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Recent studies suggest accurate prediction of tissue of
origin for human cancers can be achieved by apply-
ing sophisticated statistical learning procedures to
gene expression data obtained from DNA microar-
rays. We have pursued the hypothesis that a more
straightforward and equally accurate strategy for clas-
sifying human tumors is to use a simple algorithm
that considers gene expression levels within a tree-
based framework that encodes limited information
about pathology and tissue ontogeny. By considering
gene expression data within this framework, we
found only a small number of genes were required to
achieve a relatively high accuracy level in tumor clas-
sification. Using as few as 45 genes we were able to
classify 157 of 190 human malignant tumors cor-
rectly, which is comparable to previous results ob-
tained with sophisticated classifiers using thousands
of genes. Our simple classifier accurately predicted
the origin of metastatic tumors even when the classi-
fier was trained using only primary tumors, and the
classifier produced accurate predictions when trained
and tested on expression data from different labs,
and from different microarray platforms. Our find-
ings suggest that accurate and robust cancer diagnosis
from gene expression profiles can be achieved by
mimicking the classification strategies routinely
used by surgical pathologists. (Am J Pathol 2003,
163:1985–1995)

A number of surveys of gene expression in diverse pan-
els of human malignancies have recently been performed
using DNA microarrays.1–5 A question that has been
pursued by several investigators is whether the tissue of
origin of a neoplasm can be predicted based only on the
measured gene expression levels. Although it may be
debated whether molecular approaches are needed to
improve the accuracy of diagnosis for the majority of
primary neoplasms, there are likely to be several clinical
settings in which gene expression analysis could have
significant impact. For instance, transcriptional profiling
may prove to be a valuable aid in the diagnosis of pre-
sumptive metastatic tumors when a primary tumor site
cannot readily be identified through routine diagnostic and
imaging studies, or when primary tumor material is not
available. In addition to assessing the potential diagnostic
utility of gene expression analyses, better understanding of
the gene expression patterns in a diverse panel of cancer
specimens may have the potential to offer new and unex-
pected insights into cancer pathogenesis.

In the work published to date, a variety of statistical
learning methods have been investigated to assess the
feasibility of using gene expression measurements for
molecular classification of cancer.1–6 The methods range
from the elementary, such as nearest neighbor algo-
rithms (KNN), to classical methods such as linear dis-
criminant analysis, to modern and sophisticated methods
such as neural networks and support vector machines. A
common feature of the methods, at least insofar as they
are applied in the cited works, is that they base their
predictions entirely on the microarray measurements,
without incorporating knowledge about the relationships
between tumor types derived from decades of his-
topathological analysis, ie, they do not exploit a basic
biological understanding of morphology or tumor ontog-
eny. Moreover, the methods listed above, especially
when applied to multiple-class problems, are black box
in nature, meaning that it is difficult to understand the
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internal information processing that is used to form the
prediction.

Here we propose a different strategy for the molecular
classification of human malignant neoplasms. A key feature
of our approach is to incorporate a simple tree-based
framework based on tumor ontogeny into the classifier. This
framework is used in a sequential coarse-to-fine classifica-
tion strategy, in which coarse decisions (such as whether a
neoplasm is solid or hematolymphoid) are made first, and
more specific decisions follow. Decomposing the classi-
fication question into a sequence of narrow decisions
permits different sets of genes to be used for each deci-
sion, allowing a gene to inform the classifier in a way that
is consistent with its mechanistic role. For each individual
decision in the sequence, we use a simple nearest neighbor
predictor. All genes referenced by the classifier are indi-
vidually interpretable as potential markers for common
pathological classes (eg, epithelial tumors). The internal
mechanism of our classifier is therefore transparent and
straightforward. The incorporation of the pathological tree
into our classifier also brings our computational method
into line with clinical practice, as the ontogenetic rela-
tionships encoded in the tree form the basis for many
diagnostic strategies routinely used by pathologists to
diagnose neoplasms of unknown type or origin.

We report that our simple classifier that considers gene
expression levels within a framework reflecting basic tu-
mor ontogeny achieved better error rates than are ob-
tained with sophisticated methods of statistical learning
that do not exploit this information. Furthermore, the clas-
sifier was trained on data from one laboratory and gave
accurate predictions for samples processed in a different
laboratory, even when a different microarray platform was
used for analysis of the specimens. Finally, because of its
simple structure, the classifier allows a post hoc analysis
of misclassified tumors to identify the basis for failure.
Analysis of the misclassified neoplasms yielded interest-
ing observations on gene expression in atypical tumors.
For example, at least one ovarian tumor was discovered
to have unusual gene expression characteristics that
were not appreciated at initial diagnosis.

Materials and Methods

Microarray Data Sets

We used three microarray data sets (Table 1) that previ-
ously have been used to study cancer diagnosis algo-
rithms.1–3 The data originally analyzed in one of these
studies1 were obtained from www-genome.wi.mit.edu/
MPR/GCM.html. Henceforth, we refer to these as the
Whitehead data. The Whitehead data consist of three
sets covering 14 tumor types: 1) a main set containing
190 primary tumors (including several poorly differenti-
ated tumors), 2) an independent set containing 20 poorly
differentiated tumors, and 3) a set of 8 metastatic tumors.
The set of 190 malignant tumors was comprised of sam-
ples from 14 sites of origin (or tumor type in the case of
lymphoma and leukemia), as follows: breast (n � 11),
prostate (n � 10), lung (n � 11), colon (n � 11), lym-
phoma (n � 22), melanoma (n � 10), bladder (n � 11),
uterus (n � 10), leukemia (n � 30), kidney (n � 11),
pancreas (n � 11), ovary (n � 11), mesothelioma (n �
11), and central nervous system (CNS) (n � 20). Note
that the specimens in the Whitehead data were originally
assigned to 17 tumor classes, but in previous work the
two subtypes for each of lymphoma, leukemia, and CNS
were combined, leading to the 14 tumor classes that we
analyzed here. The set of transcripts considered in the
Whitehead study1 were obtained by combining the tran-
scripts from the Affymetrix (Santa Clara, CA) HuGeneFL
and Hu35KsubA microarrays. Experimental protocols
and low-level processing were previously described.1

The data originally analyzed by Giordano and col-
leagues2 were collected at the University of Michigan
(UM) using Affymetrix HuGeneFL microarrays. Here we
considered a superset of the samples previously ana-
lyzed, comprised of the following types of tumors: uterine
(n � 6), ovarian (n � 113),7 lung (n � 91),8 colon (n �
60),2 pancreas (n � 10), and CNS (n � 73).9 Henceforth
we will refer to this as the UM data. Transcript-level data
summaries were prepared as described.2 These data are

Table 1. Tumors Used for DNA Microarray Analysis

MIT*† MIT-PD*† MIT-MET*† UM* UVA‡

Breast 11 5 1 0 26
Prostate 10 0 4 0 26
Lung 11 8 1 91 14
Colon 11 3 1 60 23
Lymphoma 22 0 0 0 0
Melanoma 10 0 0 0 0
Bladder 11 0 0 0 8
Uterus 10 1 0 6 0
Leukemia 30 0 0 0 0
Kidney 11 0 0 0 11
Pancreas 11 0 0 10 60
Ovary 11 3 1 113 27
Mesothelioma 11 0 0 0 0
CNS 20 0 0 73 0
Total 190 20 8 353 141

*Denotes data from Affymetrix HuGeneFL microarrays.
†Denotes data from Affymetrix Hu35KSubA microarrays.
‡Denotes data from Affymetrix HG-U95Av2 microarrays.
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available at http://dot.ped.med.umich.edu:2000/pub/
Classify/index.html.

The data originally analyzed by Su and colleagues3

were obtained from www.gnf.org/cancer/epican. We used
data on the 141 tumors representing the 14 sites of origin
in the Whitehead data, giving the following breakdown of
tumors: breast (n � 26), prostate (n � 26), lung (n � 14),
colon (n � 23), bladder (n � 8), kidney (n � 11), pan-
creas (n � 6), and ovary (n � 27). These data, which we
refer to as the UVA (University of Virginia) data, were
obtained using the Affymetrix HG-U95Av2 microarray.
Transcript-level data summaries were prepared as de-
scribed.3

It is worth noting that all three gene expression profiling
groups used similar tissue processing protocols in which
the tissues were examined histologically and selected for
DNA microarray analysis only if the samples were rich in
malignant cells and relatively free of normal elements.

For all expression data sets, we eliminated the Af-
fymetrix control genes, logarithmically transformed all of
the data using log[max(X, 0) � 50], and removed all
genes having SD less than 0.7. The three Affymetrix
microarrays that produced the data analyzed here in-
clude probe sets for different sets of transcripts. For each
comparison that we made, we used the largest set of
transcripts that were measured on all arrays involved in
the comparison. Thus, when comparing the Whitehead
data to itself, all HuGeneFL and Hu35KsubA probe sets
were used. When comparing the Whitehead and UM data
sets, all HuGeneFL probe sets were used. When com-
paring the Whitehead and UVA data sets, probe sets on
the HuGeneFL and HG-U95Av2 microarrays correspond-
ing to the same gene were used. Note that for the third
comparison, although the selected probe sets corre-
spond to the same Unigene cluster, the probe sequences
on the microarray may differ.

Representing Morphological and Developmental
Relationships

We represent a hierarchy of developmental/morphologi-
cal relationships among the various malignant tumor
classes using a tree diagram (Figure 1). Each node of the
tree represents a family of related tumors, with the lower
nodes representing more homogeneous classes of tu-
mors than the nodes higher in the tree. We use the terms
“parent node” and “child node” to refer to a pair of

adjacent nodes in which the parent node is one level
above the child node. The term “interior node” will refer to
a node that has at least one child as opposed to a
“terminal node” that has no child. The nodes were se-
lected to represent major morphological divisions that are
both relevant to tissue of origin and that we expect to be
predictable from gene expression. The tree was con-
structed before any reference to the microarray data
based on an accepted classification of human tumors
and was not in any way fit to the expression data.

Marker Gene Selection

The key step in training our classifier is the selection of a
set of genes that are informative for distinguishing among
the child nodes at each split in the tree. Consistent with
current practice in pathology, we focused on marker
genes that are highly expressed in one tumor class rela-
tive to one or more different tumor classes. Specifically,
we were interested in markers that are highly expressed
in one node of the tree compared to all other nodes that
have the same parent. For example, we needed gene
markers that are highly expressed in epithelial tumors
relative to mesothelioma, CNS, and melanoma tumors
(Figure 1). However, these markers do not need to be
highly expressed in epithelial tumors relative to hema-
tolymphoid malignancies. Genes with specifically high
expression in one child of a given parent node are iden-
tified using the difference between group means in log-
arithmically transformed data. The difference is com-
puted between the specified child node and the pooled
mean for all other children of the same parent. This is
essentially the fold change ratio between mean expres-
sion levels on the untransformed scale. Thus in the above
example, we consider a gene to be a marker for epithelial
tumors if the average log-scale expression in all epithelial
tumors is high relative to the average expression in all
mesotheliomas, CNS, and melanoma tumors (taken as a
group). We used a fixed number of genes for each child
node (K), and will consider values of K ranging from 1 to
1000. The marker genes for all child nodes with the same
parent were pooled together to form a marker set asso-
ciated with one split in the tree. For example, the markers
for mesothelioma, epithelial cancer, CNS, and mela-
noma, are pooled together to create a set of genes that
are informative for splitting at the solid node of the tree.
The tree (Figure 1) has 19 child nodes (in the 14 class
problem), so 19 sets of K genes are considered by the
classifier. However, because there is substantial overlap
in the marker genes for different child nodes, the total
number of distinct genes used by the classifier is sub-
stantially smaller than 19K.

Applying the Classifier to a Sample

Once the classifier is trained by selecting the marker
genes, the tissue of origin for a test sample is predicted
by running the sample down the tree. That is, working
from the root node down, a sequence of decisions is
made, placing the test sample in one of the child nodes

Figure 1. A tree representation of developmental/morphological relation-
ships among 14 tumor classes. Samples of unknown origin are classified by
working from the root node down, placing the sample in one of the child
nodes at each split based on the expression of specific marker genes.
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at each level of the tree. For example, a correctly pre-
dicted colon cancer sample would move from all tumors
to solid to epithelial to non-Mullerian to colon. If an error is
made in any of these decisions, the prediction will be
incorrect. The decision at each node is made using a
simple nearest neighbor decision based on the markers
identified as described above. Correlation coefficients
over the marker genes between the test sample and
every training sample are computed, and the classes for
the five training samples with greatest correlation are
considered. The class to which the greatest number of
these five samples belongs is the predicted class for the
test sample. If there is a tie, the class corresponding to
the greatest correlation is used as the prediction.

The number of marker genes whose expression levels
are referred to in classifying a tumor depends on the path
that the tumor takes through the tree. In general, a shorter
path will refer to fewer marker genes, so, for instance, a
call for CNS or leukemia will reference fewer genes than
a call for lung or colon. To some degree, this reflects
intrinsic differences in the level of difficulty of classifying
various malignancies. For example, CNS tumors are
readily identified by referring to just a few genes, but
because the various epithelial tumors are relatively simi-
lar to each other, a larger set of genes must be refer-
enced to make a confident call. The ability of our algo-
rithm to adaptively vary the number of genes that are
referenced depending on the difficulty of the decision is
not shared by other learning algorithms such as support
vector machines, in which a fixed set of markers are
referenced for all samples. When we report the perfor-
mance of our classifier as the error rate for a given
number of genes, we report both the total number of
distinct genes referenced for all classes and the average
number of genes referenced per individual specimen.

Error Rate Estimation

Error rates for the Whitehead data are estimated using
cross validation and training/test set validation. In cross
validation, each specimen is held out in sequence, and
the remaining specimens are used to train the classifier
(ie, they are used to select the marker genes and as the
comparison set for the nearest neighbor analysis). Then
the class of the held out sample is predicted and com-
pared to its actual class. The percentage of incorrectly
classified samples is reported as the error rate. In the
training/test set validation the 190 primary malignancies
in the Whitehead data set were combined with the 8
metastases to produce a set of 198 malignancies, which
was then subdivided (in the same way as in Ramaswamy
et al1) into 144 training samples and 54 testing samples.
The training set contained a minimum of eight instances
of every tumor class. All eight metastases were placed in
the test set. The classifier was trained on the training set,
and applied to each sample in the test set. The percent-
age of incorrectly classified samples in the test set is
reported as the error rate. To determine the error rates
when generalizing from one laboratory to another, we
trained the classifier on the 190 primary malignancies

from the Whitehead data and then applied the classifier
to the UM data and the UVA data. By training we mean
that the Whitehead samples are used to identify marker
genes, and also serve as the domain of comparison
samples for the nearest neighbor analysis. The percent-
age of incorrect classifications in the UM and UVA data
are reported as the “cross-laboratory” and “cross-labo-
ratory/cross-platform” error rates.

Results

We hypothesized that accurate and robust molecular
tumor classification, ie, prediction of site of origin, could
be achieved with a small number of genes by using a
sequential coarse-to-fine approach that classifies tumors
into increasingly specific categories before ultimately
calling a particular tumor class. For robustness and sim-
plicity, we selected a hierarchy of categories represent-
ing a very simple view of morphological relationships that
are well established in oncological pathology. Such an
approach may offer a critical advantage when the sample
size for each tissue of origin is small, because the hier-
archical structure of the classifier (the pathological/mor-
phological framework) is predetermined from expert
knowledge, and does not need to be trained to the data.
Moreover, this approach may better reflect the role of
marker genes as differentiation factors, because a key
marker gene might be expected to affect the prediction
only at the point where it has differentiation-specific rel-
evance to the underlying morphological difference. For
instance, we found that extracellular matrix genes influ-
enced the split between solid and hematolymphoid le-
sions whereas known marker genes for specific epithelial
tissues mostly enter at the epithelial split.

Internal Classification Performance

The performance of our classifier when training and test-
ing on the Whitehead data are summarized in the left
panel of Figure 2A. Using cross validation on the White-
head set of 190 primary malignant tumors, and using the
optimal number of genes (244 genes on average for one
specimen or 456 genes in total), we achieved 157 of 190
(83%) correct predictions. Using as few as 45 genes on
average per specimen (87 distinct genes in total), we
classified 150 of 190 (79%) of the tumors correctly. The
optimal result reported in Ramaswamy et al1 was 78%
correct predictions, and required more than 10,000
genes. Because the genes referenced by our method in
classifying a particular specimen comprised approxi-
mately half of the set of distinct genes used for classifying
all tumors, substantial benefit resulted from allowing the
set of marker genes to vary with the difficulty of classifi-
cation in a particular branch of the pathological tree
(Figure 1).

A distinct unbiased estimate of the prediction rate was
obtained by using a training set/testing set comparison
instead of cross validation. In this case, the optimal per-
formance of our classifier was 45 of 54 correct predic-
tions, or 83% (145 genes on average per sample or 250
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distinct genes overall), which is a similar prediction rate
using somewhat fewer genes compared to what was
found using cross validation. Because all metastatic tu-
mors were in the testing set, this analysis provides the
performance of our method on metastases when only
primary tumors are used for training. Using as few as 49

distinct genes, 7 of 8 metastatic tumors (and 42 of 54
tumors overall) were correctly classified.

In addition to thousands of genes accompanied with
some degree of annotation, the microarrays used in the
Whitehead study1 included 5844 expressed sequence
tags with little or no annotation. We hypothesized that
because many important genes characteristic of tissue-
specific differentiation have already been annotated,
classification performance would not improve substan-
tially by considering the expression levels of expressed
sequence tags. Moreover, a classifier built out of well-
annotated genes is more interpretable by biologists and
the gene expression markers are more likely to be trans-
lated into conventional immunohistochemical markers for
use by pathologists. Our algorithm produces similar error
rates regardless of whether expressed sequence tags
are considered (Figure 2).

Poorly Differentiated Neoplasms

Several of the 190 tumors in the Whitehead data set were
graded as poorly differentiated. In addition, an indepen-
dent set of 20 poorly differentiated tumors was investigat-
ed.1 In this article, it was reported that classification of
poorly differentiated tumors by molecular analysis was no
better than random assignment (6 of 20 correct classifi-
cations), leading the authors to conclude that poorly dif-
ferentiated tumors display fundamentally distinct gene
expression patterns. Our classifier performed somewhat
better on the 20 poorly differentiated tumors than the
Whitehead classifier, predicting 10 of 20 specimens cor-
rectly, although this performance on poorly differentiated
tumors was still markedly poorer than in the larger set of
all tumors. However, for 18 of the 20 poorly differentiated
tumors, our classifier was able to predict the identity of
the tumor correctly to the second level from the bottom of
the tree. In other words, poorly differentiated tumors
could be accurately classified at a relatively coarse level
(eg, Mullerian versus non-Mullerian), but it was difficult to
make the final call among a set of closely related tumor
types.

Robust Classifier Performance on Distinct
Data Sets

A more stringent evaluation of the robustness of a mo-
lecular classifier of tumors is to train the classifier on one
set of samples and then to test the classifier on an inde-
pendent set of samples, particularly if the latter set was
generated by an independent set of investigators work-
ing at a distinct laboratory site and perhaps even using a
different microarray platform. One reason for pursuing
efforts to assess the robustness of classifier performance
on distinct data sets is that even with great care, system-
atic differences (batch effects) are observed in microar-
ray data obtained in different laboratories. To determine
whether batch effects hinder accurate diagnosis with our
classifier, we trained our classifier using the Whitehead
data set and then applied it to a gene expression data set
obtained on an independent set of samples at the UM.

Figure 2. A: Within-laboratory performance of the expert classifier on the
Whitehead data. Rates of correct site prediction in the Whitehead data are
shown as a function of the average number of genes used to classify a
specimen. Rates are shown for 190 samples using cross validation with all
probe sets (line 1), 190 samples using cross validation with nonexpressed
sequence tag probe sets (line 2), 20 poorly differentiated neoplasms in
which training uses only well-differentiated neoplasms and all probe sets
(line 3), 46 samples using a 144/46 train/test split and all probe sets (line 4),
and 8 metastases using 144 primary training samples and all probe sets (line
5). B: Cross-laboratory performance of our expert classifier when trained on
the Whitehead data and tested on the UM data. Each line shows the
proportion of correct predictions for a given site [colon (C0), lung (LU),
central nervous system (CNS), ovary and uterus (MU), pancreas (PA)],
plotted against the average number of genes used to classify a neoplasm.
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The Whitehead data set was selected for training be-
cause it covered the broadest range of tumor classes [ie,
the 14 classes represented at the bottom of the tree
(Figure 1)]. The UM tumors belong to a proper subset of
these 14 classes. However, the classifier was in fact
blinded to this information, so a UM sample could con-
ceivably have been placed into any of the 14 classes in
the Whitehead data set. Incidentally, because our clas-
sifier uses correlations to compare test data to training
data, there is no need to perform a linear rescaling to
align data from different platforms. However in future
work it may be found that a nonlinear transformation is
helpful in removing certain systematic biases between
different platforms.

The cross-laboratory performance of our classifier is
shown in the right panel of Figure 2 and in Table 2. For a
wide range in the number genes used (�100 to 800), the
cross-laboratory error rates were no worse than the with-
in-laboratory error rates reported above (Table 2). Using
the optimal number of genes for each site, correct pre-
dictions were made for 60 of 60 colon tumors, 83 of 91
lung tumors, 10 of 10 pancreas tumors, and 73 of 73 CNS
tumors. Considering ovary and uterus as a single class,
113 of 119 tumors were correctly predicted. However, the
classifier had difficulty distinguishing ovarian from uterine
adenocarcinomas. All of the UM uterine tumors and more
than half of the UM ovarian tumors were predicted to be
uterine in origin. Evidently, certain genes that reproduc-
ibly allowed the ovarian and uterine cancers in the White-
head data to be distinguished from one another did not
generalize to the UM data set. This may be a conse-
quence of differences in histological subtype distribution
between the Whitehead and UM groups of ovarian and
uterine tumors (ie, inclusion of many endometrioid ovar-

ian carcinomas, as well as serous, clear cell, and muci-
nous carcinomas in the UM ovarian tumor set).

We also considered the performance of our classifier
on poorly differentiated specimens from the UM data set
(Table 2). For ovary, CNS, and lung cancers, prediction
rates for poorly differentiated specimens closely matched
the prediction rate for all specimens. For colon and uterus
cancers, only a small number of poorly differentiated
specimens were available, but there were no errors
among them.

A more difficult test of the utility and robustness of the
classifier might be to train the classifier on the Whitehead
data and then test it on a set of tumor samples that have
been characterized not only at a different research site,
but also using a different microarray platform. With this
goal in mind, we examined data collected at the UVA on
141 tumors representing 10 of the 14 sites of origin in the
Whitehead data set.3 The UVA data were generated us-
ing the U95A array, which is a more recent version of
oligonucleotide array compared to the HuGeneFL/
Hu35KsubA arrays. The U95A array contains probe sets
for many of the same genes that are present on earlier
versions of the Affymetrix arrays, but in many cases the
target oligonucleotide sequences have been changed.
Despite the differing platforms, we were able to achieve
prediction rates with the UVA tumors nearly as high as
those obtained by training and testing on the Whitehead
data (Table 3). Using the optimal number of genes (an
average of 61 per specimen), 103 of 141 (73%) of the
malignancies were correctly classified. Combining ovary
and uterus tumors into a common class, 115 of 141 (82%)
of the malignancies were correctly classified.

The error rate that we obtained by training on the
Whitehead data and testing on the UVA data are approx-
imately comparable to the best internal classification
rates found for the Whitehead data. This suggests that
DNA microarray measurements of gene expression are
sufficiently reproducible to be used for cancer classifica-
tion across laboratories and platforms, and that our
method is sufficiently robust to be used for this purpose.
However, the error rate of our classifier for the UVA sam-
ples was substantially higher than that reported in the
initial study of the UVA samples,3 in which both testing
and training used the UVA data. This may reflect system-
atic differences between the Whitehead and UVA data,
information loss because of our lack of access to U95A
genes that are not present on the earlier platform, or

Table 2. Cross-Laboratory Performance Using the UM Data

Tumor
type

All tumors, All tumors, PD tumors, PD tumors,
no. correct % correct no. correct % correct

Colon 60/60 100 3/3 100
Lung 83/91 91 22/25 88
Ovary* 107/113 95 60/61 98
Uterus 6/6 100 2/2 100
Pancreas 10/10 100 0/0 NA
CNS 73/73 100 21/21 100

*Denotes the performance of ovary tumors when allowing uterus to
be considered a correct classification.

Table 3. Cross-Laboratory Performance Using the UVA Data

BR PR LU CO LY ME BL UT LE KI PA OV M CNS

BR 9 1 1 0 0 0 0 2 0 1 0 12 0 0
PR 0 26 0 0 0 0 0 0 0 0 0 0 0 0
LU 0 0 9 2 0 0 0 1 0 0 1 0 1 0
CO 0 0 0 22 0 0 0 0 0 1 0 0 0 0
BL 1 0 0 0 0 0 7 0 0 0 0 0 0 0
KI 0 0 2 0 0 0 0 0 0 9 0 0 0 0
PA 0 0 0 1 0 0 0 0 0 1 4 0 0 0
OV 0 0 0 0 0 0 0 10 0 0 0 17 0 0

BR, breast; PR, prostate; LU, lung; CO, lung; LY, lymphoma; ME, melanoma; BL, bladder; UT, uterus; LE, leukemia; KI, kidney; PA, pancreas; OV,
ovary; PM, mesothelioma; CNS, brain. Actual tumor type is designated in the first column and the predicted tumor type designated across the first row.
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generally lower measurement precision on the earlier
gene expression analysis platform. We believe that the
greater error rate is not likely to be because of our choice
of the nearest neighbor method rather than a support
vector machine for making the decision at each node. In
fact, when we applied a conventional nearest neighbor
method to the UVA data (not the tree-based approach
that we emphasize here), we obtained very high accu-
racy rates. For example, using a total of 40 marker genes,
135 of 141 tumors are correctly classified.

Marker Genes

The marker genes at each split in the tree include numer-
ous genes likely to represent differentiation related fac-
tors responsible for generating the phenotypic differ-
ences among the neoplasms of the child nodes (Table 4).
For instance, biological differences between solid and
hematolymphoid malignancies may be critically influ-
enced by expression of genes encoding extracellular
matrix proteins and intermediate filaments in solid tumors
(ie, collagen and keratins 8, 18, and 19). Examples of
other marker genes of note at various splits of the tree
include: keratins 8 and 18, mucin 1, and epithelial-spe-
cific transcription factor ESE-1b (epithelial tumors); cal-
modulin and kinesin family member 5 (CNS); tyrosinase
and melan-A (melanoma), estrogen receptor (ER) (breast
and Mullerian); prostate-specific antigen and prostatic
secretory protein 57 (prostate); various pulmonary sur-
factant-associated proteins (lung); trefoil factor 1 (pan-
creas); carcinoembryonic antigen precursor (colon);
CD20 receptor (lymphoma). Several of these marker
genes (eg, melan-A10 and CD2011) encode proteins that
are clinically accepted diagnostic markers for the re-
spective tumor types, suggesting the tree-based classi-
fication approach may be a useful discovery platform for
new clinically useful markers. However, we note that be-
cause all marker identification was performed using the
Whitehead data, which included only �10 specimens per
class, these markers should not be viewed as definitive or

optimal. The complete list of the marker genes selected
by the classifier is available as supplementary material.

Because we use the data to select marker genes and
do not use external knowledge about existing markers, a
number of marker genes now conventionally used by
pathologists were not identified by the classifier. Con-
versely, a few of the genes selected as markers by the
classifier may not ultimately prove useful for classifica-
tion. We expect that 50 to 100 tumors of each type will
likely be necessary to define a highly reliable set of
marker genes. A related issue is that some of the markers
selected by the classifier are not intimately related to the
biological properties of the malignant cells in a given
tumor specimen. Rather, some of the markers are reflec-
tive of certain nonneoplastic cell populations known to be
present in certain types of primary tumors. Such markers
are highly unlikely to be useful in classifying metastatic
tumors. Examples of this phenomenon are the insulin and
glucagon genes, which may be found to be highly ex-
pressed in primary pancreatic tumor specimens because
of the presence of contaminating normal pancreatic islet
cells alongside the pancreatic adenocarcinoma cells.
The insulin and glucagon genes are not expected to be
expressed in metastases from any of the tumor types in
this study, so they will not introduce any bias into classi-
fication. However, such genes might cause more relevant
pancreatic carcinoma markers to be missed in the initial
analysis. The issue is not related to statistical analysis,
and can only be addressed by using more highly purified
training specimens or by introducing additional biological
information into the marker gene selection.

Post Hoc Analysis of Misclassified Tumors

Because of the simple structure of our classifier, it was
straightforward to pinpoint the gene expression features
of a misclassified tumor that caused the classifier to fail.
Close inspection of these failures might lead to improve-
ments in marker gene selection or suggest changes in
experimental protocols. Although the gene expression

Table 4. Representative Marker Genes

Tumor class Select marker genes

Solid Keratins 8, 18, and 19; collagen, type 1, alpha 2
Hematolymphoid CD37 antigen; T-cell receptor, beta cluster; lymphocyte cytosolic protein 1
Mesothelioma Keratins 5, 8, 18, 19; calretinin
Epithelial Keratins 8 and 18; epithelial-specific transcription factor ESE 1b; mucin 1
CNS Growth/differentiation factor 1; calmodulin; kinesin family member 5
Melanoma S100 alpha and beta proteins; tyrosinase; differentiation antigen melan-A
Lymphoma CD20 receptor; CD79 beta antigen
Leukemia Terminal transferase; transcription factor ETR101
Mullerian Estrogen receptor; cellular retinol-binding protein
Non-Mullerian Keratin 13; pulmonary surfactant-associated protein SP-A; carcinoembryonic antigen precursor
Ovary Receptor of retinoic acid
Uterus Hair keratin hHb6; alpha1 (XI) collagen
Breast Estrogen receptor; androgen receptor; mucin 6; prolactin-induced protein
Prostate Prostate specific antigen; prostatic secretory protein 57; prostatic acid phosphatase
Lung Pulmonary surfactant-associated proteins A, B, C1
Colon Carcinoembryonic antigen precursor; trefoil factor 3; keratin 8
Bladder Keratins 13 and 17; Hep27 protein
Kidney Insulin-like growth factor 2
Pancreas Mucin 5, subtype B; trefoil factor 1
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characteristics of atypical tumors might reflect in part
morphological misclassification of certain tumors, a con-
siderably more interesting possibility is that the more
enigmatic patterns of gene expression seen in atypical
tumors may reflect important biological features not fully
appreciated through morphological evaluation.

The misclassified ovarian (n � 6) and lung (n � 8)
tumors were reviewed to uncover any unusual morpho-
logical features that might explain the classification errors
(Table 5). Of the six ovarian tumors, five were well or
moderately differentiated mucinous tumors with intestinal
type differentiation, thereby explaining their classification
as colonic tumors. Interestingly, our approach uncovered
an apparently aberrant gene expression pattern in an
ovarian tumor, which classified in our method as a CNS
tumor. Subsequently, the tumor was further evaluated
using routine immunohistochemical diagnostic markers.
This tumor, obtained from the Cooperative Human Tissue
Network, lacked expression of high- and low-molecular
weight cytokeratins and expressed glial acidic fibrillary
protein (GFAP, a marker of glial differentiation12) and ER.
This immunohistochemical profile implies that this tumor
was not a typical ovarian adenocarcinoma, as originally
classified by the pathologists at the originating hospital
and the Cooperative Human Tissue Network (CHTN).
Unfortunately, we were unable to pursue further morpho-
logical classification of the tumor, because only a very
small portion of frozen tissue from the original large ovar-
ian tumor specimen was available to us. Nevertheless,
the case is an interesting and potentially quite instructive
one, because our approach was able to identify and
validate aberrant gene expression in this tumor, thereby
explaining the basis for its molecular classification as a
CNS tumor.

Eight of the primary lung tumors were misclassified,
two as pancreas, three as uterine, two as breast, and one
as lymphoma. Pathological review of these cases re-
vealed a few interesting observations (Table 5). Misclas-
sified tumors spanned the complete differentiation spec-
trum and included well, moderate, and poorly
differentiated tumors. The lung tumor classified as lym-

phoma contained an intense lymphoplasmacytic infiltrate
with tumor-infiltrating lymphocytes, thereby offering an
explanation for its misclassification. Two of the tumors
that classified as pancreatic were well-differentiated
bronchioloalveolar carcinomas. The remaining tumors
that classified as uterine or breast were moderately to
poorly differentiated and included adenocarcinoma,
large-cell neuroendocrine carcinoma, and large-cell un-
differentiated carcinoma and did not show any extraordi-
nary morphological variation. As it is likely the training set
for lung did not contain many of the latter tumor types,
these classification errors are not entirely unexpected.

Twelve UVA breast samples were misclassified as
ovary. Although we do not have access to the UVA pri-
mary specimens, we can investigate the basis for this
misclassification using gene expression. We found that
several Mullerian marker genes that were highly ex-
pressed in ovary and uterus compared to other epithelial
tumor types in the Whitehead data did not show this
pattern of expression in the UVA data. In particular, sev-
eral of these marker genes were highly expressed in
some or all of the 12 UVA breast errors. These include
lysyl hydroxylase (PLOD), highly expressed in all 12 UVA
breast errors; cellular retinol-binding protein, highly ex-
pressed in 11 of 12 UVA breast errors; and ribosomal
protein L32 (RPL32), highly expressed in 9 of 12 UVA
breast errors. Similarly, certain marker genes for non-
Mullerian epithelial tumors failed to show high expression
in UVA breast tumors, including glutamine synthase
(GLUL), which was weakly expressed in 9 of 12 UVA
breast errors.

Discussion

Robust Training with Small Sample Sizes

Previous studies in which tissue of origin for human tu-
mors was predicted from microarray data have yielded
error rates ranging from 10 to 20%1–3 with 10 or more
classes to 5% or less2 for a study with three classes. The

Table 5. Post Hoc Analysis of Misclassified Ovarian and Lung Tumors

Tumor
type Molecular classification Histology Differentiation

Ovary Solid, epithelial, non-Mullerian, colon ACA, mucinous, intestinal type Moderate
Ovary Solid, epithelial, non-Mullerian, colon ACA, mucinous, mixed intestinal and

endocervical type
Well

Ovary Solid, epithelial, non-Mullerian, colon ACA, mucinous, intestinal type Well
Ovary Solid, epithelial, non-Mullerian, colon ACA, mucinous, intestinal type Well
Ovary Solid, epithelial, non-Mullerian, colon ACA, mucinous, intestinal type Moderate
Ovary Solid, CNS Spindle and epithelioid neoplasm Poor
Lung Solid, epithelial, non-mullerian, pancreas ACA, bronchioloalveolar, mucinous type Well
Lung Solid, epithelial, non-mullerian, pancreas ACA, bronchioloalveolar type Well
Lung Solid, epithelial, mullerian, uterus ACA, papillary Moderate
Lung Solid, epithelial, mullerian, uterus ACA Moderate
Lung Solid, epithelial, non-mullerian, breast ACA Poor
Lung Hematolymphoid, lymphoma ACA with intense lymphoplasmocytic

response
Moderate

Lung Solid, epithelial, breast Large cell neuroendocrine carcinoma Poor
Lung Solid, epithelial, uterus Large cell undifferentiated carcinoma Poor

ACA, adenocarcinoma.
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best performance was achieved in the study that had the
fewest tumor classes and by far the greatest number of
samples per class,2 perhaps because training a complex
classifier algorithm using a data set containing a small
number of tumors of each type is likely to produce un-
stable results. However, as found here, small sample
sizes and a large number of classes need not preclude a
high level of performance. This suggests that imposing a
predetermined structure, ie, the pathological framework,
onto the classifier mechanism as we do herein has the
potential to stabilize the training process, leading to a
substantial reduction in training variability and improved
performance with small data sets. Although our classifi-
cation performance is satisfactory, because of the small
number of specimens per class we are not confident that
we have found the optimal set of marker genes. In fact it
is a great challenge for any statistical procedure to reli-
ably identify the most informative marker genes unless a
set of samples covering the full range of biological vari-
ability is available for each class.

As our initial implementation, we used a decision tree
based exclusively on conventional ontological relation-
ships among tissue classes. As more data become avail-
able, it is almost certain that it will be possible to improve
on the performance of our method by modifying the tree
to accommodate new divisions and subtypes that be-
come apparent from the expression data. For example,
there is already evidence that ovarian tumors exhibit
distinct expression patterns according to histological
type, and that one of the ovarian histotypes (mucinous)
may be as similar to colon specimens as it is to other
ovarian specimens. This suggests that in certain cases it
may be helpful to include distinct nodes in the tree for
different histotypes, even when the ultimate goal is to
classify at the organ level. Taking this idea further, it
would be possible to use a statistical tree-fitting proce-
dure such as Classification and Regression Trees (CART)
to construct a tree based exclusively on the experimental
expression data. Our experience with such methods in-
dicates, however, that a large number of samples must
be used to produce stable results if no previous con-
straints are imposed on the tree. Thus we can view the
proposed methodology as an effective way to reduce the
search space when only a modest number of training
samples are available.

Error Depth and Poor Differentiation

An advantage of the coarse-to-fine formulation of our
classifier is that it allows a notion of error depth to be
introduced, whereby errors that occur higher in the tree
(Figure 1) are considered to be more serious than errors
at the terminal nodes. In some cases, tumors arising from
closely related terminal nodes might have very similar or
identical clinical management, potentially mitigating the
consequences of a misdiagnosis, whereas a mistake
higher in the tree could lead to a significantly lower
chance of successful therapy and outcome for the pa-
tient.

Error depth is also relevant for understanding the de-
gree of difference between metastatic tumors, poorly

differentiated primary tumors, and well-differentiated pri-
mary tumors. In the UM samples, poorly differentiated
tumors were correctly classified at a comparable rate to
moderately and well-differentiated specimens. Poorly dif-
ferentiated primary tumors in the Whitehead data were
qualitatively harder to classify, although, using our ap-
proach, poorly differentiated tumors were usually cor-
rectly predicted to the second level from the bottom of the
tree. This is consistent with the notion that poorly differ-
entiated malignancies are less likely to express genes
highly specific to their corresponding normal tissue of
origin (eg, anaplastic thyroid carcinoma does not ex-
press thyroid-related genes such as thyroglobulin13).
However, rather than demonstrating fundamentally dis-
tinct patterns of gene expression, we found that poorly
differentiated tumors often continued to express genes
characteristic of their origin. Therefore, our analysis does
not support a hypothesis suggested in Ramaswamy et al1

that poorly differentiated tumors are fundamentally differ-
ent and may have distinct natural histories from their well
and moderately differentiated counterparts. An alterna-
tive view suggested by our results is that the relatively
modest differences in gene expression patterns in mor-
phologically related tumors spanning the spectrum from
well to undifferentiated may reflect differences in geno-
type, not major differences in natural history or cell of
origin.

Selecting the Optimal Number of Genes

When evaluating an algorithm and a data set, we pro-
duced curves that show the error rate as a function of the
number of marker genes (Figure 2). It is typical of most
statistical learning algorithms that initially the error rate
improves as the number of marker genes increases from
small to moderate, but as the number of marker genes
becomes large the algorithm overfits the data and the
generalization performance actually becomes worse.
Hence, for example, in the UM lung tumors the perfor-
mance of our method suffers when more than 1000 genes
are used. The support vector machine has the appealing
feature of being relatively resistant to overfitting (see
Figure 5 in Ramaswamy et al1). However, for reasons that
we describe here this characteristic may provide little
practical benefit. In practice a specific number K of
marker genes must be selected for use by our method.
This number in turn determines the actual number of
distinct genes used by the method, which varies with the
path that a sample follows through the tree. A simple
method for selecting K would be to run a pilot study and
select a value for K that is slightly larger than the esti-
mated optimum (to be conservative). Because our
method shows nearly uniform performance over a full
order of magnitude (�from 100 to 1000 genes) there is
little risk of producing results that are significantly worse
than when using the optimal number of genes.

Adaptive Reference of Marker Genes

A unique feature of our method is its ability to use differ-
ent sets of marker genes and different numbers of marker
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genes for classifying different specimens. This adaptivity
is not possessed by other methods that are commonly
used to perform classification with gene expression data.
Generally, with other classification algorithms all markers
must be assayed on a specimen before the classification
rule can be applied. We found that only approximately
half of the total set of marker genes was referenced by
our method in classifying a typical specimen. This ratio
would be expected to further decrease as the number of
cancer classes under consideration grows. For example,
markers for particularly rare cancers should only be as-
sayed if the expression of other more broadly useful
markers suggests that the rare classification is indeed a
possibility.

Multivariate versus Univariate Marker Selection

Our findings bear on whether complex gene selection
methods are essential for high performance. In the White-
head study,1 backward selection was found to outper-
form gene shaving14 and other methods of gene selec-
tion. All of these gene selection methods are designed to
identify sets of genes that perform well as a group, either
through the presence of informative interactions or by
minimizing redundancy. In contrast, we select each gene
individually based on its marginal association with the
tumor categories. Although there are good reasons in
principle for believing that genes selected as a group
may outperform genes selected individually (ie, to iden-
tify statistical interactions that reflect molecular interac-
tions), the current generation of statistical variable selec-
tion techniques may not be stable or powerful enough to
reliably exploit such phenomena unless the sample size
is very large.

One possible explanation for the observation that our
method performs well without using multivariate gene
selection methods may lie in the nature of the sequential
coarse-to-fine decision process that we use. For exam-
ple, consider the ER gene that is often highly expressed
in breast, ovary, and uterus tumors. For a nonsequential
classifier (such as the support vector machine) that at-
tempts to directly place a sample into 1 of the 14 classes,
ER expression must be considered jointly with the pres-
ence of ovary/uterus markers or the absence of other
breast markers to place a tumor in a specific class. On
the other hand, once a tumor has been predicted to lie in
the epithelial/non-Mullerian node, high expression of ER
is sufficient to call the tumor as breast, whereas if a tumor
is predicted to lie in the epithelial/Mullerian node, ER
expression is not informative and completely different
markers must be used. In either case, ER expression
alone is informative whenever it appears as a marker for
a specific node.

Future Prospects

Our findings suggest that the expression levels of rela-
tively few genes can be used to accurately predict the
origin of human malignant tumors. However, additional
work is required to fully validate the utility of gene expres-

sion-based cancer diagnostics. One important issue will
be to study how the difficulty of the problem increases as
the set of tumor classes is expanded to more realistically
reflect the myriad types of human tumors. Although Fig-
ure 1 covers a reasonable diversity of malignant tumors,
expression data for other important cancers, such as
endocrine tumors, sarcomas, pediatric small round blue
cell tumors, the other gastrointestinal tract carcinomas
(ie, esophagus and stomach) and head and neck tumors,
are not available to us at present. Another crucial issue is
the size of the training set. We used the Whitehead data
set for training the classifier because it covered the great-
est number of disease classes. However, with only �10
instances of each type, the Whitehead data set does not
provide a comprehensive picture of the variation within
different sites of origin. For example, the UM data pro-
vides more than 100 ovary tumors covering the four main
histological types of ovarian cancer as well as variation in
stage and grade. We expect that optimal performance in
terms of accuracy and robustness will only be attained
when comparable sets of tumors are profiled for all sites
of origin.

Further work will also be required to determine the best
set of marker genes for cancer class prediction in a
clinical setting, in which the paramount goals are mea-
surement robustness and generalization from primary to
metastatic specimens. The analysis framework pre-
sented here demonstrates that accurate prediction can
be achieved by processing the information in a relatively
small number of gene expression levels in a simple way.
Nevertheless, our results are limited by our exclusive use
of the Whitehead data for marker identification. Because
the Whitehead set only contains �10 specimens per
class, the specific genes identified by our method in this
study must not be taken as definitive.

Our generalization results suggest that DNA microar-
ray measurements of gene expression are sufficiently
stable between laboratories and platforms to provide a
reasonably high degree of predictive accuracy across
batches. The approach we took here involved training the
classifier on the Whitehead data, and then using the
trained classifier to predict the classes for individual sam-
ples from other data sets. We did not use any normaliza-
tion or batch correction to align the data sets. A different
approach would be to consider either the UM or UVA
samples as set, and then attempt to identify systematic
differences relative to the Whitehead set that may be
removed before analysis. Such batch correction may
offer an improvement over the one sample at a time
approach considered here, although our results present
a surprisingly high baseline.

Because this study remains far from clinical implemen-
tation, we note that we have opted for simplicity as op-
posed to optimality in designing our algorithm. Our pri-
mary goal was to demonstrate that a small amount of
pathological knowledge can be used to improve signifi-
cantly on the “one versus all” and “all pairs” classification
strategies used in previous work. The sequential, biolog-
ically informed approach represented in Figure 1 pro-
vides a framework in which a number of optimizations
could be explored. For instance, the gene selection strat-
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egy could be extended to incorporate variation in expres-
sion as well as changes in the magnitude of expression,
and genes with specifically low expression in addition to
those with specifically high expression could be in-
cluded. We also have not explored the flexibility that this
method offers in allowing different numbers of marker
genes to be used at different splits. Presumably, equal or
better performance could be achieved with fewer genes
if more markers were used at the most difficult divisions.
Also, although we selected the nearest neighbor algo-
rithm for its simplicity, the classification at each node
could be performed using any statistical learning proce-
dure, including support vector machines. Another prom-
ising area for improvement would be to calibrate the
different microarray platforms so that differences be-
cause of probe design are minimized. In summary, our
key point is not to favor one statistical learning algorithm
over another, but rather that in a many-class problem in
which the class differences are heterogeneous, and sub-
stantial information about the classes is available, it is valu-
able to consider a sequential decision strategy that makes
use of known biological relationships among the classes.

This study has broad implications for the molecular
classification of human tumors. By mimicking the strate-
gies used by pathologists, we demonstrate that patho-
logical knowledge based on the accumulated work from
the last 100 years on tumor morphology and global gene
expression data can be effectively combined, resulting in
accurate molecular classification with fewer genes and
without the need for black box-type sophisticated meth-
ods of statistical learning.
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