NASA Contractor Report 181679

ICASE REPORT NO. $88-40$

ICASE

ACCURATE MULTIGRID SOLUTION OF THE EULER
EQUATIONS ON UNSTRUCTURED AND ADAPTIVE MESHES

Dimitri J. Mavriplis

LibRAKI EUPY

JUL 26 1988

Contract No. NAS 1-18107
June 1988
LANGLEY RESEARCH CENTER
librafiy ncisa
HAMPTON. VIRGINIA

INSTITUTE FOR COMPUTER APPLICATIONS IN SCIENCE AND ENGINEERING NASA Langley Research Center, Hampton, Virginia 23665

Operated by the Universities Space Research Association

NMSN

National Aeronautics and Space Administration

ACCURATE MULTIGRID SOLUTION OF THE EULER EQUATIONS ON UNSTRUCTURED AND ADAPTIVE MESHES

Dimitri J. Mavriplis
Institute for Computer Applications in Science and Engineering
NASA Langley Research Center
Hampton, VA

Abstract

A method for accurately solving inviscid compressible flow in the subcritical and supercritical regimes about complex configurations is presented. The method is based on the use of unstructared triangular meshes in two dimensions, and special emphasis is placed on the accuracy and efficiency of the solutions. High accuracy is achieved by careful scaling of the artificial dissipation terms, and by reformulating the inner and outer boundary conditions for both the convecfive and dissipative operators. An adaptive grid refinement strategy is presented which enhances the solution accuracy for complex flows. When coupled with an unstructured multigrid algorithm, this method is shown to produce an efficient solver for flows about arbitrary configurations.

This work was supported under the National Aeronautics and Space Administration under NASA Contract No. NAS1-18107 while the author was in residence at the Institute for Computer Applications in Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665.

1. INTRODUCTION

The use of unstructured triangular meshes in two-dimensions and tetrahedral meshes in three dimensions is becoming more widely accepted as a viable means for computing compressible flows about complex geometries. Various on-going research efforts in this area can be found in the literature $[1,2,3]$. The main advantage of unstructured meshes is that they provide a flexible manner for discretizing topologically complex domains without recourse to large scale domain decomposition, which is necessary when structured meshes are employed [4]. They also provide a natural setting for the use of adaptive meshing. In fact, previous efforts of adaptive meshing on structured quadrilateral meshes have demonstrated the need for an unstructured-data approach [5].

On the other hand, unstructured mesh solvers have most often fallen short of their structured mesh counterparts in terms of efficiency and accuracy. The efficiency of these solvers is hindered by the use of indirect addressing required by random data-sets, and by generally less efficient solution algorithms. The problem due to indirect addressing can be somewhat alleviated by the use of hardware gather-scatter functions available on an increasing number of present-day supercomputers. Recent work by the author [6,7] has also resulted in an unstructured multigrid algorithm, which has been shown to produce convergence rates comparable to those obtained with current structured mesh solvers. It would thus seem that unstructured mesh solvers are becoming increasingly competitive with structured mesh solvers.

However, the accuracy of unstructured mesh solutions has seldom been able to match that delivered by structured mesh solvers. This issue has in fact been a subject of recent debate. In a recent report, Roe [8] argues that, in general, a piecewise linear discretization of the Euler equations on an arbitrary unstructured mesh results in locally first-order accuracy. Similarly, finite-element proofs of accuracy are most often limited to elliptic equations, and contain constraints on the geometry of the elements. On the other hand, there is much practical evidence indicating that global second-order accuracy can be achieved on unstructured meshes for the Euler equations [9,10]. While much of the accuracy debate for the Euler equations centers around the discretization of the convective terms on arbitrary meshes, it is found in practice that the solution accuracy is most significantly affected by:
a) The "quality" of the mesh (smoothness, number of conncctions at a point)
b) The construction of the artificial dissipation terms
c) The formulation of the inner and outer boundary conditions

It is the intent of this work to demonstrate how careful attention to these areas can produce solutions of equivalent accuracy with regards to current structured mesh solvers. An adaptive meshing procedure is also described, which produces smoothly varying high resolution meshes. When combined with the unstructured multigrid approach, this method produces efficient and accurate solutions of flows around complex configurations.

2. DISCRETIZATION OF THE GOVERNING EQUATIONS

The variables to be determined are the pressure, density, Cartesian velocity components, total energy and total enthalpy denoted by p, ρ, u, v, E, and H, respectively. Since for a perfect gas we have

$$
\begin{equation*}
E=\frac{P}{(\gamma-1) \rho}+\frac{u^{2}+\nu^{2}}{2}, \quad H=E+\frac{P}{\rho} \tag{1}
\end{equation*}
$$

where γ is the ratio of specific heats, we need only solve for the four variables $\rho, \rho u, \rho \nu$, and
ρE.
These values are determined by solving the Euler equations, which in integral form read:

$$
\begin{equation*}
\frac{\partial}{\partial t} \iint_{\Omega} w d x d y+\int_{\partial \Omega}(f d y-g d x)=0 \tag{2}
\end{equation*}
$$

where Ω is a fixed area with boundary $\partial \Omega, \mathrm{x}$ and y are Cartesian coordinates, and

$$
w=\left[\begin{array}{l}
\rho \tag{3}\\
\rho u \\
\rho v \\
\rho E
\end{array}\right] \quad f=\left(\begin{array}{l}
\rho u \\
\rho u^{2}+p \\
\rho u v \\
\rho u H
\end{array}\right] \quad g=\left(\begin{array}{l}
\rho v \\
\rho v u \\
\rho v^{2}+p \\
\rho v H
\end{array}\right]
$$

The w variables are stored at the vertices of each triangle. The control volume for a vertex i is defined as the union of all triangles having a vertex at i, as shown in Figure 1. The boundary flux integral in equation (2) is approximated by first calculating the values of the fluxes f and g at the nodes on the outer boundary of this control volume. These can then be integrated around the control volume boundary by assuming that on each edge, the value of the flux can be taken as the average of the two values on either end of the edge. This corresponds to a finitevolume formulation using the trapezoidal rule of integration. It can also be shown to be equivalent to a piecewise linear Galerkin approximation, with a lumped mass matrix [1].

Additional dissipative terms are required. These are formulated as a blend of an undivided Laplacian operator in the flow variables, and an undivided biharmonic operator. The biharmonic dissipation is formally third-order accurate on regular meshes and is applied throughout the flow-field. The Laplacian dissipation is formally first-order accurate on regular meshes and is applied only in the vicinity of a shock, where it is needed to prevent oscillations. This adaptive control of the Laplacian dissipation is achieved by multiplying it by a Laplacian of the pressure, which is of order unity near a shock, and remains small elsewhere. This formulation of the dissipation represents an extension of the blended second and fourth differences originally proposed by Jameson, Schmidt, and Turkel [11]. While better shock resolution can be obtained with various upwind based methods [3,12], the present formulation is generally better suited for explicit schemes and less expensive to compute. This, in turn, suggests that increased accuracy may otherwise be obtained by adaptive refinement of the mesh in critical areas of the flow-field.

3. INTEGRATION TO A STEADY-STATE

Discretization of the Euler equations in space transforms the governing equations into a set of coupled ordinary-differential equations which must be integrated in time to obtain the steady-state solution. Thus, equation (2) becomes the set

$$
\begin{equation*}
S_{i} \frac{d w_{i}}{d t}+\left[Q\left(w_{i}\right)-D\left(w_{i}\right)\right]=0, \quad i=1,2,3, \ldots \tag{4}
\end{equation*}
$$

where S_{i} is the area of the control volume i , and is independent of time. The convective operator $Q(w)$ represents the discrete approximation to the flux integral in (2), and the dissipative operator $D(w)$ represents the artificial dissipation terms. These equations are integrated in time using a fully explicit 5 -stage hybrid time-stepping scheme, where the operator $Q(w)$ is evaluated at each stage in the time step, and the operator $D(w)$ is only evaluated in the first two stages, and then frozen at that value. Thus we advance in time as

$$
w^{(0)}=w^{n}
$$

$$
\begin{align*}
w^{(1)} & =w^{(0)}-\alpha_{1} \frac{\Delta t}{S}\left[Q\left(w^{(0)}\right)-D\left(w^{(0)}\right)\right] \\
w^{(2)} & =w^{(0)}-\alpha_{2} \frac{\Delta t}{S}\left[Q\left(w^{(1)}\right)-D\left(w^{(1)}\right)\right] \\
w^{(3)} & =w^{(0)}-\alpha_{3} \frac{\Delta t}{S}\left[Q\left(w^{(2)}\right)-D\left(w^{(1)}\right)\right] \tag{5}\\
w^{(4)} & =w^{(0)}-\alpha_{4} \frac{\Delta t}{S}\left[Q\left(w^{(3)}\right)-D\left(w^{(1)}\right)\right] \\
w^{(5)} & =w^{(0)}-\alpha_{5} \frac{\Delta t}{S}\left[Q\left(w^{(4)}\right)-D\left(w^{(1)}\right)\right] \\
w^{n+1} & =w^{(5)}
\end{align*}
$$

where w^{n} and w^{n+1} are the values at the beginning and the end of the nth time step. The standard values of the coefficients are

$$
\alpha_{1}=1 / 4 \quad \alpha_{2}=1 / 6 \quad \alpha_{3}=3 / 8 \quad \alpha_{4}=1 / 2 \quad \alpha_{5}=1
$$

This scheme represents a particular case of a large class of hybrid time-stepping schemes, which has been specifically designed to produce strong damping characteristics of highfrequency error modes. This is a desirable property when a multigrid algorithm is to be employed.

The unstructured multigrid algorithm, which has previously been described in detail $[6,7,9]$, is used to accelerate convergence of the fine mesh solution to a steady state. This is achieved by repeatedly time-stepping on a sequence of coarse and fine unstructured meshes. The various meshes of the sequence are assumed to be independent of one another, and the pattern of transferring variables back and forth between the various meshes is determined in a preprocessing stage, where an efficient tree-search algorithm is employed. Convergence to a steady-state is also accelerated by using the maximum permissible time step at each point in the flow-field, as determined by local stability analysis, by the use of enthalpy damping [11], and implicit residual averaging [9].

4. FORMULATION OF THE DISSIPATION

The artificial dissipation is constructed as a blend of undivided Laplacian and biharmonic operators. For subcritical flow, only biharmonic dissipation is required. This operator is constructed by first forming an approximation to a Laplacian in the flow variables at each node according to :

$$
\begin{equation*}
d w_{i}=\sum_{k=1}^{n}\left[w_{k}-w_{i}\right] \quad \text { or } \quad d w_{i}=\sum_{k=1}^{n} w_{k}-n w_{i} \tag{6}
\end{equation*}
$$

w represents the flow variables as given in equation (3), with the exception of the last term, where w is taken as the total enthalpy rather than the total energy, in order to preserve a constant total enthalpy in the steady-state solution. k represents the neighbors of node i, the total number of which is n , as shown in Figure 1. On a cartesian grid, this corresponds to the standard five-point finite difference formula. The biharmonic dissipation is then formed by repeating the above step:

$$
\begin{equation*}
q w_{i}=\varepsilon \sum_{k=1}^{n}\left[d w_{k}-d w_{i}\right]\left[\frac{A_{k}+A_{i}}{2}\right] \tag{7}
\end{equation*}
$$

where A_{i} is given by

$$
\begin{equation*}
A_{i}=\int_{\partial \Omega}|\vec{u} \cdot \vec{d} \vec{l}+c| \vec{d} \| \mid \tag{8}
\end{equation*}
$$

and ε is an empirically determined coefficient. As in the structured mesh counterpart, this dissipation is independent of the time step. The two-dimensional Euler equations have four eigenvalues, i. e. $u, u, u+c, u-c$, u being the local fluid velocity, and c the local speed of sound. The above construction of A_{i} represents the maximum eigenvalue $\mid u l+c$ integrated around the boundary of the control volume for node i . This is consistent with the finite-volume formulation and also provides an isotropic value for scaling the dissipation with the maximum local eigenvalue about arbitrarily shaped control volumes. Furthermore, by averaging A_{i} with A_{k}, the dissipation is conservative in the w quantities. This can be seen by noting that for each contribution to the summation for node i in equations (6) and (7), an equivalent but opposite term will appear in a similar summation for node k . The Laplacian dissipation required for supercritical flows is constructed in an analogous manner.

5. BOUNDARY CONDITIONS

The specific treatment of both convective terms and dissipative terms at both inner and outer boundaries was found to have a significant effect on the solution accuracy. For a vertex scheme, values are computed on the boundaries. The boundary control volumes resemble one half of a regular inner point control volume, as shown in Figure 2.

For a vertex discretization of the Euler equations, wall boundary conditions may be applied in several manners. The weak form, consists of simply setting the normal components of the f and g fluxes in equations (3) to zero, except for the pressure terms in the momentum equations. In this formulation however, the velocities calculated on the boundary are not necessarily tangential to the wall. A stronger formulation consists of explicitly setting these velocities to be tangential to the wall. However, for a discretized representation of the body, the tangent at a point is ill defined. In practice, a tangent can be defined as the line connecting the two neighboring boundary points. For curved boundaries on unequally spaced meshes, and for boundaries of varying curvature, this definition of the tangent will yield non-zero fluxes through the faces of the wall. Hence, in addition to setting the velocities tangential to the wall as defined above, the fluxes through the wall are also set to zero. In general, the resulting flux balance for the two momentum equations at the wall will not be satisfied. However, it is the combination of the flux balance and the velocity corrections at the boundary which sum to zero at convergence. In itself, this formulation of the inner boundary condition has only a moderate effect on the solution accuracy. However, the level of dissipation needed to guarantee convergence with this formulation is an order of magnitude smaller than with the weak formulation. It has been found that, as the level of dissipation is lowered, odd-even decoupling of the solution does not occur. Rather, as the convergence degrades, the solution begins to exhibit lowfrequency oscillations. Since high-frequency oscillations may be observed on triangular meshes when the weak formulation of the boundary condition is employed, and since they also occur when the strong formulation is employed on quadrilateral meshes, it appears that the combination of the strong formulation and the increased connectivity of the triangular meshes inhibit odd-even decoupling of the solution. In fact, when decoupling is observed with the weak formulation of the boundary condition on triangular meshes, the wall velocity vectors are seen to oscillate about the tangent direction. Furthermore, whereas an odd-even oscillatory mode which exactly satisfies the discretized equations in the interior domain can be found for cellcentered and vertex discretizations on quadrilaterals, and for cell-centered discretizations on triangles [9], this is not possible for vertex discretizations on triangles. On a regular triangular mesh, as shown in Figure 3, only a three mode oscillation pattern can be found for a vertex scheme. In practice, the value of the ε coefficient of equation (7) used in this work is one third
of the minimum value of the coefficient which would prevent high frequency oscillations when the weak formulation was employed. This represents a compromise between solution accuracy and speed of convergence.

Treatment of the artificial dissipation terms at the inner boundary can also have a significant effect on the solution accuracy. Large amounts of numerical entropy may be generated in regions of high gradients such as in the rapid expansion on the upper surface of an airfoil at high angles of attack. This false entropy contaminates the solution as it is convected downstream. In particular, when the upper and lower surface flows over an airfoil meet at the trailing edge, large oscillations may occur if one of the flows has an appreciable level of numerical entropy. To help minimize the spurious production of entropy by the boundary dissipation terms, it is convenient to divide the flow gradients into normal and tangential components at the boundary. For example, this is often achieved with body-fitted quadrilateral meshes where the mesh lines are perpendicular to the body. However, for a triangular mesh, it is impossible to have all mesh lines or edges hitting the boundary either tangentially or normally. Thus assumptions concerning the local flow gradients at the boundary must be made. In the absence of body curvature, the boundary conditions for the Euler equations imply that the normal derivatives of all quantities at the wall vanish. Hence, it has been assumed that the normal gradient is zero, when computing the artificial dissipation at the wall. Thus, for a mesh edge which intersects the wall at some prescribed angle, the difference $w_{k}-w_{i}$ is replaced by $w_{k}^{\prime}-w_{i}$, where w_{i} is the value at the wall, w_{k} represents the value at the other end of the edge, and w_{k}^{\prime} is the value of the point on the wall obtained by projecting node k down onto the boundary, as shown in Figure 2. The specific value at this point is obtained by linear interpolation between the two points on the wall at either end of this interval. It can be shown that this construction is equivalent to that obtained by omitting the dissipation along all edges touching the boundary, and multiplying the tangential boundary dissipation values by a constant determined by the local grid topology.

Global flow characteristics such as lift and drag coefficients for an airfoil can also be affected by the treatment of the outer boundary. Characteristic boundary conditions have been employed at the far-field boundary. The far-field boundary points of the unstructured meshes are not updated by the time-stepping procedure employed for interior points. Rather, the values at these points are updated by assuming the flow to be locally one-dimensional, and calculating the values at the next time step according to the ingoing and outgoing Rieman invariants for this simplified flow. For the outgoing Rieman invariant, values are extrapolated from neighboring interior points. For the incoming Rieman invariant, flow values are taken as the superposition of the freestream flow with the disturbance flow-field set up by a vortex centered at the quarter chord point of the airfoil, producing total circulation equal to that of the lifting airfoil [13]. Two other conditions are required for the full two-dimensional Euler flow. These are given by the values of tangential velocity and entropy, which are extrapolated from from interior values for an outflow boundary, and set equal to to freestream values, augmented by the vortex flow-field, for an inflow boundary. Dissipation at the outer boundary is treated in the same manner as at the inner boundary, i.e. all normal gradients are assumed to vanish when computing the dissipation terms. This is equivalent to the treatment advocated for cell-centered quadrilateral Euler solvers.

6. RESULTS ON SIMPLE MESHES

The first case considered is a NACA0012 airfoil with a freestream Mach number of 0.8 , and an incidence of 1.25°. The mesh employed for this case consists of a regular triangular grid
with 4224 nodes, as shown in Figure 4. The positioning of the nodes is derived from a 128 x 32 quadrilateral O -mesh. This mesh represents the finest of a sequence of four meshes used in the multigrid algorithm to accelerate convergence. The computed surface pressure distribution is shown in Figure 5. The upper and lower shocks are both well defined, and no oscillations are visible. The lift and drag coefficients compare well with other inviscid solutions on equivalent and finer quadrilateral meshes [14]. The surface entropy, which is shown in Figure 6 , is calculated as

$$
\begin{equation*}
\frac{\frac{p}{p_{\infty}}}{\left[\frac{\rho}{\rho_{\infty}}\right]^{\gamma}}-1 \tag{9}
\end{equation*}
$$

The entropy values are nearly zero everywhere ahead of the strong shock, with a maximum value near the leading edge of 0.3%. Behind the upper surface shock, the entropy assumes a constant value as it is convected downstream. The multigrid convergence history given in Figure 7, indicates a reduction of the RMS average of the density residuals of nearly 6 orders of magnitude over 200 cycles.

The second case is that of a Korn airfoil at design conditions. This airfoil is designed to produce shock-free supercritical flow at these conditions. Since such flows are known to be isolated points (i.e. any change in the geometry or freestream conditions produces a shock), the ability to capture such flows is a good indication of the accuracy of the scheme. The mesh employed corresponds to a 128×32 O-mesh and is depicted in Figure 8. From the computed pressure distribution in Figure 9, the compression of the flow through the transonic regime can be seen to be gradual. The low drag value ($\mathrm{Cd}=0.0002$) is an indication of the isentropic nature of the flow, as well as the accuracy of the computed solution.

The third case involves flow about a Karman-Trefftz airfoil and flap. An exact incompressible potential solution exists for this case which may be used for comparison purposes. The unstructured mesh about this configuration is shown in Figure 10. In Figure 11, the calculated surface pressure distribution is compared with the exact solution. This case was run for a freestream Mach number of 0.125 . Hence, effects due to compressibility are small ($<1 \%$ according to the Prandtl Glauert rule). Good agreement between the two solutions is observed with respect to the surface pressure plots, and the calculated force coefficients, which are given in Table 1.

7. ADAPTIVE MESHING STRATEGY

For flows about more complicated geometries, the location of regions where rapid variations in the flow occur are seldom known at the outset. Thus, an adaptive meshing strategy is necessary to ensure accurate solutions of such flows, as well as to maintain the efficiency of the solver.

The use of adaptive meshing, in conjunction with the unstructured multigrid algorithm has previously been described in [7]. The method first computes the flow on an existing coarse mesh. A new finer mesh is then constructed by generating a new distribution of grid points as determined by the computed flow-field on the coarse grid. These points are then joined together to form an unstructured triangular mesh, using the Delaunay triangulation procedure. Delaunay triangulation is a geometrical construct which represents a unique triangulation of a given set of points in a plane. The resulting mesh is then smoothed by repositioning the mesh
points as determined by a Laplacian filtering operation. The patterns for transferring variables back and forth between this new mesh and the previous coarser mesh are determined prior to the solution of the flow-field using a tree-search algorithm. This approach does not assume any relation between the two meshes, thus offering great flexibility in configuring the finer mesh for optimum accuracy. The flow variables are then transferred to the new mesh and time-stepping proceeds, employing the previous mesh as a coarse mesh in the multigrid sequence. This procedure may be repeated, each time generating a new finer mesh, until the desired level of accuracy is achieved. At present, new mesh point distributions are generated by combining all previous mesh points with a set of newly generated points. The distribution of these new mesh points is determined according to a criterion developed by Dannenhoffer and Baron [15]. The first undivided difference of the density along a mesh edge is examined. When this value is larger than some fraction of the RMS average of all density differences across the mesh, a new point is added midway along the edge. A second pass is then performed which splits the remaining edges of each triangular element bordering on a previously split edge, thus ensuring an isotropic refinement in these regions. A third pass of this type is also performed on the boundary elements. The mesh smoothing operation described above displaces the mesh points and thus, in general, the coarse grid points will not coincide with any of the fine grid points. Previous efforts at directional refinement by refining only along edges have met with limited success, due to the nature of Delaunay triangulation, which tends to minimize cell aspect ratios. Other efforts in the literature at directional refinement using alternate triangulation procedures have been more successful [3].

8. RESULTS EMPLOYING ADAPTIVE MESHES

A subcritical and a supercritical case about a high-lift three-element airfoil configuration were computed using the adaptive meshing strategy. These solutions were compared with a full potential flow solver made available by The Boeing Company [16]. This method is a finiteelement non-linear potential flow solver which is formally first-order accurate in supersonic zones, and second-order accurate in subsonic zones. The method operates on a structured quadrilateral mesh, which is generated from a streamline pattern obtained with the aid of a preliminary panel method solution.

In the subcritical case, the freestream Mach number is 0.2 , and the incidence is 8°. The final mesh employed in this calculation is shown in Figure 12. It contains a total of 10745 points, of which 432 are on the airfoil surfaces. This represents the sixth mesh level of the multigrid sequence in which the first two levels are generated globally as described in [6,9], and the four finest levels are generated adaptively. A globally generated mesh of this resolution would have required 10 to 20 times more points, and thus would be prohibitively expensive. The computed surface pressure distributions are compared with those obtained by the full potential solution in Figure 13. This case exhibits an extreme double suction peak near the leading edge of the main airfoil. Good agreement is observed between the Euler and potential solutions, including the predicted magnitude of the suction peaks. For subcritical cases, the flow should be isentropic, and thus, the plot of the surface entropy in Figure 14, can be interpreted as a measure of the error in the solution. This entropy is nearly zero everywhere, except for a region near the leading edge of the main airfoil, where it reaches a peak of 2%. However, throughout most of this region, the entropy is less than 1%. The maximum entropy level could be reduced to less than 1% by employing an additional mesh level. However, the effect on the surface pressure distribution was found to be minimal. The convergence rate for this case is depicted in Figure 15, vihere a residual reduction of seven orders of magnitude on
the finest mesh was achieved over 300 multigrid cycles, employing all six meshes in the multigrid sequence. A plot of the Mach contours in the flow-field is also given in Figure 16.

For the supercritical case, the Mach number is increased to 0.25 , while the incidence remains 8°. At these conditions, the flow becomes supersonic as it expands around the leading edge of the main airfoil, and a shock is formed. Seven mesh levels were used to compute this solution. The finest mesh is illustrated in Figure 17, where the highest level of refinement is seen to occur mainly near the leading edge of the main airfoil. The total number of grid points is 12830 , of which 539 are on the airfoil surfaces. A convergence of five orders of magnitude over 300 multigrid cycles was achieved for this case, employing seven meshes in the multigrid sequence. The computed surface pressure distribution is shown in Figure 18, where it is compared to the potential flow solution. Figures 20 and 21 also depict the Mach number contours in the flow-field. Although the extent of the shock is small, the Mach number ahead of it is 1.53 in the Euler solution, or 1.60 in the potential flow solution. In either case, this represents a strong shock, which cannot be accurately modeled by the potential flow assumption. Although there are some discrepancies between the two solutions on the main airfoil, the largest differences occur on the upper surfaces of the vane and flap. This is surprising, since the entirety of the flow which impinges upon the vane and the flap originates from the lower surface of the main airfoil, as it is channeled through the gaps. It appears that the shear layer produced by the shock on the upper surface of the main airfoil (see Figure 20), which is not present in the potential solution, has a global effect on the entire flow-field. On the other hand, the numerical diffusion of this shear layer, which enables it to impinge slightly upon the vane and flap, may contribute to these discrepancies. However, from Figure 19, the surface entropy is seen to be much less than 1% everywhere except in the shear layer behind the shock, on the main airfoil.- Furthermore, the same characteristic discrepancies between the two solutions were noted when alternate meshes were employed for the Euler solution. Increased mesh resolution in the region of the shear layer would be desirable to further limit the diffusion of entropy.

9. CONCLUSION

An accurate and efficient method for solving the Euler equations about complex geometries has been demonstrated. The method requires approximately 0.12×10^{-3} $\mathrm{secs} / \mathrm{node} / \mathrm{mg}$-cycle on the CRAY-2 supercomputer. Thus, the results about simple geometries presented in this work required 1 to 2 minutes of CPU time, whereas the three-element airfoil calculations were obtained in about 6 to 8 minutes. The present code can be expected to run substantially faster on a CRAY-XMP class machine, due to the more efficient gather-scatter routines available. Good agreement with other available inviscid solutions has been demonstrated. For supercritical flow over the three-element high-lift configuration, discrepancies between the present Euler solution and the full potential solution of [16] exist, the origin of which appear to be related to the presence of a shear layer behind the shock, which cannot be captured by a full potential method. Future work is aimed at further optimizing the efficiency of the method by implementing a directional refinement strategy. The inclusion of viscous effects by solving the Reynolds-averaged Navier-Stokes equations is also planned.

REFERENCES

1. Jameson, A., Baker, T. J., and N. P. Weatherill, "Calculation of Inviscid Transonic Flow over a Complete Aircraft", AIAA paper 86-0103, January 1986.
2. Stoufflet, B., Periaux, J., Fezoui, F., and Dervieux, A., "Numerical Simulation of 3-D Hypersonic Euler Flows Around Space Vehicles Using Adapted Finite Elements", AIAA paper 87-0560 January 1987.
3. Lohner, R., Morgan, K., Peraire, J., Vahdati, M., "Finite Element Flux-Corrected Transport for the Euler and Navier-Stokes Equations", ICASE Report No. 87-4, NASA CR 178233, January 1987; Int. J. Num. Meth. Fluids Vol 7, 1987, pp. 1093-1109
4. Thompson, J. F., "Composite Grid Generation for General 3-D Regions", Proceedings of the International Conference on Numerical Grid Generation in Computational Fluid Dynamics, Landshut, West Germany, July 1986, pp 271-290.
5. Usab, W. J., and Murman, E. M., "Embedded Mesh Solution of the Euler Equations Using a Multiple Grid Method", AIAA paper 83-1946-CP, July 1983.
6. Mavriplis, D. J., "Multigrid Solution of the 2-D Euler Equations on Unstructured Triangular Meshes", to appear in AIAA Journal, April 1988.
7. Mavriplis, D. J., and Jameson, A., "Multigrid Solution of the Euler Equations on Unstructured and Adaptive Meshes", ICASE Report No. 87-53, NASA CR 178346, July 1987, to appear in Proceedings of the 3rd Copper Mountain Multigrid Conference.
8. Roe, P. R., "Error Estimates for Cell-Vertex Solutions of the Compressible Euler Equations", ICASE Report No. 87-6, NASA CR 178235, January 1987; to appear in AIAA Journal.
9. Mavriplis, D., "Solutions of the Two-Dimensional Euler Equations on Unstructured Triangular Meshes", PhD. Thesis, Princeton University, June 1987.
10. Lindquist, D. R., "A Comparison of Numerical Schemes on Triangular and Quadrilateral Meshes", Master's Thesis, M.I.T. Rep. CFDL-TR-88-6, May 1988.
11. Jameson, A., Schmidt, W., and Turkel, E., "Numerical Solutions of the Euler Equations by Finite Volume Methods Using Runge-Kutta Time Stepping Schemes", AlAA paper 81-1259, 1981.
12. Van Leer, B., Thomas, J. L., Roe, P. L., and Newsome, R. W., "A Comparison of Numerical Flux Formulas for the Euler and Navier-Stokes Equations", AIAA paper $87-$ 1104, Proceedings of the AIAA 8th Computational Fluid Dynamics Conference, Honolulu, Hawaii, June 1987, pp. 36-41.
13. Thomas, J. L., and Salas, M. D, "Far-Field Boundary Conditions for Transonic Lifting Solutions to the Euler Equations", AIAA paper 85-0020 January 1985.
14. Pulliam, T. H., and Barton, J. T., "Euler Computations of AGARD Working Group 07 Airfoil Test Cases", AIAA paper 85-0018, January 1985.
15. Dannenhoffer, J. F., and Baron, J. R., "Grid Adaptation for the 2-D Euler Equations" AIAA paper 85-0484 January 1985.
16. Wigton, L. B., Private Communication.

Figure 1
Control volume for vertex triangle scheme

Figure 2
Control Volume for Boundary Point

Figure 3
Three-Mode Decoupling Possible on a Regular Triangular Mesh

Figure 4
Partial View of Mesh about NACA0012 airfoil

Figure 5
Computed Surface Pressure Distribution for NACA0012 Airfoil Mach $=0.8$, Incidence $=1.25^{\circ}$

Figure 6 Computed Surface Entropy for NACA0012 Airfoil Mach $=0.8$, Incidence $=1.25^{\circ}$

Figure 7
Convergence History for the supercritical NACA0012 case

Figure 8
Partial View of Mesh about the Korn Airfoil

Figure 9
Computed Surface Pressure Distribution for the Korn Airfoil at Design Conditions

Figure 10
Partial View of Unstructured Mesh for the Karman-Trefftz Airfoil and Flap

Figure 11
Comparison of Computed Surface Pressure Distribution with Analytical Incompressible Solution for the Karman-Trefftz Airfoil and Flap

	Main Airfoil 		Cl	Flap		Total	
Nodal Scheme	1.7005	-0.0906	0.3357	0.0890	2.0362	-0.0016	
Analytical Incompressible Solution	1.6915	-0.0898	0.3366	0.0897	2.0281	-0.0001	

Table 1
Comparison of Computed Force Coefficients for the Karman-Trefftz Configuration

Figure 12
Illustration of the Adaptively Refined Mesh for the Subcritical Case of the 3-Element Airfoil Configuration 10745 nodes, 20987 triangles

Figure 13
Comparison of Computed Surface Pressure Distribution for the Euler Solution with that of the Full Potential Solution; Mach $=0.2$, Incidence $=8^{\circ}$

Figure 14
Computed Surface Entropy for the Subcritical 3-Element Airfoil Case
Mach $=0.2$, Incidence $=8^{\circ}$

Figure 15
Convergence Rate on Finest Mesh for the Subcritical 3-Element Airfoil Case as Measured by the RMS Average of the Density Residual throughout the Flowfield

Figure 16
Flowfield Mach Contours for the Subcritical 3-Element Airfoil Case Mach $=0.2$, Incidence $=8^{\circ}$

Figure 17
Illustration of the Adaptively Refined Mesh for the Supercritical Case of the 3-Element Airfoil Configuration 12830 nodes, 25125 triangles

Figure 18
Comparison of Computed Surface Pressure Distribution for the Euler Solution with that of the Full Potential Solution; Mach $=0.25$, Incidence $=8^{\circ}$

Figure 19
Computed Surface Entropy Distribution for the Supercritical 3-Element Airfoil Case Mach $=0.25$, Incidence $=8^{\circ}$

Figure 20
Flowfield Mach Contours for the Supercritical 3-Element Airfoil Case Mach $=0.25$, Incidence $=8^{\circ}$

Figure 21
Mach Contours near the Leading Edge of the Main Airfoil of the 3-Element Configuration

16. Abstract

A method for accurately solving inviscid compressible flow in the subcritical and supercritical regimes about complex configurations is presented. The method is based on the use of unstructured triangular meshes in two dimensions, and special emphasis is placed on the accuracy and efficiency of the solutions. High accuracy is achieved by careful scaling of the artificial dissipation terms, and by reformulating the inner and outer boundary conditions for both the convective and dissipative operators. An adaptive grid refinement strategy is presented which enhances the solution accuracy for complex flows. When coupled with an unstructured multigrid algorithm, this method is shown to produce an efficient solver for flows about arbitrary configurations.
17. Key Words (Suggested by Author(s))
multigrid, unstructured, Euler
equations

18. Distribution Statement
02 - Aerodynamics
34 - Fluid Mechanics and
Heat Transfer
Unclassified - unlimited

19. Security Classif. (of this report)	20. Security Classif. (of this page) Unclassif ied	21. No. of pages 31	22. Price Anclassified

End of Document

