling techniques improve the performance signifi-
cantly. We applied our algorithm without any culling tech-
nigues to the Anvil and Spoon benchmark (Figaje It
took more thar7 hours to generate an approximation, as
compared t@3 secs using culling techniques.

7 Limitations

x10

Il Cup
Il Gear

[ Anvil & Spoon ||
[C] Wrench & Spiral
I Knife & Scissors
Il Two Grates

Number of Voxels

8 9 10
Level of Subdivision

Figure 7. The histogram shows the number of voxels in
our adaptive voxel grid for different benchmarks. It high-
lights the number of voxels at each level of subdivision.

all degenerate configurations in the input model. These in-
clude cases when the model has artifacts such as self inter-

The complex cell and star-shaped criteria are conservative sections. Our algorithm can only generate manifold bound-
As a result, the sampling algorithm may result in conserva- aries and is not applicable to the cases where the exact
tive subdivision. Our algorithm may not be able to handle boundary is non-manifold. Our sampling algorithm cannot
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Grate 1¢ Grate 2 (Union 066, 667 prims, 358 K tris)

Figure 6. The left figure show two grates witht4 and 1, 134 triangles respectively. We decomposed them 16t and 409

convex pieces respectively and computed the pairwise Minkowski sums between the convex pieces. The final Minkowski sum is given

by the union o066, 667 pairwise Minkowski sums. Our approximation algorithm computed an approximation (shown in the right)
in 3, 162 secs §2 minutes). It was able to reconstruct the complex features present on the boundary.

handle cases where two primitives (the pairwise Minkowski logical operations, and penetration depth computation of
sums) are touching tangentially. One way of resolving this complex polyhedral models. We have also used it for ex-
problem is by choosing an alternative way of subdividing act motion planning with translational degrees of freedom.
the grid cells (instead of octree subdivision). We are ex-  As part of future work, we would like to improve our
ploring this alternative in our ongoing work [25]. sampling algorithm to make it less conservative and thereby
The main bottleneck in our approach is the convex de- improve its performance. We would like to use better con-
composition method. Typically, it produc&¥(n) convex vex decomposition algorithms. It is well-known that the
pieces. Given two polyhedra each withriangles, we usu- ~ Minkowski sum of two star-shaped polyhedra is a star-
ally obtainO(n?) pairwise convex Minkowski sums whose shaped polyhedra. We could exploit this property and de-
union needs to be computed. Since this set of pairwise con-sign our overall approach based on star-shaped decomposi-
vex Minkowski sums is an input to our approximation al- tion instead of convex decomposition. The main advantage
gorithm, its large size impacts the performance of the over- of this approach is that the star-shaped decomposition of a
all algorithm. Although our algorithm is able to approxi- polyhedron would typically result in fewer primitives. Fur-
mate their union much faster and robustly compared to ex-thermore, we would like to develop similar algorithms for
act union algorithms, it still needs to pay the penalty for the arrangement and envelope computation.
large input size. It takes few minutes to compute Minkowski
sugﬁs ofpmodels composed of hundreds of trFi)angIes. Using a9 Acknowledgments
better convex decomposition method can alleviate this prob-This research is supported in part by ARO Contracts
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Primitive 1 Primitive 2 Num Convex Performance (sec) Output
Num Tris ~ Num Pieces| Num Tris ~ Num Pieces| Prims Convex Mink ~ Sampling  Recong Num Tris
Cup 1000 338 Sphere - 1 338 1.2 32 0.08 14,895
Gear 2,382 744 Sphere - 1 744 3.6 81 0.09 22,742
Brake Hub 4,736 1777 Rod 24 1 1,777 4.3 135 0.04 45,753
Anvil 144 57 Spoon 336 78 4,446 3.9 59 0.02 15,638
Wrench 772 291 Spiral 500 133 38,703 27 289 0.06 25,280
Knife 516 273 Scissors 636 230 62,790 36 742 0.06 26,038
Grates 1 444 163 Grates 2 1134 409 66,667 40 3120 15 358,030

Table 1. Benchmarks: This table shows the performance of our algorithm on different models. The columns on the left show
the statistics of the two primitives whose Minkowski sum is computed. They show the number of triangles in each primitive and
the number of convex pieces generated by convex decomposition. The column, Num Convex Prims, shows the number of convex
Minkowski sums generated. The right three columns show the time taken to generate the convex Minkowski sums, sampling (grid

generation) and isosurface reconstruction.
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