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Accurate multipixel phase measurement with classical-light interferometry
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We demonstrate accurate phase measurement from experimental low photon level interferograms using a

constrained optimization method that takes into account the expected redundancy in the unknown phase function.

This approach is shown to have significant noise advantage over traditional methods, such as balanced homodyning

or phase shifting, that treat individual pixels in the interference data as independent of each other. Our interference

experiments comparing the optimization method with the traditional phase-shifting method show that when

the same photon resources are used, the optimization method provides phase recoveries with tighter error

bars. In particular, rms phase error performance of the optimization method for low photon number data (10

photons per pixel) shows a >5× noise gain over the phase-shifting method. In our experiments where a laser

light source is used for illumination, the results imply phase measurement with an accuracy better than the

conventional single-pixel-based shot-noise limit that assumes independent phases at individual pixels. The

constrained optimization approach presented here is independent of the nature of the light source and may further

enhance the accuracy of phase detection when a nonclassical-light source is used.
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Interferometric phase detection is one of the most important

techniques in physics. Optical interferometers are being used

routinely for metrology, biomedical applications, Fourier

transform spectroscopy, and holographic three-dimensional

(3D) imaging, to name a few applications [1]. Sensitive

phase detection is at the heart of large scale collaborative

efforts such as gravitational wave detection [2]. Our aim in

this Rapid Communication is to examine the interferometric

phase-detection problem with an optimization framework that

effectively models the redundancy in the unknown phase

signal. For given photon resources, we show that this approach

gives phase measurements with an accuracy better than the

conventional single-pixel-based shot-noise limit (SNL) even

when a classical-light source is used. This conclusion, though

somewhat surprising, suggests that limits such as SNL may

be generalized to incorporate the multipixel structure of the

unknown phase signal. While the quantum limits to the

measurement of stochastically fluctuating time-varying phases

have been studied before, our focus in this work is to exploit

the redundancy in the phase signal to obtain enhanced phase

measurement accuracy for experiments limited by low photon

numbers.

When two complex fields R (reference field) and O (object

field) interfere, the interference signal I detected by a square-

law detector is represented by

I = |R|2 + |O|2 + R∗O + RO∗. (1)

Given the prior knowledge about R, the typical methods for the

analysis of the interference data are linear in nature. The first
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step in estimating the phase from the interference data is to get

rid of the two intensity terms |R|2 and |O|2 in Eq. (1), followed

by processing of the remaining cross terms to estimate the

amplitude and the phase of the unknown complex field O.

The removal of |R|2 and |O|2 may be performed by high-

pass filtering of the interference signal I or by using multiple

recordings of the interference signal with known phase shifts

in R. When the phase of O is smaller than π/2 in magnitude,

a balanced detection scheme such as homodyning [3] may

be followed. However, if the phase of O can take any value

in the interval [−π,π ], typically four interference signals are

recorded with reference phase shifts of θ = 0, π/2, π , and

3π/2 applied to R [4]. The corresponding four interference

records are sufficient to provide information about the two

quadratures of the unknown object field O. Denoting the four

interference records as Iθ , the phase φO of the object field

relative to the phase φR of the reference field may be expressed

as

φO − φR = arctan

(

I3π/2 − Iπ/2

I0 − Iπ

)

. (2)

Henceforth, we will refer to this procedure as the phase-

shifting method (PSM). Improving the accuracy of the phase

estimation is of great interest to all the associated applications,

and this problem has been studied in detail in literature [5–8].

It is now well established that when classical-light sources are

used, the phase-detection accuracy is ultimately limited by the

shot noise or the
√

N noise, where N is the mean number of

photon counts registered by a point detector. This noise limit

is often referred to as the SNL. Obtaining phase-detection

accuracy below the SNL requires the use of nonclassical

states of light such as squeezed or entangled states [9–12].

The introduction of a squeezed vacuum for sub-shot-noise
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phase detection is now implemented in gravitational wave

detection experiments [13,14]. Squeezing enhanced optical

phase tracking for optical communication applications has

also been demonstrated [15]. Another class of measurements

using an adaptive feedback mechanism has been suggested for

achieving accuracy below the SNL [16–18]. In the context of

optimally estimating a classical Markov process that is coupled

to a quantum sensing system, a time-symmetric quantum

smoothing framework has been developed and demonstrated

experimentally [19,20]. Fundamental quantum limits to time-

varying wave-form detection have been discussed recently in

the context of a force estimation problem [21,22]. A stochastic

Heisenberg limit has also been studied in the context of

optimally estimating the time-varying fluctuating phase [23].

In the present work we use a Mach-Zehnder interferometer

setup without any additional hardware and illustrate enhanced

phase-detection accuracy based on the redundancy or sparsity

of the phase function to be measured.

The analysis of interference records that leads to SNL

is traditionally performed with point detectors and a phase

extraction procedure such as balanced homodyning or phase

shifting is assumed. This leads to all the data points in a time

domain (e.g., photon counts recorded by a point detector as

a function of time) or in a space domain (e.g., pixels of an

array detector) being processed in parallel. In most practical

applications the underlying solution φO that one is seeking

has some structure (as opposed to random or white noise) and

hence the individual measurement points in the interference

data may not be treated as independent of each other. Recent

developments in the area of compressive sensing [24] suggest

that such redundancy in the desired solution may be exploited

to achieve excellent signal or image recovery even with data

that are traditionally considered incomplete. This expected

redundancy in the signal to be recovered is not considered in

methods such as PSM, but can be modeled in an optimization

framework to gain noise advantage, as we illustrate here.

For the phase measurement problem we consider a con-

strained optimization formulation [25] where we minimize a

cost function of the form [26]

C(O,O∗) = ||β(I )[I − (|R|2 + |O|2 + R∗O + RO∗)]||2

+αψ(O,O∗). (3)

The first term in the above equation is a weighted L2-norm

squared data fit and the second term is a constraint that models

some physically desirable property of the solution O. The

choice of ψ(O,O∗) depends on the problem at hand, as we

shall explain later. The weights β(I ) in the first term may be

selected such that the measurements with larger photon counts

gain more importance in the cost function. The parameter

α controls the relative importance of the two terms in the

cost function. The knowledge of R is required for both the

phase-shifting and the constrained optimization methods in

order to determine the amplitude and phase of O. Recently

we have demonstrated the advantage of such an approach

for achieving single-shot high-resolution digital holographic

imaging [26,27]. These experiments were, however, performed

at high light level and the issues such as accuracy relative

to SNL were of no concern there, as is the case in the

present study with low photon level interference data. In

FIG. 1. (Color online) (a) Reference phase map at the sensor

plane obtained using high light level (>5000 counts/pixel) phase-

shifting data. (b) Experimental setup for the low light level in-

terference experiment. SF: spatial filter; P: polarizer; A: aperture;

NDF: neutral density filter; QHQ: geometric phase shifter; L: lens

(f = 10 cm); BS: beam splitter; M1, M2: mirrors; EMCCD: electron

multiplier CCD sensor.

order to test the noise characteristics of this optimization

approach to phase detection, we performed a low light level

interference experiment where a tilted plane wave front and a

quadratic wave front were interfered. In order to obtain data

that are photon noise limited, we employed a sensitive electron

multiplier CCD (EMCCD) array sensor (Andor iXon3) in

a photon counting mode. A 128 × 128 pixel region of the

EMCCD was used for all the illustrations below. The schematic

setup of our experiment as shown in Fig. 1 consists of a

Mach-Zehnder interferometer. The illumination source is a

linearly polarized He-Ne laser which is collimated and split

at the first beam splitter. The mirror M1 in the reference

arm is used to produce a tilt in the plane reference wave

front. The lens L (f = 10 cm) in the object arm produces

an approximately quadratic phase front. The QHQ (Q =
quarter-wave plate, H = half-wave plate) arrangement in the

reference arm was used as a geometric phase shifter [28] for

generating four frames of the phase-shifting interference data.

The optimization procedure as in Eq. (3) requires a single

interference data frame. A separate interference data frame

with the number of photon counts approximately equal to the

sum of photon counts in the four phase-shifting frames was

thus recorded. This single interference frame was then used

with the optimization algorithm. The performance of the phase

estimation methods is compared against the average number

N0 of photon counts registered per EMCCD pixel. The total

photon resources used for the phase map measurement are

thus equal to N0 times the number of pixels, and this number

is equal in both PSM and the optimization method. In our

experiments N0 varied from approximately 800 to 10. Light

level reduction was achieved with the help of neutral density

filters and by controlling the exposure time (electronic shutter)

of the EMCCD array. In order to find a ground truth phase map

of the object beam O for a later comparison with the low light

level phase reconstructions, a phase-shifting data set with a

sufficiently high light level (N0 > 5000) was recorded. This

high light level data set is able to give a smooth phase map

φHLL for the object beam as shown in Fig. 1(a). In order to
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find R, a separate calibration interference pattern was recorded

without any object in the object arm of the interferometer, and

the straight line fringes were used to estimate the tilt in the

reference beam. The constrained optimization procedure was

implemented using a gradient descent iteration. Since the cost

function is a function of both O and O∗, the steepest descent

direction is computed with respect to O∗ [29]. The gradient of

the cost function in Eq. (3) is given by

∇O∗C(O,O∗)

= −β(I )[I − (|R|2 + |O|2 + R∗O + RO∗)](O + R)

+α∇O∗ψ(O,O∗). (4)

The iterative algorithm is then designed such that an updated

solution O(n+1) is obtained from the previous solution O(n) as

O(n+1) = O(n) − t[∇O∗C(O,O∗)]O=O(n) . (5)

The step size t may be selected in each iteration by a standard

backtracking line search [30]. We used the weights β(I ) with

I in photon count units proportional to
√

I so that the terms

with higher photon counts were weighted by their relative

detection signal-to-noise ratio. Further, since the object wave

front has resulted due to Fresnel diffraction from the (lens)

object, the resultant field O is expected to have a certain

degree of smoothness. The smoothness property for the Fresnel

diffraction field is expected irrespective of any sharp features

that the object may have. This desirable property can be

modeled with the penalty term ψ(O,O∗) defined as

ψ(O,O∗) =
∑

p

∑

q∈Np

wpq |Op − Oq |2. (6)

The first summation above is over all pixels p in the image, and

the pixels q belong to some neighborhood Np of a particular

pixel p. The window function wpq is a decreasing function

(e.g., a Gaussian) of the distance between the pixels indexed by

p and q. From the nature of ψ(O,O∗) it may be noted that large

differences in the numerical value of O at any pixel with those

in its neighborhood are penalized and a locally smooth solution

as guided by window function wpq is obtained. In practice,

we implemented the optimization algorithm by alternatingly

minimizing the two terms of the cost function in an adaptive

manner in a fashion similar to some recent work in image

recovery literature [31,32].

For our experimental data, approximately 15–20 iterations

were required in each case to achieve the convergence. The

relative change in the solutions from successive iterations was

seen to be less than 10−3 (or 0.1%) at this stage. Some of

the phase recovery results are shown in Figs. 2(a)–2(c). The

phase maps for the object field as obtained using the PSM

[Eq. (2)] and the corresponding result using the constrained

optimization method are shown such that both methods use

the same average number of photons per pixel. We clearly

observe the advantage of using the constrained optimization

procedure by visual comparison of the resultant phase maps

with the phase map φHLL as in Fig. 1(a). Denoting the phase

maps obtained using the PSM and the constrained optimization

approaches as φPS and φCO , respectively, we define the noise

FIG. 2. (Color online) (a)–(c) Single-shot interference patterns

used in the optimization method (left column), phase recovery

using the PSM (middle column), and the optimization method (right

column). The N0 values in (a)–(c) are 225, 58, and 10, respectively. (d)

Phase profiles of the center pixel column of the image φHLL [Fig. 1(a)]

and the phase recoveries using PSM and optimization methods as in

(c) above for N0 = 10 counts/pixel.

gain as

G =
EPS

ECO

=
||φHLL − φPS ||
||φHLL − φCO ||

. (7)

The gain G is a ratio of the rms (or L2-norm) phase errors

in φPS and φCO with respect to φHLL [Fig. 1(a)]. In Fig. 3,

we show log-log plots of the gain G, and the two rms errors

EPS,ECO as in Eq. (7) with respect to N0. EPS is observed to

scale as N−0.53±0.04
0 , which is close to the expected shot-noise

behavior, whereas ECO is seen to scale as N−0.20±0.06
0 . The

noise gain G is seen to scale as N−0.33±0.04
0 . Here the ± ranges

in the scaling relations show a 95% confidence interval for

the scaling coefficient for fitting of our data. While we have
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FIG. 3. (Color online) Plot of noise gain G, EPS , and ECO

[Eq. (7)] with respect to the average number N0 of photon counts

per pixel (on a log-log scale) used for phase map estimation.

made experimental measurements for N0 as low as 10 based

on detector limitations, our tests on simulated interference

patterns for lower photon counts (up to N0 = 1) show that

the trend in scaling of EPS , ECO , and G as above continues

to hold. An rms error scaling of N−0.25
0 has been obtained

in a feedback-based interferometric scheme in Ref. [17] for

time-varying phase signals. The scaling law obtained by us

is, however, likely to change depending on the sparsity in the

phase function to be measured. The most important point to

note from Fig. 3 is that in the range of N0 considered, the

error ECO for the optimization method is always lower than

the error EPS for the phase-shifting method which defines the

SNL. Since the two solutions φPS and φCO are almost equal

at high light levels, the optimization solution is significantly

better as N0 is reduced, and in this sense the optimization

method provides sub-shot-noise performance. For example, if

N0 is reduced by a factor of 2, the PSM solution gets worse by

≈
√

2 whereas the optimization solution gets worse by a factor

20.20 = 1.15. The weak dependence of ECO on N0 in the low

N0 range highlights the importance of the smoothness penalty

term in the optimization solution. A further analysis leading to

a generalized multipixel SNL is required that incorporates the

statistics of the light source as well as a measure of redundancy

in the phase function φO that is to be estimated.

The noise gain G may be interpreted in two different

ways—when traditional approaches such as PSM are used

and ideal detectors are assumed, achieving a similar accuracy

as offered by the optimization method will require (i) classical

light that is more intense by a factor of G2 or (ii) nonclassical

sub-Poissonian light with fluctuations below the shot noise

by a factor of G. In our opinion, the noise gains >5 as

observed in our experiments can be significant for sensitive

phase-detection applications that are currently considered

limited by shot noise. The optimization framework we have

used here exploits the redundancy in the function φO to

achieve improved phase-detection accuracy even when a

classical-light source is used. We expect further improvement

in phase-detection accuracy if nonclassical states of light (e.g.,

squeezed states, spatially entangled light fields) or schemes

such as adaptive feedback [16,17] are used in combination with

this optimization-based approach to phase estimation. While

we have considered a stationary two-dimensional (2D) wave

front in this work, a similar approach will apply equally well

if a series of interference data points is recorded in time with

a point detector and an appropriate penalty term is designed

that models the desirable properties of a time-varying phase

function. Also, we are not restricted to the smoothness penalty

function as used in this work—other forms of penalties such as

L1-norm based penalties (e.g., total variation) or generalized

Gibbs priors [33] may well be used if required.

In conclusion, our work suggests that noise performance

better than conventional single-pixel-based SNL for phase

detection in an interference experiment may be achievable

even with classical light if an optimization approach to phase

detection as described here is used. Any interferometric

scheme (using either classical or nonclassical states of light) is

expected to benefit from such an approach to achieve enhanced

phase-detection sensitivity. The limits such as SNL that are

traditionally defined with considerations of the statistics of the

light source alone may thus be generalized to take into account

the redundancy in the phase signal that we intend to measure.
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