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Accurate modeling of high-
repetition rate ultrashort pulse 
amplification in optical fibers
Robert Lindberg, Peter Zeil, Mikael Malmström, Fredrik Laurell & Valdas Pasiskevicius

A numerical model for amplification of ultrashort pulses with high repetition rates in fiber amplifiers 
is presented. The pulse propagation is modeled by jointly solving the steady-state rate equations and 
the generalized nonlinear Schrödinger equation, which allows accurate treatment of nonlinear and 
dispersive effects whilst considering arbitrary spatial and spectral gain dependencies. Comparison of 
data acquired by using the developed model and experimental results prove to be in good agreement.

High-power ultrafast laser sources are extensively used in applications ranging from pump sources in nonlinear 
frequency conversion1–4 to metrology5–7 and material processing8–11. Master oscillator power ampli�er (MOPA) 
sources based on �ber ampli�ers (FA) are especially interesting due to large gain, small foot-print, robustness and 
e�cient heat removal, which alleviates substantially the mode quality degradation brought about by thermo-optic 
e�ects at high average powers12. �e complexity of �ber based MOPA systems vary greatly depending on appli-
cations. Some schemes employ several ampli�cation stages13–16 with intermediate pulse shaping9,13,15,16, whereas 
other schemes just rely on one ampli�cation stage17–19. Regardless of the speci�c system design, the active �ber in 
the ampli�er is the main temporal and spectral pulse shaping element owing to pump-dependent and spectrally 
varying gain distribution along the �ber, pulse interaction with co-propagating ampli�ed spontaneous emission 
(ASE), dispersion, as well as non-resonant and resonant components of nonlinearities. Careful study of the �ber 
ampli�er is mandatory for optimizing the overall system performance.

Since the equations governing the dynamics in pulsed FA are in general not possible to solve analytically, reli-
able simulations are required. FA are commonly modeled by using rate equations (RE) describing the ampli�ed 
spontaneous emission (ASE) and gain along the �ber. For low intensity seed pulses and continuous wave (CW) 
operation most nonlinear e�ects can be neglected, making this approach su�ciently accurate20–23. However, when 
amplifying ultra-short pulses in FA, dispersive and nonlinear e�ects become more pronounced, making a pure RE 
approach incapable of modeling the complete dynamics. A common work-around to this problem is to assume 
a constant gain along the �ber when modeling the pulse evolution with the generalized nonlinear Schrödinger 
equation (GNLSE)13,24–26, analogous to the lumped-element approach used for modeling bulk solid state lasers 
and ampli�ers. �is approach is adequate for modeling steady state pulse regimes in mode-locked �ber lasers. 
However, the drawback is that factors that are generally important to consider in FA, such as spatially and wave-
length dependent gain are neglected.

An early e�ort to include the e�ects described by the RE in the GNLSE model was based on using the suscepti-
bility of a two-level system27. �is approach lead to new terms in the GNLSE which described gain saturation and 
a �nite gain bandwidth, but spatial gain variations were still not included. Sequentially solving transient RE and 
the GNLSE while updating the inversion level in between consecutive pulses has also been explored20. However, 
in order to satisfy the necessary boundary conditions, this method is only able to model cases when one pulse is 
propagating in the FA at a time, i.e. ampli�ers operating at low repetition rates. Another approach, based on �rst 
solving the RE to predetermine gain parameters which are subsequently used in the GNLSE, has also been used 
to model FA17.

In contrast to any of the above mentioned approaches, the model presented here jointly solves the RE and the 
GNLSE and thus directly includes the interplay between dispersive, nonlinear and pump related e�ects. A similar 
approach was used by Chen et al.28. Both models assume a high repetition rate regime, which is where FA can be 
operated most e�ciently as the ASE build up can be kept low, and can account for multiple pulses propagating 
in the �ber at the same time. However, their model was used to optimize chirped-pulse FA design only consid-
ering co-propagating con�gurations, whereas the model described here includes boundary conditions such that 
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arbitrary pump con�gurations can be simulated. While this is already of great interest, as counter propagating 
FA are commonly used14–16,18,26, the model presented here also includes ASE, gain saturation and uses the inver-
sion at each position to determine the gain for the GNLSE. Furthermore, the impact of the inversion level on the 
refractive index is also included.

�is paper is structured as follows: �rst, the theoretical part introduces the necessary equations for the RE 
and the GNLSE. A�er that, a detailed account of the numerical approach illustrates how the two models were 
jointly solved in an iterative manner. Subsequently, the result part validates the model by comparing simulated 
and experimental data. In particular, the pump-power dependencies of pulse length, pulse spectra and output 
powers are compared for an in-house built FA as well as for a setup reported in the literature14. �e comparisons 
are in good agreement, showing that the presented model is an accurate tool for designing high-repetition rate 
ultrashort FA systems. Finally, concluding remarks regarding the range of application of the described model as 
well as its limitations are given.

Theory
�e temporal dynamics of the energy level population in laser gain media can be modeled using RE29, which 
account for the absorption as well as stimulated and spontaneous emission of photons. By combining them with 
propagation equations for the photon �ux at wavelengths of interest, the energy level populations can be deter-
mined throughout the laser gain media as well as the output spectrum and power.

Due to the simple two-multiplet energy level scheme in Yb-doped gain media it is convenient to solve RE for 
the combined population of the upper and lower laser multiplet. �e relevant spectroscopic information is then 
contained in phenomenological (and measurable) absorption and emission cross sections, which are not depend-
ent on the position in the �ber. In general, this approach is insu�cient for other gain media, such as Er-doped 
�ber pumped at 980 nm where an additional equation for the population of the pump level is commonly required. 
However, this approach is su�cient for any rare-earth doped media pumped directly to the upper laser multiplet. 
With this simpli�cation the spatially-dependent RE used in the combined model could be expressed as20
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where h is Planck’s constant, c is the speed of light in vacuum, z is the position along the �ber, t is time, vg is the 
group velocity, N1 and N2 are the e�ective lower and upper energy level populations. �e wavelength-dependent 
absorption and emission cross-section for the transition are σa and σe, respectively, and the upper level lifetime 
is τ. ∆ λ is the wavelength resolution. �e total doping concentration, NT, the core area, Ac, as well as the back-
ground losses, ηk, at wavelength λk were assumed to be constant throughout the �ber. �e geometric overlap fac-
tors, Γ k, were updated along the �ber for the signal, as explained below, while it was kept constant for the pump. 
Pk denotes the power while the signs +  and −  correspond, respectively, to forward and backward propagating 
beams, therefore taking into account �ber-end re�ections, bidirectional ASE and di�erent pumping con�gu-
rations. �e sum appearing in equation (1) runs over all of the wavelengths in the considered spectral window.

Further simpli�cation is possible by restricting the model to high-repetition rate FA, where it can be assumed 
that the population inversion, N

N T

2 , reaches steady state. Inserting equation (2) into equation (1) and solving for N

N T

2  it 

is easy to see that at a given position, z along the �ber, the population inversion due to a CW monochromatic pump 
at the wavelength λp with a power Pp(z) will grow as a saturating exponential function with a time constant of
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which is a measure of the position-dependent recovery time of N2. Obviously, the highest recovery rate, 1/tc, 
would be at the pumping-end of the �ber. For example, for a �ber with a core diameter of 20 µ m and an inner 
cladding diameter of 400 µ m pumped by 100 W at 976 nm this rate is approximately 20 kHz. For this estimation, 
data from Pask et al.30 was used for the upper level life time and the cross sections and Γ p was approximated by 
the ratio of the core and cladding areas. If tc is much greater than the time in between consecutive pulses, i.e. the 
repetition rate is much greater than 1/tc at the pumping-end, the pump will not be able to recover N2 between the 
pulses. �is implies that N2(z) will tend towards a steady state where the pump, the stimulated and the spontane-
ous emission balance each other. In this case, the time derivatives in equation (1) can be neglected. �is was the 
approximation used in our model. Using this and solving equations (1 and 2) for N2 then gives
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�e time derivative in equation (3) is eliminated by casting the equation in the coordinate frame moving at the 
group velocity of the pulse. Moreover, the ASE in steady state will also be constant in time. �us, under these 
conditions equation (3) reduces to
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As the last term on the right hand side in equation (6) accounts for spontaneous emission, the position-dependent  
FA gain can be expressed as

λ λ σ λ σ λ σ λ η λ= Γ + − − .G z N z N( , ) ( )[( ( ) ( )) ( ) ( ) ] ( ) (7)e a a T2

�ese equations are valid not only for high-repetition rate FA as de�ned above, but also in cases where the 
gain is saturated by ASE and when the ampli�ed pulse intensity is substantially below the saturation intensity at 
low repetition rates. However, these regimes signify sub-optimum FA design and are therefore of little interest. 
For a low-repetition rate seed and e�cient extraction of the energy from the population inversion the steady state 
condition cannot be assumed and, therefore, the full dynamics of the population inversion via equations (1 and 3)  
should be included in the model.

Propagation of the complex electric �eld envelope of the pulse, A, in �bers is well described by the GNLSE. 
When accounting for the e�ects of gain, dispersion, self-phase modulation (SPM), self-steepening and stimulated 
Raman scattering, it takes on the following form:
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which is valid for spectral broadening of less than 20 THz31, where ω0 is the central angular frequency, z is the posi-
tion along the �ber, T is the time in the frame moving at the pulse’s group velocity, α is the absorption (gain) coe�-
cient, βn are the Taylor expansion coefficients for the mode-propagation constant β ω =

ω ω
( )

n

c
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ne� (ω) is the e�ective refractive index at the angular frequency ω. �e nonlinear response function, R(τ), is given by
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where fR is the fractional contribution of the Raman response, θ(T) is the Heaviside step function, τ1 and τ2 are 
parameters to adjust the function to the Raman gain spectrum. �e �rst term is the instantaneous Kerr response and 
the second term is the delayed response of a damped Raman oscillator. �is model of the Raman response has been 
used to study pulses as short as 8 fs32. In our simulations, the Raman process parameters were: fR =  0.18, τ1 =  12.2 fs 
and τ2 =  32 fs31. �e nonlinear parameter is de�ned in the usual way, γ(ω0) =  3ω0 Re χ ωc n A( )/(4 ( ) )(3) 2 2

0 0 eff , where 
Ae� is the e�ective mode area, 0  is the dielectric permittivity of free space and χ(3) is the third order electronic sus-
ceptibility. �erefore, γ(ω0) has units of W−1m−1 and the �eld envelope amplitude in equation (8) is de�ned as 

=A z T P z T( , ) ( , )s , where PS(z, T) is the instantaneous power of the pulse.
When considering ultrashort pulses in broadband gain media, such as Yb-doped �bers, the wavelength 

dependence of the cross-sections in equation (7) has to be taken into account. �erefore the net absorption 
will be wavelength dependent, which has to be re�ected in the GNLSE. �is is accounted for by introducing an 
additional sum in equation (8) containing the Taylor expansion coe�cients of the angular frequency dependent 
net absorption α(z, ω), in the same manner as the sum containing the βn-terms is introduced31. �is gives the 
following equation:
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where α(z, ω0) is the absorption at the central angular frequency and αl are the Taylor expansion terms of the 
angular frequency dependence of α(z, ω).
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In addition, gain saturation can also lead to pulse distortions. �is e�ect was included in the GNLSE by mul-

tiplying the term α(z, ω0) with an exponential describing the accumulated energy of the pulse, ∫−
−∞e A z t dt( , )
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where Esat =  Ae�hc/[λ0Γ (σe(λ0) +  σa(λ0))] is the saturation energy and λ0 is the central wavelength of the pulse20.

It is well-known that a Lorentzian absorption line has an associated impact on the refractive index. 
Considering an electronic transition from level i to j in Yb, the contribution to the refractive index can be 
described by33
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where e is the electron charge, n0 the refractive index of the host, m is the electron mass, 0 is the free space per-
mittivity, fij is the oscillator strength, λij is the transition line center, ′g

ij
 is the lineshape, ωsig is the angular fre-

quency of the incident light, Ni,j are the population densities and gi,j are the degeneracy factors. Using the relation 
between oscillator strength, absorption cross-sections and the Einstein coefficients34, equation (11) can be 
re-expressed as
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�is equation is to be summed over all transitions in order to get the net contribution. However, given the limited 
amount of extractable information in cross-section data, we instead used the available cross-sections in conjunc-
tion with the mean transition frequency (replacing ωij) to model the impact of transitions from N1 to N2. g1, g2 and 
the UV-level parameters were set to the values given in the paper by Arkwright et al.33. �e UV-level contribu-
tions were evaluated by their asymptotic values35 as the wavelengths considered in this work are far from their 
resonances. n0 is set by using the unpumped version of equation (12), the Sellmeier equation for fused  
silica36 and the �ber NA. Once obtained, n0 is used to evaluate equation (12) which is then added to the passive 
core index. �e resulting refractive index and the one for fused silica is then used to solve the standard eigenvalue 
equation for a step-index �ber31 to determine the propagation constant of the fundamental mode, for all the 
wavelengths in the considered spectral window at di�erent levels of inversion. �e dispersion is determined by 
subtracting the value of the propagation constants and their �rst order derivatives at the seed’s central wavelength, 
in order to conform with the notation used in equation (10). �e propagation constants are also used to deter-
mine the e�ective mode area and hence the nonlinear parameter, γ, as well as the signal overlap factor, calculated 
as Γ = −

−e1s
A A2 /c eff, at di�erent levels of inversion and for di�erent wavelengths.

Joint solution of the RE and the GNLSE
�e RE, equations (5 and 6), and the GNLSE, equation (10), are coupled through the absorption α(z, ω), which 
is simply the negative of the gain, given in equation (7). �us, at each position in the �ber, the value of N2 is �rst 
determined, using equation (5), and is therea�er used to determine α(z, ω) as well as the dispersion, the nonlinear 
parameter and the geometric overlap factor corresponding to the current level of inversion. �ese parameters 
are then used in the GNLSE, to propagate the pulse, and in the propagation equations (6), to propagate the 
pump and the ASE powers in both directions. �e propagation equations are evaluated by applying the standard 
fourth-order Runge-Kutta (RK4) scheme for �rst-order ordinary di�erential equations (ODE).

�e GNLSE is solved using a scheme called the fourth-order Runge-Kutta in the interaction picture method 
(RK4IP)37, which alternates between the Fourier domain, to evaluate dispersive e�ects, and the time domain, 
to evaluate nonlinear e�ects. Using this method, the GNLSE is expressed by using the following dispersive and 
nonlinear operators, respectively,

∫
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�us, the GNLSE takes on the following form
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By transforming this equation into an interaction picture it can be re-expressed as a �rst-order ODE, which can 
be solved with arbitrary accuracy by applying methods of perturbation theory, as used in quantum mechanics. 
However, for computational e�ciency the RK4 scheme was used instead. �is method then gives an accuracy 
proportional to the fourth order of the used step-size, as opposed to commonly used split-step Fourier methods 
which are accurate to the second and third order37. A summary of this procedure is detailed in the supplementary 
information part of this paper.

Now, Equation (6) only considers average powers, i.e. it does not contain temporal information in the coordi-
nate frame co-moving with the pulse. It is therefore necessary to appropriately relate the average pulse power used 
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in the RE to the electric �eld amplitude A(z, T) used in the GNLSE. �us, when evaluating Equation (5) at each 
step along the �ber, the amplitude of the pulse’s electric �eld envelope is renormalized using

∫∑ λ =
= −∞

∞
z R A z T dT( , ) ( , ) ,

(15)k

M

s k r
1

2

where  λz( , )s k  are the Fourier components of the pulse’s average power spectrum (converted to wavelength 
constituents), M is the total number of constituents in the power spectrum within the considered spectral window 
and Rr is the pulse repetition rate. Using such normalization allows, if necessary, to use di�erent discretization 
scales in the numerical solutions of the RE and the GNLSE. In this work, an identical discretization in the wave-
length (frequency) domain for the RE and the GNSLE was chosen for convenience. �e discretization is in prin-
ciple determined by the requirement of well-resolved pulse amplitude and phase variations as well as having 
su�cient margin to avoid Fourier window spillover, which would give numerical artifacts. �e latter can also be 
mitigated by absorbing boundaries of the spectral window, provided that power calibration is performed at each 
step along the �ber.

Propagation schemes. Longitudinal evolution pro�les for pump, ASE and seed pulse powers can then 
in principle be determined by iteratively solving the equations with the previously described joint approach. 
However, a direct solution would require prior knowledge of the initial values for all these signals. In general, this 
is not available, especially if pump and seed signals are launched at di�erent �ber ends or if feedback from the 
�ber end facets are to be considered. Such boundary value problems can be reduced to initial value problems by 
applying a shooting-method, as e.g. outlined by Zeil and Laurell21. �is method solves the equations iteratively 

Figure 1. Illustration of the forward propagation, from z = 0 to z = L, scheme used in each iteration. �e 
numbers in parentheses denote the equations being used.

Figure 2. Illustration of the backward propagation, from z = L to z = 0, scheme used in each iteration. �e 
numbers in parentheses denote the equations being used.

Figure 3. Schematic illustration of the overall scheme of the numerical model. �e red arrows indicate 
where the algorithm is initiated for co-, counter and bi-directionally pumped con�gurations. BC denotes 
boundary conditions.
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going back and forth between the �ber ends and imposing boundary conditions upon reaching the �ber ends. In 
this way, the boundary values are applied as initial values for each propagation.

�e full algorithm is based on two propagation schemes, one from the end where the seed is injected, z =  0, 
to the end where the ampli�ed pulse is exiting, z =  L, and one in the opposite direction. �e propagation scheme 
from z =  0 to z =  L is illustrated in Fig. 1. At each position of the �ber the pulse, the ASE and the pump are used 
in equation (5) to determine N2. �is value is used in the propagation equations, a�er using it to determine Γ s, for 
the forward propagating (+ signs in equation (6)) pump and ASE to propagate them to the next position in the 
�ber. �e backward propagating pump and ASE (− signs in equation (6)) values are not updated in this direction, 
due to numerical stability, instead their values from the previous z =  L to z =  0 propagation are used. �e N2-value 
is also used to determine α(z, ω), β(ω) and γ which are then used in the GNLSE to propagate the pulse to the next 
position in the �ber. �is is repeated until reaching z =  L.

In the propagation from z =  L to z =  0, shown in Fig. 2, the forward propagating signals are not updated. 
Instead, the values of the forward propagating signals from the previous propagation from z =  0 to z =  L are used 
when determining the value of N2 at a speci�c position. �is value is then used to propagate the backward pump 
and ASE to the next position. �is is repeated until reaching z =  0.

Upon reaching the �ber ends, the following boundary conditions are applied to the ASE and pump

= +
±  P RP P , (16)k k k launched

where R is the re�ection at the �ber end and Pk launched are launched powers. �e power of the seed pulse is reset 
to its launched value at z =  0, i.e. the re�ected signal is neglected. �is is justi�ed in single pass FA as the re�ection 
at the exiting �ber end is several orders of magnitude smaller than the launched one, usually due to angle cleaving. 
Nonetheless, the re�ected pulse can easily be included by propagating the re�ected part of A(L, T) with the 
GNLSE in the z =  L to z =  0 propagation scheme. �e re�ected pulse must then also be included in the propaga-
tion from z =  0 to z =  L and be related to its wavelength constituents to be included when calculating N2.

�e propagation schemes and boundary conditions are run between the �ber ends until the output power 
between the last two iterations has not changed more than some predetermined value. �e convergence process 
is characterized by a gradually decreasing alternation of over- and underestimation of the output power between 
consecutive iterations.

Depending on the pump con�guration, the algorithm is initiated di�erently to speed up the convergence. For 
counter- and bi-directionally pumped setups, the boundary conditions at z =  L and the propagation scheme from 
z =  L to z =  0 are run �rst to set up an inversion level for the pulse. While for co-propagating setups, the boundary 
conditions at z =  0 and the propagation scheme from z =  0 to z =  L are run �rst. �is is illustrated in Fig. 3, where 
the red arrows show where the algorithm is initiated depending on the pumping technique.

Results
Carrying out accurate simulations requires reliable gain �ber-speci�c parameters, primarily cross-section data. 
We therefore used absorption and emission cross-sections based on reported experimental data. Furthermore, 
the obtained frequency and inversion dependencies of α and β were directly applied in the Fourier domain when 
using the RK4IP, as this proved to give more accurate results than using the Taylor expansion coe�cients, i.e. αl 
and βn, in equation (10). Also, the above mentioned spectral windows spanned from 1000–1100 nm as this proved 
broad enough to accommodate pulse and ASE spectra, while avoiding numerical spillover e�ects.

�e remainder of this section discusses comparison of simulations using our model and experimental results. 
Two di�erent FA setups were used: one that was built in-house and one reported in the literature which provided 

Figure 4. Schematic representation of the MOPA setup used to validate the model. BS, λ/2 and OSA denote 
beam splitter, half-wave plate and optical spectrum analyzer respectively.
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Figure 5. Simulated and measured (a) output power, (b) spectral widths at − 10 dB and (c) full width at half 
maximum (FWHM) of the autocorrelation traces. �e four right-most plots show spectral comparisons at 
output powers of (d) 1.1 W, (e) 8.4 W, (f) 16.2 W and (g) 20.3 W. �e dashed curves show the measured seed 
spectrum.
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Figure 6. Comparison of experimental and simulated spectra in the (a) �rst and (b) second preampli�er 
and in the main ampli�er at output powers of (c) 25 W, (d) 75 W and (e) 100 W. �e blue curves denote the 
experimental data14 while the red and the green curves denote the simulated spectra using negatively and 
positively chirped seed pulses, respectively.
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su�cient data for a relevant comparison14. �e upper level lifetime, τ, was set to 840 µ s30 in both simulations. A 
summary of the �ber speci�c parameters used in the simulations can be found in Supplementary Table S1.

As a �rst test, a counter propagating MOPA setup was built for validation. �e setup is illustrated in Fig. 4 and 
consisted of a polarization maintaining double clad 5.7 m long Yb-doped �ber from NUFERN Company with a 
small signal absorption of 0.5 dB/m at 915 nm and core/inner cladding diameter of 20/400 µm. �e ampli�er was 
pumped by a volume Bragg grating stabilized laser diode at 976 nm. The seed was a Yb:KYW oscillator 
mode-locked using a quantum well saturable absorber generating transform-limited 173 fs pulses at a repetition 
rate of 212 MHz centered around 1041 nm. Both �ber ends were angle-cleaved to prevent back re�ections. A 
dichroic mirror (DM) was used to separate the ampli�ed pulses from the incident pump beam on one end and a 
second DM was used to separate the unabsorbed pump from the seed on the other end. �e average power of the 
seed was 375 mW and the launched pump power was varied from 3 to 38 W, the coupling e�ciencies were 80% 
and 90% for the seed and the pump, respectively. �e orientation of the seed’s polarization was controlled with a 
half-wave plate. �e pump overlap factor was approximated by Γ p =  Ac/A, where A is the cladding area. Γ s was 
determined from the calculated mode-�eld areas which were scaled to match the measured mode�eld area of 
410 µ m2 in the unpumped �ber. �e nonlinear parameter, γ, was also determined by using the scaled mode areas 
and a nonlinear refractive index of n2 =  3.07 · 10−20 m2W−1, related to the third order electronic susceptibility by 

χ ω= n c n4 ( )3 2
0 0 2

38. �e value of n2 as well as the cross-section data for the �ber were supplied by NUFERN 
Company.

Studying the numerical and experimental results shown in Fig. 5, it is clear that the output power character-
istic, plotted versus e�ective pump (launched minus unabsorbed), is well predicted. It is also evident that the 
simulated spectral widths follow an essentially identical trend as the measured ones with a constant o�set of just 
2 nm. �e measured and simulated pulse durations seem to follow a similar trend but with a constant o�set of 
about 0.25 ps. �ese o�sets are mainly attributed to the lack of knowledge of the exact dispersion, since the one 
used for our simulations was based on the refractive index for pure silica modi�ed by the cross-section data. In 
reality, the dispersion is also a�ected by dopants used to increase/decrease the core/cladding refractive indexes. 
�erefore, a slight o�set is to be expected. Comparisons of the simulated and measured autocorrelation traces are 
given in Supplementary Fig. S2.

Studying the spectra, shown in Fig. 5, shows quite good correspondence between the experiments and the 
simulations although there are some discrepancies in the positions and magnitude of some of the spectral fea-
tures. �ese discrepancies, which are related to the di�erences in the pulse widths, are attributed to deviations 
between the actual and the literature values that were used for some of the parameters in the simulations, mainly 
the emission and absorption cross-section spectra. �e model correctly predicts the shi� of the spectra from 
1041 nm to around 1060 nm, due to the gain asymmetry, something that cannot be predicted without the wave-
length dependent gain.

As a second evaluation of the model we used data from Zhao et al.14, who demonstrated generation of 150 W 
of average power from a 2.5 ps oscillator with a repetition rate of 50 MHz a�er passage through three ampli�-
cation stages. �e �rst preampli�er was a co-propagating highly Yb-doped single-clad �ber, while the second 
preampli�er and the main ampli�er were counter propagating Yb-doped rod-type �bers. As the only indication 
of the seed pulses’ chirp was a time-bandwidth product of 0.37, slightly exceeding the transform-limit. Using our 
model and comparing the obtained spectra with the experimentally reported ones, we could actually determine 
the sign of the input pulses’ chirp.

Hyperbolic secant pulses with negative and positive chirps corresponding to the measured time-bandwidth 
product were set up and propagated through the ampli�ers. �e pump/signal mode-�eld overlap were adjusted 
to match the output versus pump power in the ampli�ers. Similarly, the values of n2 were adjusted to broaden 
the pulse spectra in the ampli�ers to acquire the presented widths. �e �nal values used in the simulations were 
n2 preampli�er 1 =  2.6 · 10−20 m2W−1, n2 preampli�er 2 =  n2 preampli�er =  1.2 · 10−20  m2W−1. �e cross-sections were taken from 
Pask et al.30.

Figure 6 shows the generated spectra of linearly chirped pulses compared to the experimentally measured 
spectra at output powers where no transverse modal instabilities were present, as the GNLSE used in this work 
assumes single-mode operation. It is readily seen that the spectral evolution of the positively chirped pulses is 
in better agreement with the experimental data than the negatively chirped pulses’ evolution. Clearly the seed 
pulses with negative chirp would experience initial spectral compression due to the action of SPM before the 
spectral broadening takes place at higher peak powers. For positively chirped pulses, the spectral compression 
does not happen and the broadening produces a well-known dip in the center of the pulse spectrum. �e 
model predicts an earlier appearance of such a dip as compared to the experimental data (Fig. 6d) which we 
tentatively attribute to the presence of the second order negative chirp in the experimental seed pulses, whereas 
we only considered a linear chirp.

Conclusion
A conceptually simple method was developed for solving the RE and the GNLSE together in a FA in the case 
of a high repetition rate source and a CW pump. Based on this method, two propagation schemes were set up 
that could be combined to simulate arbitrarily pumped �ber based MOPA setups. As the model is based on RK4 
schemes when solving both the GNLSE and the RE, it has a global accuracy proportional to the fourth order of 
the step-size.

In order to validate the model, a counter propagating �ber based MOPA was set up whose characteristics were 
in good agreement with the simulations. Additionally the model was employed to investigate another experimen-
tally realized �ber based MOPA from the literature14 and provided results that were in good correlation. �us, we 
believe that this model is well suited for studying and understanding the pulse evolution in �ber based MOPA that 
are operated at high repetition rates and in single transverse mode. �e model could therefore serve as a valuable 
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tool when optimizing the design of these types of systems, for instance in terms of pulse compressibility and maxi-
mizing output powers by appropriate choice of pump con�guration, wavelength regimes, �ber lengths etc.

Using a transversely resolved model could improve the results and it would also allow the description of 
multi-mode ampli�cation. However, this would be at the expense of a substantial increase in computation 
time.

Although the accuracy of the model was demonstrated in the context of Yb-doped FA it can also simulate 
other types of rare-earth doped ultrafast FA, given reliable spectroscopic data for the absorption and emis-
sion cross-sections and adjusting the RE correctly. �e same scheme is also readily adaptable for simulation of 
mode-locked �ber lasers by inclusion of appropriate mechanisms for saturable loss.
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