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ACCURATE NUMERICAL SOLUTIONS
FOR ELASTIC-PLASTIC MODELS

by

H. L. Schreyer, R. F. Kulak,
and J. M. Kramer

ABSTRACT

The accuracy of two integration algorithms is studied
for the common engineering condition of a von Mises, isotropic
hardening model under plane stress. Errors in stress predic-
tions for given total strain increments are expressed with con-
tour plots of two parameters; an angle in the pi plane and the
difference between the exact and coml.uted yield-surface radii.
The two methods are the tangent-predictor/radial-return ap-

proach and the elastic-predictor/ radial-corrector algorithm
originally developed by Mendelson. The accuracy of a com-
bined tangent-predictor/radial-corrector algorithm is also in-
vestigated. For single-step, constant- strain- rate increments,

the elastic-predictor/radial-corrector method is generally the
most accurate, although errors in angle can be significant. The
use of a simple subinrrementation formula with any one of the
three approaches yields results that would be acceptable for
most engineering problems.

I. INTRODUCTION

Computer codes that can handle elastic-plastic structural-response
problems are being used routinely by analysts. Such codes are usually or-
ganized so that the constitutive equation is incorporated in a separate sub-
routine. For a given problem, this subroutine can be called thousands of
times so that any error initiated by the constitutive-. equation algorithm can
be cumulative and lead to completely erroneous results. If the response is
strictly elastic, the error is related to the word length of the machine. How-
ever, for elastic-pla:tic behavior the algorithm used can be a source of er-
ror that is larger by several orders of magnitude. In spite of the importance
of understanding and controlling such an error, the subject has received little
attention in the open literature. The object of this report is to show the nu-
merical inaccuracy that is introduced by each of two common elastic-plastic
algorithms and to indicate with examples how a simple formula for subincre-
mentation can be used to limit the error in each case.
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Krieg and Krieg' have performed a thorough analysis of the accuracy

of integration of the constitutive equations for an isotropi6 elastic-perfectly
plastic von Mises material. A selected range of directions of the strain-rate

vector for various durations was studied and the solution for stress compared
with an exact solution. 2 The secant, tangent-stiffness/radial-return, and

simple-radial-return methods were considered. Each method was found to

be most accurate for a region within the graph of strain-rate direction versus

duration. The results of the study gave detailed guidelines for providing an

error estimate and the suggestion that, .or most engineering applications, the
simplest algorithm was adequate.

If strain hardening is present, a corresponding error analysis is much

more complicated. For the elastic-perfectly plastic case, the yield surface
is fixed so that Krieg and Krieg' were able to use simply ore parameter, an

angle, as a measure of error. Also, they were able to use an exact solution
that does not exist for the strain-hardening case. For strain-hardening mod-
els, the error in the size of the yield surface provides one more parameter
that must be simultaneously investigated.

The next three sections summarize the basic theory for the elastic-

predictor/radial-corrector and the tangent-predictor/radial- return schL'mes.
Although it i6 not generally recognized, the former method is essentiall% that

proposed by Mendelson. 3 In addition, the plane-stress versions of these the-

ories are also given for two reasons. First, many engineering problems can
be classified as plane ,-ress, and second, certain aspects of the formulation
are actually more complex for the two-dimensional case. The following two
sections include a subincrementation scheme and contour plots of error for

assumed load increments that include traversal from one side of the yield

surface to the other. These results are limited to plane-stress conditions
and the assumption of a constant-strain-rate vector for each step. Represen-

ta t:ive errors are given for cases when this latter assumption is violated.

Large computer codes that are used for the static or dynamic analysis
of pressure vessels and piping require accurate and efficient constitutive-
equation subroutines . Since the number of degrees of freedom is frequently
very large, solutions are expensive and, consequently, load increments are

also taken to be as large as possible. In the final section, recommendations
based on this work are made for modifying elastic-plastic constitutive algo-
rithms to limit the accumulation of error for problems that include complex
loading sequences.

II. NOTATION

For convenience, components of all tensors are given in a rectangular
Cartesian-coordinate system and the usual summation convention is used.
For infinitesimal deformations, the deviatoric part of the strain rate can be
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separated into the deviatoric part of the elastic strain rate and the plastic
strain rate as follows:

ei = ee. . (1)

For isotropic materials, the deviatoric stress rate is given by

Si. = 2Gef, (2)

where G is the shear modulus, which is assumed to be constant. The plastic

strain rate is determined from the associative potential flow law

S= (3)

where A is a positive scalar function and co is the yield function. For a step
of finite duration, this equation is the source of the various approximations

used in plasticity theory. The integration to obtain increments in components
of the plastic-strain tensor is usually replaced by the finite sum

N
Aep" a , (4)

Jn= ai n

in which EX represents the increment in X over a subincrement in time tt and
the total time span is given by

At = NAt. (5)

For an isotropic-hardening, von Mises model of a material, this yield

function can be given in the form

cp(Sij, P) = Sijsij - R2 (Ep), (6)

in which R, the radius of a hypersphere in deviatoric stress space, is related
to a universal response function (such as the yield function, H, of a uniaxial
stress specimen) by

R = /H(iP). (7)

The plastic-strain invariant, jP, is proportional to the path length in
plastic-strain space

2pft ( e )'1dt, 
(8)

0 ~ u

in which the parameter t increases monotonically from 0 to ti as the load is

applied.
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Suppose that, as a result of previous calculations, the deviatoric stress

state S " is known. For a given increment in total strain deviator, Aei" ,ob-

tained under the assumption of a constant strain rate, the object is to deter-

mine the final values of stress, elastic-strain, and plastic-strain deviators

denoted by S J e. , and e.. Respectively. Since a purely elastic step is not

of interest, the trial state, S J, found by the elastic relation

ST = S " + 2GAeiJ, (9)

is assumed to fall outside the yield surface; i.e.,

cpSTE ,P) > 0, (10)

in which 4o is the value of the plastic-strain invariant at the beginning of the

step. The final values of the state variables must satisfy the yield (or consis-
tency) condition

pSFEp= 0, (11)

in addition to the other governing field equations.

For the frequently encountered plane-stress condition, the use of three-
dimensional deviatoric stress-rate and strain-rate relations leads to an in-
compatibility between the final stresses and strains. In any algorithm, this
inconsistency can be resolved by iteratively satisfying the constitutive equa-

tions, but the procedure is time-consuming. A more efficient approach is to
use a formulation based on the stress components, aij, and the strain com-
ponents, eij, rather than just the deviatoric parts.
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III. ELASTIC-PREDICTOR/RADIAL-CORRECTOR METHOD

The procedure described in this section is essentially due to Mendelson, 3

who deserves considerable credit for introducing a very efficient scheme.
The basic idea is that a trial state based on an elastic assumption is first

obtained. Then the stress is corrected radially simultaneously with an ad-

'ustment in sP, or yield-surface radius, until the consistency condition is
satisfied. The theory assumes a particularly simple form in three dimensions,

but for plane stress, the governing equations are slightly more complicated.

Perhaps this is the reason the method has not been widely used.

If a one-step backward Euler integration procedure is used instead of
Eq. 4, then, with the use of Eq. 6,

LeP = 2LxSS. (12)

The definition of the plastic-strain invariant from Eq. 8 and the requirement

of Eq. 11 implies that

ti= 2A XRF, (13)

where

RF = (F) = ) /H(ZP + niP). (14)

The final and trial components of the elastic-strain deviator are related by

ee.F = ee.T - te'.. (15)
13 13 13

Then the use of Eqs. 15, 9, and 12 yields

SF = ZGe.F =S - 4G AXSF, (16)Ljj ij 13 13

or

SF = S1/(1 + 4GAX). (17)

The final stress state is proportional to the trial stress state; hence,
the procedure is properly called a radial-correction method. However, the
magnitude of the correction depends on OX, which must be determined.

The second invariant, 3T, and effective stress, QT, are defined by

S = (S S .) " ' ( 18 )
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and

QT ST- (19)

Then, the result of taking the inner product of each side of Eq. 17 with itself

is

RF = ST/(1 + 4GAX), (20)

in which Eq. 11 has been used. The substitution of Eqs. 7, 13, and 14 in Eq. 20

yields

T (21)

Since QT is known from Eqs. 9, 18, and 19, and H is a specified function, this
egiation is easily solved numerically for peP. The final components for the

str .ss deviator and strain deviator are obtained by back substitution in the

appropriate equations.

For clastic-perfectly plastic material, RF equals R0 , a fixed value,

and the substitution of Eq. 20 in Eq. 17 yields

SF: = SR ST, (22)

which defines what is often called the radial-return method.'

For plane or uniaxial stress, components of the elastic-strain tensor,
elf, must be used and the convenience associated with the purely deviatoric
formulation in three dimensions is lost. It can be easily shown that, for uni-

axial stress, Eq. 21 reduces to the conventional one-dimensional relation'

QT - H(e + AP)
p = E (23)

For plane stress (C13 = a23 = a33 = 0), the final and trial components
.of the elastic-strain tensor are related by

eF eT p
611 = e11 - Ae11 ,

eF =-eT p

(24)
and

eF eT p
¬1z = 612 - el2:
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which correspond to Eq. 15. If these components are substituted in the elastic
constitutive relations for plane stress, the result is

a = (fa + go)/(fz-g),

C72?= (faT + ga )/(fZ - g),

and 
(25)

F T 3 GteP
aiz = aiz Al+ 2 H '

F,

where

f = 1+ g1 -

(26)
1 - 2v GAL

g 1 -v HF

and v denotes Poisson's ratio. The use of the expression for the effective
stress in two dimensions yields

HF 2 H(4 + P) = F + (aE) 2 - oF + 3(i) ], (27)

which, together with Eq. 25, results in an equation that can be solved numer-
ically for AiP. Back :substitution again yields the required values of the state
functions.

IV. TANGENT-PREDICTOR/RADIAL-RETURN METHOD

This section briefly summarizes the tangent stiffness approach,4 '5

which has been developed and extensively used for some time. In this method,
when the beginning-of-step stress state Sj lies within the yield surface, the
step must be divided into two parts: elastic and elastoplastic. The elastic
response brings the stress state in contact with the yield surface at the point
Scij, which is given by

SF= Sid + 2GeAte,(28)

where Ate is that part of the time step At whicli is purely elastic. For the
plastic part of the step, the stress-deviator increment is related to the strain-
rate deviator by

ASi. = 2Geatp = 2G(ej - e tp, (29)
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where the plastic-strain rate is determined from Eq. 3 and Atp = At - Ate.
During plastic loading, the stress must lie on the yield surface. If the con-

sistency condition of Eq. 6 is used in differential form, then

Scc=pS..S.- - RR = 0. (30)
2 13 13

The temporal derivative of the hardening function, which depends only

on the accumulated plastic strain, is given by

.dR:
Rt= ep. (31)

dP

With the plastic modulus defined by

E =H ,(32)
P dIP

the use of Eqs. 3, 6, and 8 yields the form

R =XREp. (33)

ThenEqs. 1, 2, 3, 6, and 8 can be used to solve for

S. .e..

2R 2( E+ ) .(34)
2R 1 + ...-

\ 3G

The trial stress is calculated from Eqs. 9, 28, and 29. The result is

Sc Sc
ST= S.+ 2Gek ,sik~jt - ki Atp, (35)

RZ 1 + ...

- 3G

in which 6i- denote components of the identity tensor. In general, at the end
of this calculation, since SJ will not lie on the yield surface R(i ), the stress
is brought radially to the yield surface by

Sl= rS , (3b)

where Sr satisfies
13

SYFRZ(p) =0, (37)
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and the adjusting factor r is given by

(38)
R (E) H(ET)

r S= = .

As mentioned previously, it is more efficient to use stress-strain re-
lations for plane-stress problems. For convenience, the three independent
components o stress and strain are represented in a three-dimensional space.
Then the stress-rate/strain-rate relation takes the form

{&} = [C]{i}, (39)

wher e

{Q} = {&, Qaz, diz}T (40)

and

{e} = {ii, ezz, 2e1z}T (41)

with a superscript T denoting transpose. The material-property matrix is
denoted by [C], which for elastic material behavior is given by

E
[Ce] = Z

1- v

1 v 0

V 1 0

0 1-
2 _

and for elastoplastic behavior (see Ref. 6 for details) is

S2S22 ZP S11Stt+ ZvP

S11 + 2P

LSymmetric

S1i + vSZZ
-1 + v iz

- S22 + vS,1 S
1+ v

2 +T (1- v)QZ
2(1 +v) 9E

in which E and Q denote Young's modulus and the equivalent stress, respec-
tively, and

2E 2Z
P = - + , (44)9E 1+v'

(42)

[CP] = (43)
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T = 511 + 2vS11 S22 + Siz, (45)

and

Q = T + 2(1 - v2)P. (46)

The plane-stress counterpart of Eq. 35 is given by

{0T} = {,c} + [CP]{j} t p. (47)

The trial stress is radially returned to the yield surface according to

the relation

{aF} = r{aT}, (48)

where r is computed from Eq. 38 and aT is given by

~T - aza + (aZ+ 3(a ). (49)
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V. SUBINCREMENTATION

Results obtained by using the method of subincrementation indicate

that, for large strain increments, the final stress state can be substantially

in error, even when the velocity strain is constant during the time increment.

To reduce this error requires a subincrementing scheme. Several approaches

are possible. For example, Bushnell7 recommends that the number of sub-

increments be proportional to the equivalent-strain increment. In this section,

a formula for computing the number of subincrements is developed on the

basis that this number should depend on the plastic-strain-rate direction. Then

the amount of subincrementation can be related to the desired level of accuracy

to provide a computationally efficient algorithm.

To begin, assume that the stress state has been advanced to the yield

surface, and consider this stress to be the contact stress SQi in the following

discussion. Note that the quantity gij = of/aSij is a generalized vector normal

to the yield surface. At the beginning of the step, the normal gij is known and

the change in plastic-strain increment Ae2 * that occurs during the step must

be determined. This increment is given by

Ae = t .F 4 dt = F gij(t)X(t)dt, (50)

in which the time of initial plastic deformation is denoted by tc and the time

at the end of the step by tF. The rightmost integral above can be approximated

as a sum as follows:

N
0e"= ng(n)(n)At(n). (51)

n=1 J

When N tends to infinity, the sum equals the integral. When N is

equal to 1 we have a single-step procedure. In single-step procedures, the

assumption is usually riade that during the time step the strain increment is

small enough that the normal does not change significantly; thus the strain

increment is given by

AeP. = g. .iAt, (52)
13 13

in which gij = gij for the tangent predictor and gij = gij, the trial-state
normal, for the elastic predictor. For either procedure, the end-of-step nor-
mal can be compared to the beginning-of-step normal to determine if the
above assumption is valid. If the two normals are nearly equal, then the com-
puted stress will also be quite accurate. On the other hand, if the normals

differ significantly, the plastic- -ain increment should be calculated by
Eq. 51, where the number of subincrements, N, must be determined with an
appropriate equation.
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An estimate of the possible error for a given step is given by the
angle between the beginning-of-step normal and the trial-state normal,

that is,

c T
SijSij

6T = cos_- (53)

For plane stress, the trial-state stress and the trial-state deviatoric

stress, S ij, are obtained from the elastic constitutive relations for the
elastic predictor and from Eq. 35 for the tangent predictor. However, if

eT = 0, the normal can still vary between the beginning and the end of the
step, because of the simultaneous use of the plane-stress assumption; for the
three-dimensional case, the unit normal would not change. However, the

variation is probably small and subincrements would not be justified. When

9T is not zero, a simple formula for the number of subincrements is

N = 1 +6, (54)

in which eT is given in degrees and k is a positive number chosen on the basis
of numerical experience. An example that uses this formula is given in the

next section.

VI. ERROR ANALYSIS

The condition of plane stress was used to evaluate the accuracy of the

two approaches, since this case introduces certain complicating features that
are not present in a three-dimensional analysis. Also, it is probably the

most important case for engineering applications. In addition, to limit the
number of parameters, the material was assumed to be bilinear so that

H = Ho + Ep p, (55)

in which H0 and EP are constants.

Although the assumption of plane stress was made, the results of the

error analysis were presented in principal-deviatoric-stress space. The

primary purpose for doing so was to permit easy comparison with the work

of Krieg and Krieg,' which quite clearly forms the basis for this work. Fol-
lowing their approach, the initial deviatoric stress, SQ, is taken to be on the
yield surface with radius R0 . As shown on the pi plane in Fig. 1, this initial
contact point has the coordinates R0(0, 1, -1)/.l and the associated unit vector
defines the radial direction. The direction cosines of the unit tangential vec-
tor at this point, (2, -1, 1)/A, are obtained by taking the cross product of the
unit radial vector and the unit vector normal to the pi plane.
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Illustration in Pi Plane of Parameters
Used for Error Analysis

Numerical calculations were made for various increments from the
point S.. Each increment consisted of radial and tangential components

and

ASr = rR0 1

1St = tR J
(56)

in which r and t ranged from -5 to 5. One reason for choosing negative values
was to show the lack of symmetry that the assumption of plane stress intro-

duced as compared to the three-dimensional case. 1 Another reason was to

assess accuracy when the yield surface is traversed. This aspect may require

separate logic within an algorithm and can be the source of error.

With the restriction of plane stress, any principal stress state can be

uniquely defined by two polar coordinates (R, e) in which

R=S

and

cos 9 = 1l3
55

(57)

As the result of a prescribed increment in stress or strain, an algo-
rithm will yield a final state S ;, whereas the exact solution will, in general,
be some other state S1. The 6c:rresponding coordinates of these two stress

17
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points are (RF, eF), and (RE, eE), respectively. Then the error associated

with the final state is completely def -)y an angle,

8I= eF - 9E, (58)

and the percentage difference in yield-surface radii,

=100 RF RE. (59)
RE

For this study, the exact solution was defined to be the solution ob-
tained with the use of Ne subincrements, where

Ne = 200(r + t). (60)

The factor 200 was considered large enough, since values for tP
differed by less than 0.5% from corresponding values obtained with a factor

of 100 for all choices of r and t. Typical engineering values of E = 20.7 x
109 Pa, H0 = E/100, and v = 1/3 were used for all cases.

Figures 2-4 show contour plots of errors obtained by the two algorithms
when the final state was reached using a single step. For the elastic-perfectly
plastic case, E is zero, and the yield-surface radius is fixed at the value R0 .
Thus the error is defined in terms of a single parameter, c, for which the re-
sults are shown in Fig. 2.

5 5
-4-3 2 -I -2 -34045

4 6 40
-7 .4 350

-0- 25 30 35
--I -6- - - 302 -12 '-71*2 IS 20 25
-13 -- IV20 -0-

- -14 I4-

--20
30 --25 2020

-5 -5
-5 -4 -3 -2 - 0 I 2 3 4 5 -5 -4 -3 -2 -I 0 I 2 3 4 5

TANGENTIAL STRESS, AS,/R TANGENTIAL STRESS, AS 1/R,

(a) (b)

Fig. 2. Angular Error Contours for an Elastic-Perfectly Plastic Material (Ep = 0).
(a) Elastic Predictor. Radial Corrector; (b) Tangential Predictor. Radial Return.
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An example involving a bilinear material with Ep = E/ 10 was also

considered. Contours of the error angle are given in Fig. 3; coours of the

percentage error in yield-surface radii are shown in Fig. 4.

Generally speaking, the error associated with the elastic-predictor/
radial-corrector algorithm is much less for both the angular and radial mea-

sures than the error obtained with the tangent-predictor/radial-return method.

This is in agreement with Krieg and Krieg's work' for an elastic-perfectly

plastic material.

It should be emphasized that some of these steps are actually quite
large and the assumption of a constant strain rate over the complete .=tep can

be very important. To illustrate the differences that can occur, selected load

increments were covered in two steps over two paths. The first path cc -

sisted of the same strain-rate vector for each step; the second path consisted

cf a step with a purely tangential component in the principal-deviatoric-stress

space followed by a purely radial step. T he resulting errors in angle and

radius for Ep = E/10 are summarized in Table I. The results, obtained with

the elastic-predictor/radial-corrector algorithm, indicate that the use of a

variable strain rate can introduce errors larger by one or two orders of

magnitude if a constant strain rate is considered to be a valid assumption.

Conversely, if the physical problem is one in which the strain-rate vector is

changing, then Lhe use of large constant-strain-rate steps can be the source

of major errors.

TABLE 1. Angular and Percentage Radial Errors for Two-step
Stress Increments over Constant- strain- rate and Variable-

strain-rate Paths (Elastic Predictor, Radial Corrector)

Components of Angular Error, e Error in Radius,

Stress Increment Constant Two Strain Constant Two Strain
(t, r) Strain Rate Rates Strain Rate Rates

(4,4) -1.65 -20.78 -0.33 3.26

(-4.4) -3.06 -28.63 -0.44 6.68

(-4, -4) -3.35 8.05 -0.37 19 03

(4, -4) -5.20 30.72 -0.40 16.43

To evaluate the effect of subincrementation, Eq. 54 with k = 8 was
used for the elastic-predictor algorithm and k = 4 for the tangent-predictor

algorithm. Figures 5-7 are error-contour plots for elastic-perfectly plastic

and elastic-plastic materials. The maximum number of subincrements, re-

quired for the elastic- predictor/radial- corrector and tangent- predictor/ radial-
return methods were 24 and 27, respectively. Note that, for approximately the
same maximum number of subincrements, the maximum angular error is now
less for the tangent-predictor scheme. Thus the use of subincrements in
this case provides a much greater relative improvement for the tangent-
predictor/radial-return algorithm than for the other method. However, the
elastic-predictor/ radial- corrector algorithm consistently provides lower
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values of error for the yield-surface radii. In general, the results of both
algorithms with subincrementation are considered to be satisfactory for most
engineering problems.
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Fig. 5. Angular Error Contours for an Elastic-Perfectly Plastic Material with Subincrementation (EP = 0).
(a) Elastic Predictor, Radial Corrector; (b) Tangent Predictor, Radial Return.
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Fig. 6. Angular Error Contours for an Elastic-Plastic Material with Subincrementation (Ep = E/10).
(a) Elastic Predictor, Radial Corrector; (b) Tangent Predictor, Radial Return.
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Fig. 7. Contour Plots of Percentage Error in Yield-surface Radii for an Elastic-Plastic Material with Sub-
incrementation (EP = E/10). (a) Elastic Predictor, Radial Corector; (b) Tangent Predictor. Radial Return.

Since the symmetry in the principal-deviatoric-stress-rate space is
destroyed with the plane-stress condition, different error contours are ob-
tained if an alternative initial point Sid is used. However, sample calculations
indicate that, for any such point and for the given range of stress increments,
the maximum values for error are approximately :he same and of the same
sign. Thus, the results cited above can be said to hold for an arbitrary start-
ing point on the yield surface.

The results of Figs. 2-7 suggest that a combined algorithm might pro-
vide answers superior to either algorithm. An obvious possibility is the use
of a tangent-predictor/radial-corrector scheme. Error contours for angles
are only slightly different from those obtained previously (Fig. 3b) and hence
are not shown. With regard to yield-surface radii there is a significantt im-
provement over the tangent-predictor/radial-return scheme, as seen by com-
paring Figs. 4b and 8. However, now the error contour: are all of a positive
sign rather than the negative sign provided by each sepE rate algorithrrm.

Error contours for the tangent-predictor/radial-corrector scheme
with subincrementation (k = 4) were also obtained for a strain-hardening
material. The maximum number of subincrements for this case was 27. Al-
though the contour plots displayed different characteristics than those as-
sociated with the other two algorithms, the maximum values of error in angle
and radius were of the same order of magnitude. Specifically, the maximum
angular error was 2.20 and the radial error ranged from -0.6 to 2.0%.

,
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VII. CONCLUDING REMARKS

An error analysis for prescribed strain or stress steps has been per-

formed for an elastic-predictor/radial-corrector, a tangent- stiffness/ radial-

return, and a combined tangent-stiffness/radial-corrector algorithm. A basic
characteristic of this analysis is that results for a typical bilinear elastic-
plastic material are not too different from those for an elastic-perfectly plas-

tic material.

For a single-step approach, the elastic-predictor/ radial-corrector
algorithm produces much smaller errors than either of the other two algo-

rithms over a wide range of prescribed stress or strain increments. How-

ever, with the use of approximately the same number of subincrements, the

maximum error is of the same order of magnitude for each algorithm. The
error associated with the subincrementation scheme is believed to be accept-

able for a wide range of engineering problems.

As part of the detailed investigation of representative algorithms, a

method was developed for conveniently describing and displaying errors, and
the results were used as a guide for adopting an efficient subinc r-mentation
formula. This development was performed with the assumption of plane

stress, because such a restriction introduces a degree of asymmetry and

computational complexity that is not obvious from a strictly theoretical for-

mulation. A similar investigation of the accuracy of other schemes for nu-

merically evaluating elastic-plastic constitutive equations would be invaluable
for rationally assessing tht efficiency of each approach.

The algorithms studied have also been used for combined kinematic-

isotropic hardening and for thermoplasticity. Although corresponding error
analyses have not been performed under these conditions, it is believed that
essentially the same characteristics would be displayed and that the subin-
crementation formula would b . appropriate for these cases as well.
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