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ACCURATE MULTIGRID SOLUTION OF THE EULER EQUATIONS 
ON UNSTRUCTURED AND ADAPTIVE MESHES 

ABSTRACT 

Dimitri 1. Mavriplis 

Institute for Computer Applications in Science and Engineering 
NASA Langley Research Center 

Hampton, VA 

A method for accurately solving inviscid compressible flow in the subcritical and supercritical 

regimes about complex configurations is presented. The method is based on the use of unstruc

tured triangular meshes in two dimensions, and special emphasis is placed on the accuracy and 

efficiency of the solutions. High accuracy is achieved by careful scaling of the artificial dissipa

tion tenns, and by refonnulating the inner and outer boundary conditions for both the convec

tive and dissipative operators. An adaptive grid refinement strategy is presented which 

enhances the solution accuracy for complex flows. When coupled with an unstructured mul

tigrid algorithm, this method is shown to produce an efficient solver for flows about arbitrary 

configurations. 

This work was supported under the National Aeronautics and Space Administration under NASA Contract 

No. NASl-18107 while the author was in residence at the Institute for Computer Applications in Science 

and Engineering (lCASE), NASA Langley Research Center, Hampton, VA 23665. 
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1. INTRODUCTION 

The use of unstructured triangular meshes in two-dimensions and tetrahedral meshes in 

three dimensions is becoming more widely accepted as a viable means for computing compres

sible flows about complex geometries. Various on-going research efforts in this area can be 

found in the literature [1,2,3]. The main advantage of unstructured meshes is that they provide 

a flexible manner for discretizing topologically complex domains without recourse to large 

scale domain decomposition, which is necessary when structured meshes are employed [4]. 

They also provide a natural setting for the use of adaptive meshing. In fact, previous efforts of 

adaptive meshing on structured quadrilateral meshes have demonstrated the need for an 

unstructured-data approach [5]. 

On the other hand, unstructured mesh solvers have most often fallen short of their struc

tured mesh counterparts in terms of efficiency and accuracy. The efficiency of these solvers is 

hindered by the use of indirect addressing required by random data-sets, and by generally less 

efficient solution algorithms. The problem due to indirect addressing can be somewhat allevi

ated by the use of hardware gather-scatter functions available on an increasing number of 

present-day supercomputers. Recent work by the author [6,7] has also resulted in an unstruc

tured multigrid algorithm, which has been shown to produce convergence rates comparable to 

those obtained with current structured mesh solvers. It would thus seem that unstructured mesh 

solvers are becoming increasingly competitive with structured mesh solvers. 

However, the accuracy of unstructured mesh solutions has seldom been able to match that 

delivered by structured mesh solvers. This issue has in fact been a subject of recent debate. 

In a recent report, Roe [8] argues that, in general, a piecewise linear discretization of the Euler 

equations on an arbitrary unstructured mesh results in locally first-order accuracy. Similarly, 

finite-element proofs of accuracy are most often limited to elliptic equations, and contain con

straints on the geometry of the elements. On the other hand, there is much practical evidence 

indicating that global second-order accuracy can be achieved on unstructured meshes for the 

Euler equations [9,10]. While much of the accuracy debate for the Euler equations centers 

around the discretization of the convective terms on arbitrary meshes, it is found in practice 

that the solution accuracy is most significantly affected by: 

a) The "quality" of the mesh (smoothness, number of connections at a point) 

b) The construction of the artificial dissipation terms 

c) The formulation of the inner and outer boundary conditions 

It is the intent of this work to demonstrate how careful attention to these areas can pro

duce solutions of equivalent accuracy with regards to current structured mesh solvers. An adap

tive meshing procedure is also described, which produces smoothly varying high resolution 

meshes. When combined with the unstructured multi grid approach, this method produces 

efficient and accurate solutions of flows around complex configurations. 

2. DISCRETIZATION OF THE GOVERNING EQUATIONS 

The variables to be determined are the pressure, density, Cartesian velocity components, 

total energy and total enthalpy denoted by p, p, u, v, E, and H, respectively. Since for a perfect 

gas we have 

p 
H=E+

p 
(1) 

where y is the ratio of specific heats, we need only solve for the four variables p, pu, pv, and 
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pE. 

These values are detennined by solving the Euler equations, which in integral fonn read: 

a
a Jrw dxdy + J (fdy,... gdx) = 0 
t 6. an 

where n is a fixed area with boundary an, x and y are Cartesian coordinates, and 

p 

pu 
W= pv 

pE 
[

pu 

_ pu2 + P 

f- puv 

pull 
[

pv 

pvu 

g = pv2+ P 

pvH 

(2) 

(3) 

The w variables are stored at the vertices of each triangle. The control volume for a vertex i is 

defined as the union of all triangles having a vertex at i,. as shown in Figure 1. The boundary 

flux integral in equation (2) is approximated by first calculating the values of the fluxes f and g 

at the nodes on the outer boundary of this control volume. These can then be integrated around 

the control volume boundary by assuming that on each edge, the value of the flux can be taken 

as the average of the two values on either end of the edge. This corresponds to a finite

volume fonnulation using the trapezoidal rule of integration. It can also be shown to be 

equivalent to a piecewise linear Galerkin approximation, with a lumped mass matrix [1]. 

Additional dissipative tenns are required. These are fonnulated as a blend of an undi

vided Laplacian operator in the flow variables, and an undivided bihannonic operator. The 

bihannonic dissipation is fonnally third-order accurate on regular meshes and is applied 

throughout the flow-field. The Laplacian dissipation is fonnally first-order accurate on regular 

meshes and is applied only in the vicinity of a shock, where it is needed to prevent oscilla

tions. This adaptive control of the Laplacian dissipation is achieved by multiplying it by a 

Laplacian of the pressure, which is of order unity near a shock, and remains small elsewhere. 

This fonnulation of the dissipation represents an extension of the blended second and fourth 

differences originally proposed by Jameson, Schmidt, and Turkel [11]. While better shock 

resolution can be obtained with various upwind based methods [3,12], the present fonnulation 

is generally better suited for explicit schemes and less expensive to compute. This, in tum, 

suggests that increased accuracy may otherwise be obtained by adaptive refinement of the mesh 

in critical areas of the flow-field. 

3. INTEGRATION TO A STEADY-STATE 

Discretization of the Euler equations in space transfonns the governing equations into a 

set of coupled ordinary-differential equations which must be integrated in time to obtain the 

steady-state solution. Thus, equation (2) becomes the set 

dWj 
SjTt + [Q(Wj) - D(wj)] = 0, i=1,2,3, ... (4) 

where Sj is the area of the control volume i, and is independent of time. The convective opera

tor Q(w) represents the discrete approximation to the flux integral in (2), and the dissipative 

operator D(w) represents the artificial dissipation tenns. These equations are integrated in time 

using a fully explicit 5-stage hybrid time-stepping scheme, where the operator Q(w) is 

evaluated at each stage in the time step, and the operator D(w) is only evaluated in the first 

two stages, and then frozen at that value. Thus we advance in time as 

w(O) = w" 



W(I) = w(O) - 0.1 ~ [Q(w(O» - D(W(O»] 

w(2) = w(O) - 0.2 ~ [Q(w(l) - D(w(1»] 

w(3) = w(O) - 0.3 ~ [Q(w(2») - D(w(1»)] 

W(4) = w(O) - ~ ~ [Q(w(3» - D(w(1»] 

w(5) = w(O) - o.s ~ [Q(W(4») - D(w(l))] 

wn+1 = w(S) 
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(5) 

where w" and w"+1 are the values at the beginning and the end of the nth time step. The stan

dard values of the coefficients are 

0.2 = 1/6 o.S = 1 

This scheme represents a particular case of a large class of hybrid time-stepping schemes, 

which has been specifically designed to produce strong damping characteristics of high

frequency error modes. This is a desirable property when a multigrid algorithm is to be 

employed. 

The unstructured multi grid algorithm, which has previously been described in detail 

[6,7,9], is used to accelerate convergence of the fine mesh solution to a steady state. This is 

achieved by repeatedly time-stepping on a sequence of coarse and fine unstructured meshes. 

The various meshes of the sequence are assumed to be independent of one another, and the 

pattern of transferring variables back and forth between the various meshes is determined in a 

preprocessing stage, where an efficient tree-search algorithm is employed. Convergence to a 

steady-state is also accelerated by using the maximum permissible time step at each point in 

the flow-field, as determined by local stability analysis, by the use of enthalpy damping [11], 

and implicit residual averaging [9]. 

4. FORMULATION OF THE DISSIPATION 

The artificial dissipation is constructed as a blend of undivided Laplacian and biharmonic 

operators. For subcritical flow, only biharmonic dissipation is required. This operator is con

structed by first forming an approximation to a Laplacian in the flow variables at each node 

according to : 

" " 
dWi = ~JWA; - Wi] or dWi = LWA; - nWi (6) 

k=1 k=1 

w represents the flow variables as given in equation (3), with the exception of the last term, 

where w is taken as the total enthalpy rather than the total energy, in order to preserve a con

stant total enthalpy in the steady-state solution. k represents the neighbors of node i, the total 

number of which is n, as shown in Figure 1. On a cartesian grid, this corresponds to the stan

dard five-point finite difference formula. The biharmonic dissipation is then formed by repeat

ing the above step: 

(7) 

where Ai is given by 

Ai = J Iit-atl + delll 
an 

(8) 
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and e is an empirically determined coefficient. As in the structured mesh counterpart. this dissi

pation is independent of the time step. The two-dimensional Eu1er equations have four eigen

values, i. e. u, u, u+c, u-c, u being the local fluid velocity, and c the local speed of sound. The 

above construction of Ai represents the maximum eigenvalue lul+c integrated around the boun

dary of the control volume for node i. This is consistent with the finite-volume formu1ation and 

also provides an isotropic value for scaling the dissipation with the maximum local eigenvalue 

about arbitrarily shaped control volumes. Furthermore, by averaging Aj with Ab the dissipation 

is conservative in the w quantities. This can be seen by noting that for each contribution to the 

summation for node i in equations (6) and (7), an equivalent but opposite term will appear in a 

similar summation for node k. The Laplacian dissipation required for supercritical flows is con

structed in an analogous manner. 

5. BOUNDARY CONDITIONS 

The specific treatment of both convective terms and dissipative terms at both inner and 

outer boundaries was found to have a significant effect on the solution accuracy. For a vertex 

scheme, values are computed on the boundaries. The boundary control volumes resemble one 

half of a regu1ar inner point control volume, as shown in Figure 2. 

For a vertex discretization of the Eu1er equations, wall boundary conditions may be 

applied in several manners. The weak form, consists of simply setting the normal components 

of the f and g fluxes in equations (3) to zero, except for the pressure terms in the momentum 

equations. In this formu1ation however, the velocities calcu1ated on the boundary are not neces

sarily tangential to the wall. A stronger formulation consists of explicitly setting these veloci

ties to be tangential to the wall. However, for a discretized representation of the body, the 

tangent at a point is ill defined. In practice, a tangent can be defined as the line connecting the 

two neighboring boundary points. For curved boundaries on unequally spaced meshes, and for 

boundaries of varying curvature, this definition of the tangent will yield non-zero fluxes 

through the faces of the wall. Hence, in addition to setting the velocities tangential to the wall 

as defined above, the fluxes through the wall are also set to zero. In general, the resu1ting flux 

balance for the two momentum equations at the wall will not be satisfied. However, it is the 

combination of the flux balance and the velocity corrections at the boundary which sum to zero 

at convergence. In itself, this formu1ation of the inner boundary condition has only a moderate 

effect on the solution accuracy. However, the level of dissipation needed to guarantee conver

gence with this formulation is an order of magnitude smaller than with the weak formu1ation. 

It has been found that, as the level of dissipation is lowered, odd-even decoupling of the solu

tion does not occur. Rather, as the convergence degrades, the solution begins to exhibit low

frequency oscillations. Since high-frequency oscillations may be observed on triangular meshes 

when the weak formulation of the boundary condition is employed, and since they also occur 

when the strong formulation is employed on quadrilateral meshes, it appears that the combina

tion of the strong formu1ation and the increased connectivity of the triangu1ar meshes inhibit 

odd-even decoupling of the solution. In fact, when decoupling is observed with the weak for

mu1ation of the boundary condition on triangular meshes, the wall velocity vectors are seen to 

oscillate about the tangent direction. Furthermore, whereas an odd-even oscillatory mode 

which exactly satisfies the discretized equations in the interior domaiil can be found for cell

centered and vertex discretizations on quadrilaterals, and for cell-centered discretizations on tri

angles [9], this is not possible for vertex discretizations on triangles. On a regular triangular 

mesh, as shown in Figure 3, only a three inode oscillation pattern can be found for a vertex 

scheme. In practice, the value of the e coefficient of equation (7) used in this work. is one third 
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of the minimum value of the coefficient which would prevent high frequency oscillations when 

the weak. formulation was employed. This represents a compromise between solution accuracy 

and speed of convergence. 

Treatment of the artificial dissipation terms at the inner boundary can also have a 

significant effect on the solution accuracy. Large amounts of numerical entropy may be gen

erated in regions of high gradients such as in the rapid expansion on the upper surface of an 

airfoil at high angles of attack. This false entropy contaminates the solution as it is convected 

downstream. In particular, when the upper and lower surface flows over an airfoil meet at the 

trailing edge, large oscillations may occur if one of the flows has an appreciable level of 

numerical entropy. To help minimize the spurious production of entropy by the boundary dissi

pation terms, it is convenient to divide the flow gradients into normal and tangential com

ponents at the boundary. For example, this is often achieved with body-fitted quadrilateral 

meshes where the mesh lines are perpendicular to the body. However, for a triangular mesh, it 

is impossible to have all mesh lines or edges hitting the boundary either tangentially or nor

mally. Thus assumptions concerning the local flow gradients at the boundary must be made. In 

the absence of body curvature, the boundary conditions for the Euler equations imply that the 

normal derivatives of all quantities at the wall vanish. Hence, it has been assumed that the nor

mal gradient is zero, when computing the artificial dissipation at the wall. Thus, for a mesh 

edge which intersects the wall at some prescribed angle, the difference Wl:;-Wj is replaced by 

W'l:;-Wit where Wj is the value at the wall, Wl:; represents the value at the other end of the edge, 

and W'l:; is the value of the point on the wall obtained by projecting node k down onto the 

boundary, as shown in Figure 2. The specific value at this point is obtained by linear interpo

lation between the two points on the wall at either end of this interval. It can be shown that 

this construction is equivalent to that obtained by omitting the dissipation along all edges 

touching the boundary, and multiplying the tangential boundary dissipation values by a con

stant determined by the local grid topology. 

Global flow characteristics such as lift and drag coefficients for an airfoil can also be 

affected by the treatment of the outer boundary. Characteristic boundary conditions have been 

employed at the far-field boundary. The far-field boundary points of the unstructured meshes 

are not updated by the time-stepping procedure employed for interior points. Rather, the values 

at these points are updated by assuming the flow to be· locally one-dimensional, and calculating 

the values at the next time step according to the ingoing and outgoing Rieman invariants for 

this simplified flow. For the outgoing Rieman invariant, values are extrapolated from neighbor

ing interior points. For the incoming Rieman invariant, flow values are taken as the superposi

tion of the freestream flow with the disturbance flow-field set up by a vortex centered at the 

quarter chord point of the airfoil, producing total circulation equal to that of the lifting airfoil 

[13]. Two other conditions are required for the full two-dimensional Euler flow. These are 

given by the values of tangential velocity and entropy, which are extrapolated from from inte

rior values for an outflow boundary, and set equal to to freestream values, augmented by the 

vortex flow-field, for an inflow boundary. Dissipation at the outer boundary is treated in the 

same manner as at the inner boundary, i.e. all normal gradients are assumed to vanish when 

computing the dissipation terms. This is equivalent to the treatment advocated for cell-centered 

quadrilateral Euler solvers. 

6. RESULTS ON SIMPLE MESHES 

The first case considered is a NACAOO12 airfoil with a freestream Mach number of 0.8, 

and an incidence of 1.25°. The mesh employed for this case consists of a regular triangular grid 
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with 4224 nodes, as shown in Figure 4. The positioning of the nodes is derived from a 128 x 

32 quadrilateral O-mesh. This mesh represents the finest of a sequence of four meshes used in 

the multi grid algorithm to accelerate convergence. The computed surface pressure distribution 

is shown in Figure 5. The upper and lower shocks are both well defined, and no oscillations 

are visible. The lift and drag coefficients compare well with other inviscid solutions on 

equivalent and finer quadrilateral meshes [14]. The surface entropy, which is shown in Figure 

6, is calculated as 

..E.... 

ltr
P

- -1 

-E...
1 

p-

(9) 

The entropy values are nearly zero everywhere ahead of the strong shock, with a maximum 

value near the leading edge of 0.3%. Behind the upper surface shock, the entropy assumes a 

constant value as it is convected downstream. The multi grid convergence history given in Fig

ure 7, indicates a reduction of the RMS average of the density residuals of nearly 6 orders of 

magnitude over 200 cycles. 

The second case is that of a Korn airfoil at design conditions. This airfoil is designed to 

produce shock-free supercritical flow at these conditions. Since such flows are known to be 

isolated points (i.e. any change in the geometry or freestream conditions produces a shock), the 

ability to capture such flows is a good indication of the accuracy of the scheme. The mesh 

employed corresponds to a 128 x 32 O-mesh and is depicted in Figure 8. From the computed 

pressure distribution in Figure 9, the compression of the flow through the transonic regime can 

be seen to be gradual. The low drag value (Cd = 0.0002) is an indication of the isentropic 

nature of the flow, as well as the accuracy of the computed solution. 

The third case involves flow about a Karman-Trefftz airfoil and flap. An exact 

incompressible potential solution exists for this case which may be used for comparison pur

poses. The unstructured mesh about this configuration is shown in Figure 10. In Figure 11, the 

calculated surface pressure distribution is compared with the exact solution. This case was run 

for a freestream Mach number of 0.125. Hence, effects due to compressibility are small «1% 

according to the Prandtl Glauert rule). Good agreement between the two solutions is observed 

with respect to the surface pressure plots, and the calculated force coefficients, which are given 

in Table 1. 

7. ADAPTIVE MESHING STRATEGY 

For flows about more complicated geometries, the location of regions where rapid varia

tions in the flow occur are seldom known at the outset. Thus, an adaptive meshing strategy is 

necessary to ensure accurate solutions of such flows, as well as to maintain the efficiency of 

the solver. 

The use of adaptive meshing, in conjunction with the unstructured multi grid algorithm 

has previously been described in [7]. The method first computes the flow on an existing coarse 

mesh. A new finer mesh is then constructed by generating a new distribution of grid points as 

determined by the computed flow-field on the coarse grid. These points are then joined 

together to form an unstructured triangular mesh, using the Delaunay triangulation procedure. 

Delaunay triangulation is a geometrical construct which represents a unique triangulation of a 

given set of points in a plane. The resulting mesh is then smoothed by repositioning the mesh 
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points as determined by a Laplacian filtering operation. The patterns for transferring variables 

back and forth between this new mesh and the previous coarser mesh are determined prior to 

the solution of the flow-field using a tree-search algorithm. This approach does not assume 

any relation between the two meshes, thus offering great flexibility in configuring the finer 

mesh for optimum accuracy. The flow variables are then transferred to the new mesh and 

time-stepping proceeds, employing the previous mesh as a coarse mesh in the multigrid 

sequence. This procedure may be repeated, each time generating a new finer mesh, until the 

desired level of accuracy is achieved. At present, new mesh point distributions are generated 

by combining all previous mesh points with a set of newly generated points. The distribution 

of these new mesh points is determined according to a criterion developed by Dannenhoffer 

and Baron [15]. The first undivided difference of the density along a mesh edge is examined. 

When this value is larger than some fraction of the RMS average of all density differences 

across the mesh, a new point is added midway along the edge. A second pass is then per

formed which splits the remaining edges of each triangular element bordering on a previously 

split edge, thus ensuring an isotropic refinement in these regions. A third pass of this type is 

also performed on the boundary elements. The mesh smoothing operation described above dis

places the mesh points and thus, in general, the coarse grid points will not coincide with any of 

the fine grid points. Previous efforts at directional refinement by refining only along edges 

have met with limited success, due to the nature of Delaunay triangulation, which tends to 

minimize cell aspect ratios. Other efforts in the literature at directional refinement using alter

nate triangulation procedures have been more successful [3]. 

8. RESULTS EMPLOYING ADAPTIVE MESHES 

A subcritical and a supercritical case about a high-lift three-element airfoil configuration 

were computed using the adaptive meshing strategy. These solutions were compared with a full 

potential flow solver made available by The Boeing Company [16]. This method is a finite

element non-linear potential flow solver which is formally first-order accurate in supersonic 

zones, and second-order accurate in subsonic zones. The method operates on a structured qua

drilateral mesh, which is generated from a streamline pattern obtained with the aid of a prelim

inary panel method solution. 

In the subcritical case, the freestream Mach number is 0.2, and the incidence is 8°. The 

final mesh employed in this calculation is shown in Figure 12. It contains a total of 10745 

points, of which 432 are on the airfoil surfaces. This represents the sixth mesh level of the 

multi grid sequence in which the first two levels are generated globally as described in [6,9], 

and the four finest levels are generated adaptively. A globally generated mesh of this resolution 

would have required 10 to 20 times more points, and thus would be prohibitively expensive. 

The computed surface pressure distributions are compared with those obtained by the full 

potential solution in Figure 13. This case exhibits an extreme double suction peak near the 

leading edge of the main airfoil. Good agreement is obseIVed between the Euler and potential 

solutions, including the predicted magnitude of the suction peaks. For subcritical cases, the 

flow should be isentropic, and thus, the plot of the surface entropy in Figure 14, can be inter

preted as a measure of the error in the solution. This entropy is nearly zero everywhere, 

except for a region near the leading edge of the main airfoil, where it reaches a peak of 2%. 

However, throughout most of this region, the entropy is less than 1 %. The maximum entropy 

level could be reduced to less than 1 % by employing an additional mesh level. However, the 

effect on the surface pressure distribution was found to be minimal. The convergence rate for 

this case is depicted in Figure 15, \;'nere a residual reduction of seven orders of magnitude on 
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the finest mesh was achieved over 300 multi grid cycles, employing all six meshes in the mul

tigrid sequence. A plot of the Mach contours in the flow-field is also given in Figure 16. 

For the supercritical case, the Mach number is increased to 0.25, while the incidence 

remains 80
• At these conditions, the flow becomes supersonic as it expands around the leading 

edge of the main airfoil, and a shock is fonned. Seven mesh levels were used to compute this 

solution. The finest mesh is illustrat~d in Figure 17, where the highest level of refinement is 

seen to occur mainly near the leading edge of the main airfoil. The total number of grid points 

is 12830, of which 539 are on the airfoil surfaces. A convergence of five orders of magnitude 

over 300 multi grid cycles was achieved for this case, employing seven meshes in the multigrid 

sequence. The computed surface pressure distribution is shown in Figure 18, where it is com

pared to the potential flow solution. Figures 20 and 21 also depict the Mach number contours 

in the flow-field. Although the extent of the shock is small, the Mach number ahead of it is 

1.53 in the Euler solution, or 1.60 in the potential flow solution. In either case, this represents 

a strong shock, which cannot be accurately modeled by the potential flow assumption. 

Although there are some discrepancies between the two solutions on the main airfoil, the larg

est differences occur on the upper surfaces of the vane and flap. This is surprising, since the 

entirety of the flow which impinges upon the vane and the flap originates from the lower sur

face of the main airfoil, as it is channeled through the gaps. It appears that the shear layer pro

duced by the shock on the upper surface of the main airfoil (see Figure 20), which is not 

present in the potential solution, has a global effect on the entire flow-field. On the other hand, 

the numerical diffusion of this shear layer, which enables it to impinge slightly upon the vane 

and flap, may contribute to these discrepancies. However, from Figure 19, the surface entropy 

is seen to be much less than I % everywhere except in the shear layer behind the shock, on the 

main airfoil. - Furthennore, the same characteristic discrepancies between the two solutions 

were noted when alternate meshes were employed for the Euler solution. Increased mesh reso

lution in the region of the shear layer would be desirable to further limit the diffusion of 

entropy. 

9. CONCLUSION 

An accurate and efficient method for solving the Euler equations about complex 

geometries has been demonstrated. The method requires approximately O.12x1O-3 

secs/node/mg-cycle on the CRA Y -2 supercomputer. Thus, the results about simple geometries 

presented in this work required 1 to 2 minutes of CPU time, whereas the three-element airfoil 

calculations were obtained in about 6 to 8 minutes. The present code can be expected to run 

substantially faster on a CRAY-XMP class machine, due to the more efficient gather-scatter 

routines available. Good agreement with other available inviscid solutions has been demon

strated. For supercritical flow over the three-element high-lift configuration, discrepancies 

between the present Euler solution and the full potential solution of [16] exist, the origin of 

which appear to be related to the presence of a shear layer behind the shock, which cannot be 

captured by a full potential method. Future work is aimed at further optimizing the efficiency 

of the method by implementing a directional refinement strategy. The inclusion of viscous 

effects by solving the Reynolds-averaged Navier-Stokes equations is also planned. 
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Figure 1 

Control volume for vertex triangle scheme 

Figure 2 

Control Volume for Boundary Point 

Figure 3 

Three-Mode Decoupling Possible on a Regular Triangular Mesh 
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Figure 4 

Partial View of Mesh about NACA0012 airfoil 
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Computed Surface Pressure Distribution for NACAOO12 Airfoil 

Mach = 0.8. Incidence = 1.250 
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Computed Surface Entropy for NACAOO12 Airfoil 

Mach = 0.8, Incidence = 1.250 
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Figure 7 

Convergence History for the supercriticaI NACAOO12 case 
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Figure 8 

Partial View of Mesh about the Kom Airfoil 
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Computed Surface Pressure Distribution for the Korn Airfoil at Design Conditions 
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Figure 10 

Partial View of Unstructured Mesh for the Karman-Trefftz Airfoil and Flap 
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Figure 11 

Comparison of Computed Surface Pressure Distribution with Analytical 

Incompressible Solution for the Karman-Trefftz Airfoil and Flap 
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Main Airfoil Flap Total 

CI Cd CI Cd CI Cd 

Nodal 

Scheme 1.7005 -0.0906 0.3357 0.0890 2.0362 -0.0016 

Analytical 

Incompressible 1.6915 -0.0898 0.3366 0.0897 2.0281 -0.0001 

Solution 

Table 1 

Comparison of Computed Force Coefficients for the Karman-Trefftz Configuration 
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Figure 12 
Illustration of the Adaptively Refined Mesh for the Subcritical Case of the 3-Element Airfoil Configuration 

10745 nodes, 20987 triangles 

'. 
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Figure 13 

Comparison of Computed Surface Pressure Distribution for the Euler Solution 

with that of the Full Potential Solution; Mach = 0.2, Incidence = 8° 
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Figure 14 

Computed Surface Entropy for the SubcriticaI 3-Element Airfoil Case 

Mach = 0.2, Incidence = go 
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Figure 15 

Convergence Rate on Finest Mesh for the Subcritical 3-Element Airfoil Case 

as Measured by the RMS Average of the Density Residual throughout the Flowfield 
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Figure 16 

Flowfield Mach Contours for the Subcritica1 3-Element Airfoil Case 
Mach = 0.2, Incidence = 8° 
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Figure 17 
Illustration of the Adaptively Refined Mesh for the Supercritical Case of the 3-Element Airfoil Configuration 

12830 nodes, 25125 triangles 
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Figure 18 

Comparison of Computed Surface Pressure Distribution for the Euler Solution 

with that of the Full Potential Solution; Mach = 0.25, Incidence = 80 
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Figure 19 

Computed Surface Entropy Distribution for the Supercritical 3-Element Airfoil Case 

Mach = 0.25, Incidence = 8° 
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Figure 20 

Flowfield Mach Contours for the Supercritical 3-Element Airfoil Case 

Mach = 0.25, Incidence = 8° 
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Figure 21 

Mach Contours near the Leading Edge of the Main Airfoil of the 3-Element Configuration 
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