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ABSTRACT 

This paper describes two methods aimed at improving dead-reckoning accuracy with fiber optic 
gyroscopes (FOGs) in mobile robots. The first method is a precision calibration procedure for 
FOGs, which effectively reduces the ill-effects of non-linearity of the scale-factor and temperature 
dependency. The second method is the implementation of an indirect feedback Kalman filter that 
fuses the sensor data from the FOG with the odometry system of the mobile robot.  

The paper also provides experimental results and compares the relative effectiveness of the two 
methods as implemented on a four-wheel drive/skid-steer Pioneer AT mobile robot. 
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1. INTRODUCTION 
 Until just a few years ago all but the highest-grade mechanical gyroscopes had large bias drift 

rates. However, this situation changed with the reduction in cost of commercially available fiber 
optic gyroscopes (FOGs). For example, the KVH E-Core RD2100 gyro [1,2], which was the model 
used in our experiments, costs about $2,000 and its drift rate is specified as (at most) 0.002°/s = 
0.12°/min = 7.2°/hr (see Table I for specifications as published by the manufacturer). However, 
with the reduction of bias drift errors other measurement errors gain in relative significance. Most 
notable among these hitherto secondary error are (1) the nonlinearity of the scale factor and (2) the 
susceptibility of the sensor to changes in ambient temperature. These two errors can be reduced 
substantially by performing an individual calibration for each FOG [3].  

When more than one sensor modality is used to measure one parameter, such as the relative ori-
entation of a mobile robot, then the question arises how to fuse the readings from both sensor mo-
dalities. Barshan and Durrant-Whyte [4] proposed a direct Kalman filter that estimates the robot 

1  Parts of this manuscript were published in “Precision-Calibration of Fiber-optics Gyroscopes for Mobile Robot 
Navigation” Proceedings of the 2000 IEEE International Conference on Robotics and Automation, San Francisco, CA, 
April 24-28, 2000, pp. 2064-2069, and parts of this manuscript have been accepted for presentation at the 2001 IEEE 
International Conference on Robotics and Automation, Korea, May 21-26, 2001. 

This research was carried out at the University of Michigan’s ME Mobile Robotics Lab. 
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position and attitude. Other researches [5, 6] utilize gyroscopes and encoders to obtain a close esti-
mate of the robot position. However, these methods need fast computations due to the rapidly vary-
ing nature of the robot dynamics.  In this paper we propose an indirect Kalman filter that estimates 
error states and does not require fast computation [7].  

The calibration procedure for the FOG is described in Section 2, while the design of our Kalman 
filter is detailed in Section 3. The complete dead-reckoning system was implemented on a Pioneer 
AT four-wheel drive/skid-steer mobile platform, and experimental results are provided in Section 4. 

 

2. GYROSCOPE CALIBRATION 

One well known source of errors in gyroscopes is the static bias drift. In this paper we are not 
focusing on this (significant) error source because a trivial short-term calibration method is effec-
tive in dealing with this problem: Prior to each mobile robot mission (i.e., while the robot is stand-
ing still) the gyro output is sampled for, say, 5 – 10 seconds, and the readings are averaged. Then, 
once the robot is moving, this averaged static bias value is subtracted from all subsequent gyro 
readings. Because of the relatively low static bias drift in FOGs, mission durations on the order of 
10 minutes are feasible before a new static bias drift value should be determined by repeating the 
above short-term calibration.  

Once the static bias error is reduced in the above described way, two other sources of errors be-
come dominant: 1) the non-linearity in the scale factor and 2) the gyro’s susceptibility to changes in 
ambient temperature. This section briefly explains the mathematical model for these errors, while a 
more detailed treatment can be found in [3].  

2.1  Non-linearity of the scale factor 

The basic idea for measuring scale factor errors is to rotate the gyro at a varying but precisely 
controlled input rates, ω, while comparing the measurement output of the gyro, ωg, to the known 
input rates. The difference between both values 
is the error introduced by the non-linearity in the 
scale factor, ε. 

 

ωωε −= g
. (1) 

The same procedure has to be repeated at dif-
ferent speeds trying to cover the whole range of 
operation of the gyro. The resulting errors (see 
typical example for one FOG in Figure 1) can be 
approximated by a third-order polynomial 
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Figure 1: The error due to the non-linearity in the scale 
factor. The range of input rates in this and all 
subsequent experiments was –100°/s to +100°/s.  
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2.2  Effect of the changes in temperature 

Figure 2 shows how the measurement error 
ε varies with temperature. This relationship 
can be expressed in terms of a second-order 
polynomial 
 

( ) 2
210 TbTbbt ++=ε . (3) 

Parameters bi are not constant but depend of 
the input rate of rotation, ω. This means that 
all experiments must be repeated at different 
temperatures to calculate the final error model 
or compensation function of the gyro. The 
KVH E-core RD2100 FOG used in our 
experiments comes with a built-in temperature 
sensor and the readings from this sensor are 
available to the user within the data packets 
output by the FOG. 

2.3  Building the error function 

This section discusses the mathematical formulation of the error function. We will refer to the 
gyro data collected during rotation at a fixed rate of rotation and at a fixed temperature as one data 
set. In practice this is done by defining two data vectors for each rate of rotation, ωi. One for the 
output of the gyro, ωgi, and the other for the corresponding temperatures, Ti, all of dimension n 
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where n is the number of different rates of ro-
tation multiplied by the number of temperature 
variations. 

The difference between the output of the 
gyro, ωgi, and the rate of rotation of the rotary 
table, ω i, represents the error of the gyro εi at 
temperature Ti, (see Figure 3a). 

 The next step is to find a mathematical model 
of the error ε as a function of the known vari-
ables: the output of the gyro, ωg, and the tem-
perature, T 

),( gTf ωε = . (5) 
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Figure 2: Gyro measurement errors due to changes in 
temperature at different rates of rotation. 

Table I: Technical specifications for the E-Core RD2100 
fiber optic gyroscope. (Courtesy of [KVH])   

Performance RD2100 

Input Rate (max) ± °/sec 100 

Resolution °/sec 0.004 
Scale factor - °/bit 0.000305 

Nonlinearity %, rms 0.5 

Full Temp %, p-p 2 
Bias Stability 

Constant Temp °/sec 0.002 
Full Temp °/sec, p-p 0.2 

Repeatability °/sec, p-p 0.002 
Angle Rand. Walk (°/hr)/ Hz 5 
- °/ hr 0.08 

Bandwidth Hz (for 3 dB with 
45° phase shift) 

100 

 



 

 4 

Figure 3a shows experimental errors of one of the tested FOGs at different rates of rotation and 
temperatures without any compensation. Finding an error model from the measurements, ωg and T, 
is a two-input single-output system identifica-
tion problem. In order to use a general least-
square algorithm, we adopted a Vandermonde 
matrix  [8] that reduces the problem to a single-
input single-output system. The thus fully de-
fined error function ε(ωg, T) can now be used 
as a compensation function, simply by subtract-
ing the appropriate value of ε(ωg, T) from every 
gyro measurement ωg (see [3] for more details).  

),(* Tggg ωεωω −=  (6) 

where 

ωg  - Gyro reading before compensation 

ωg* - Compensated gyro reading 

Figure 3b shows the errors of the FOG after 
correcting its output with the compensation 
function according to Eq. (6).  Note that Figure 
3b is the result of applying the compensation 
function to a completely new set of data (and 
not to the same set of data that was used to 
build the compensation function). 

3. IMPLEMENTATION OF THE DEAD-
RECKONING NAVIGATION SYSTEM 

One way of reducing position and orienta-
tion errors in dead-reckoning navigation sys-
tems is to meticulously model the sensor errors and design an appropriate filter accordingly. In this 
paper we implement an indirect Kalman filter that estimates error states and overcomes some of the 
disadvantages of conventional Kalman filters. The motivation for using this structure with differen-
tial drive mobile robots can be found in [9].  

 

3.1  The error model for odometry 

The mobile robot position and heading angle are calculated from the output of incremental en-
coders by 

 a 

b 
Figure 3: Experimental errors of the gyro at different 
speeds and temperatures.  
(a) Without the compensation function  
(b) After applying the compensation function. 
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where X  and Y represent the mobile robot position in the navigation frame, and ψ is the heading 
of the mobile robot. RU  and LU are the right and left wheel incremental distances respectively, and 
D is the tread distance between the left and right wheels.  

It is well-known that odometry is subject to systematic errors caused by factors such as unequal 
wheel-diameters, imprecisely measured wheel diameters (i.e., the so-called scale-factor error), or an 
imprecisely measured tread  (see [10] for a detailed discussion). Subject to these errors the robot’s 
position and its heading angle are computed by  
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where )(ˆ),(ˆ kYkX , and )(ˆ kψ are the calculated position and heading angle. )(),( kYkX , and )(kψ are 
the true position and heading angle. )(),( kYkX δδ , and )(kδψ are the position and heading angle error. 

)(kDδ  is the tread error, i.e., the error introduced by variations in the distance between the left and 
right wheels. S kR ( )  and S kL ( ) are the scale factor errors of the right and left encoders, respectively.   

Subtraction of the true position values from the calculated position values yields the error 
propagation equations 
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where we assumed that )(kδψ  is small, i.e., cos ( )δψ k ≅ 1 , sin ( ) ( )δψ δψk k≅ , 0)()( ≅kSk Rδψ , 
0)()( ≅kSk Lδψ , and D k D k( ) ( )>> δ . It is also assumed that there is no error in wheel alignment. 

Left and right encoder scale factor errors and wheel separation distance errors are regarded as 
random constants due to their slow time-varying characteristics. Thus, these errors can be 
expressed by 
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For outdoor environments, zero-mean white Gaussian noise is added to (9) to represent ground 
irregularities, bumps, cracks, or slippage. These factors always add a positive error to the encoder 
reading, that is, the encoder will always add pulses but never miss pulses when encountering any 
such problem on the ground. In the error models, the random constants represent the average values 
of the irregular errors as well as the scale factor errors and tread error, while the white Gaussian 
noise represent small deviation of the average values of the irregular errors. 

3.2  The error model for the gyroscope 

The heading angle from a gyroscope with bias drift and scale factor error is represented by 

$( ) $( ) $ ( ) $ ( )
$ ( ) ( )
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where  
)(ˆ kφ   calculated heading angle using the gyroscope 

φ( )k   true heading angle 
Ω    angular rate [volt]  
$ ( )B ks   scale factor [°/sec/volt] 
Bs   true scale factor 
$ ( )B krb   gyroscope bias 

)(kBb   deterministic bias 
)(kδφ   gyroscope heading angle error 
)(kBsδ    gyroscope scale factor error 
)(kBrbδ   gyroscope random bias error 

A heading angle error equation for the gyroscope is obtained by subtracting )1(ˆ +kφ  from 
)1( +kφ , as shown in Eq. (12). Bias and scale factor error can be modeled as random constants.  

).()1(

)()1(

)()()()1(

kBkB

kBkB

kBkBkk

rbrb

ss

rbs

δδ
δδ

δδδφδφ

=+

=+

+Ω+=+
     (12) 

3.3  Implementation of the indirect Kalman filter 

Using the linear error models, the resulting state equations of the indirect feedback Kalman fil-
ter, &x Ax w= + , are given by 
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where ω is the process noise. 

Measuring the difference between the heading angles computed by odometry and by the gyroscope, 
the measurement equation Z Hx v= +  is given by 
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 where  
)(ˆ kψ  - the calculated encoder heading angle,  

)(ˆ kφ   - is a calculated heading angle using a gyroscope  
v  - measurement noise.  

We assumed w and v  to be white noise but we did not prove the accuracy of this assumption. The 
values for the covariance matrices were determined empirically and tuned through extensive tests. The 
technical specifications for the gyro were not particularly helpful in this regard. For instance, while the 
technical specifications provide rate errors, the Kalman filter required angle errors.  

The followings are the assumed values for the system and measurement noises, respectively. 

Q = diag[(0.1m)2, (0.1m)2, (0.7°)2, (0.00002)2, (0.00002)2, (0.00002)2, (0.0001°)2, (0.0001°)2, (0.00003)2] 

R = (0.02°)2 
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4. EXPERIMENTAL RESULTS 

In this section we present results from experime nts performed on 
a paved parking lot. The platform used in our experiments is the 
Pioneer AT four-wheel drive/skid-steer mobile robot shown in 
Figure 4.  

The robot traveled along a pre-programmed, approximately 
square-shaped path, as also shown in Figure 5. The eight via-points 
that are marked by a ‘+’ in Figure 5 were specified prior to the runs 
to define the path. The path planner then computed the angular and 
linear velocities to navigate the robot along the path. The robot trav-
eled at a maximum speed of 1.5 m/s, but it reduced its speed to 0.8 
m/s near the via-points in order to minimize deviations from the 
path. Figure 5 shows the trajectories of the robot. The robot trav-
ersed the 210-meters path in about three minutes and returned to the 
starting position. The odometry and gyroscope data were updated every 50 ms and 100 ms, respectively. 
Upon returning to the starting position, the difference, D, between the robot’s actual position and the 
start position was measured with a measuring tape.  

We performed experiments with and without gyro calibration and with and without Kalman filtering. 
In the experiments with the uncalibrated gyro the Kalman filter estimated the scale factor error. In the 
experiments with the calibration, the Kalman filter did not estimate the scale factor error but used the 
outputs of the calibrated gyroscope. In the experiments without Kalman filter, the orientation of the robot 
was only determined from the output of the gyro, and not from odometry.  

We performed 10 individual, consecutive runs, five in clockwise (cw) and five in counter-clockwise 
(ccw) direction. The quantitative results of the experiments are summarized in Table II. The return posi-
tion errors of Table II are the measured distance errors 
from the starting position (0, 0). 

As seen in Table II, when the measurements of the 

 

Figure 4: The University of Michigan's 
Pioneer AT robot used in the 
experiments described here. 
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Figure 5: Actual robot trajectory on the asphalted 
parking lot. In the experiment described here the robot 
performed five runs in clockwise (cw) and five runs in 
counter-clockwise (ccw) direction. 

Table II: Return Position Errors after completing five 
runs in both cw and ccw direction along the square 
path of Figure 5.  

Without Calibration  With Calibration   

Without  

Kalman 

With 

Kalman 

Without 

Kalman 

With 

Kalman 

a. Clockwise [cm] 

Run 1 94.4 27.3 8.9 5.3 

Run 2 80.2 23.6 9.8 8.7 

Run 3 75.8 17.7 15.8 10.9 

Run 4 92.5 19.4 9.4 4.7 

Run 5 72.3 19.3 25.9 17.8 

Average 83.0 21.5 14.0 9.5 

b. Counter-clockwise [cm] 

Run 6 124.4 56.2 24.9 19.3 

Run 7 146.8 81.4 21.8 18.2 

Run 8 133.8 70.8 20.1 14.8 

Run 9 111.4 35.4 10.8 9.9 

Run 10 145.4 80.3 15 12.7 

Average 132.4 64.8 18.5 15 
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uncalibrated gyro were used, the performance of the positioning system is improved by using the Kal-
man filter since the Kalman filter compensates for the stochastic errors including the scale factor error of 
the gyroscope. However, when the measurements of the calibrated gyroscope were used, the improve-
ment provided by the Kalman filter is relatively small compared to the improvement provided by our 
gyro calibration method. This is because our positioning system using only the calibrated gyro is very 
accurate by itself and the stochastic errors in the sensors are very small. Moreover, the effect of white 
noise of the gyro is not significant because it has a zero mean after compensating bias drift error. The 
characteristics of the state variances of the Kalman filter are as follows. The position and heading errors 
from the encoder and the gyroscope increase without bound because they are unobservable. However, 
the encoder scale factor error variances converge over time. The tread distance and gyro bias error di-
verge at a slow rate. Therefore, the filter can provide the robot with valid position and heading. 

5. CONCLUSION 

This paper presents two methods for improving the dead-reckoning accuracy of a mobile robot based 
on odometry and a fiber optic gyroscope.  

The first method is a meticulous calibration procedure for fiber optic gyroscopes (FOGs). Our method 
compensates for 1) non-linearity in the scale factor, and 2) sensitivity to changes in temperature. We also 
employ a (trivial) method for compensating for the static bias drift. Our compensation method requires a 
series of test with the FOG mounted on a precisely controlled rotary table. Results from these runs are 
used to define a temperature-varying third-order polynomial calibration function.  

The second method is the use of an indirect feedback Kalman filter. We developed a linear error state 
system model for implementing the indirect Kalman filter, in which the scale factor errors of the encod-
ers, the distance error between the right and left wheels, and random bias and scale factor errors of the 
gyro were carefully modeled.  

 The experimental results from multiple 210-meter runs around a paved parking lot show that the gyro 
calibration is most efficient, resulting in a 7-fold accuracy improvement. The Kalman filter alone pro-
vides only a 2-fold accuracy improvement. However, when both methods are used concurrently, they 
provide the largest (9-fold) accuracy improvement. We conclude that a calibrated fiber optic gyroscope 
is the single, most effect sensor modality for mobile robot dead-reckoning systems. Although we did not 
explicitly test our calibration method with different FOG makes and models, we believe that the underly-
ing error mechanisms are similar, and that therefore our calibration method can be applied to other FOGs 
as well. In that case, however, it may be necessary to change the order of the calibration function (in our 
case we found a 3rd order polynomial function to provide the best fit) according to the characteristic of 
each gyroscope. 
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