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Abstract

We present an object class detection approach which

fully integrates the complementary strengths offered by

shape matchers. Like an object detector, it can learn class

models directly from images, and localize novel instances

in the presence of intra-class variations, clutter, and scale

changes. Like a shape matcher, it finds the accurate bound-

aries of the objects, rather than just their bounding-boxes.

This is made possible by 1) a novel technique for learn-

ing a shape model of an object class given images of ex-

ample instances; 2) the combination of Hough-style voting

with a non-rigid point matching algorithm to localize the

model in cluttered images. As demonstrated by an extensive

evaluation, our method can localize object boundaries ac-

curately, while needing no segmented examples for training

(only bounding-boxes).

1. Introduction

Object class detection is a central challenge of computer

vision. Recent research has achieved impressive results,

such as handling cluttered images [13], training from few

examples [18], and exploiting both contour [15, 16] and

appearance information [19]. However, most existing ap-

proaches localize objects up to a rectangular bounding-box.

In this work 1 , we want to go a step further and local-

ize object boundaries. Our approach aims at bridging the

gap between shape matching and object detection. Classic

non-rigid shape matchers [2, 3] obtain accurate point cor-

respondences, but take point sets as input. In contrast, we

build a shape matcher with the input/output behavior of a

modern object detector: it learns shape models from images,

and automatically localizes them in cluttered images.

Our approach makes three contributions. First, we in-

troduce a technique for learning the prototypical shape of

an object class as well as a statistical model of intra-class

deformations, given image windows containing training in-

stances (figure 1a). The challenge is to determine which

contour points belong to the class boundaries, while dis-

1This research was supported by the EADS foundation, INRIA and

CNRS. V. Ferrari was funded by a fellowship of the EADS foundation.

carding background and details specific to individual in-

stances (e.g. mug labels). Note how these typically form

the large majority of points, yielding a poor signal-to-noise

ratio. The task is further complicated by intra-class variabil-

ity: the shape of the object boundary varies across instances.

Second, we localize the boundaries of novel class in-

stances by employing a Hough-style voting scheme [13, 15,

16] to automatically initialize a non-rigid shape matcher [3].

This combination makes accurate, pointwise shape match-

ing possible even in severely cluttered images, where the

object boundaries cover only a small fraction of the contour

points (figure 3a).

Third, we constrain the shape matcher [3] to only search

over transformations compatible with the learned, class-

specific deformation model. This ensures output shapes

similar to class members, improves accuracy, and helps

avoiding local minima.

These contributions result in a powerful system, capa-

ble of detecting novel class instances and localizing their

boundaries in cluttered images, while training from objects

annotated only with bounding-boxes.

2. Related works

Object localization. A few previous approaches go be-

yond bounding-box precision [1, 12, 13, 17, 18, 20], but

most of them require segmented training objects. Todor-

ovic and Ahuja [18] can learn when given only image labels,

but the number of training images is strongly limited by the

computational complexity of the learning stage. As [18],

LOCUS [20] also learns from image labels, but it is based

on entirely different techniques than our work. Besides, we

demonstrate detections on more challenging images (small

objects in large cluttered images; wide range of scales), and

test our method as a full object detector, by evaluating de-

tection rates and false-positives rates (also on images not

containing the object). In contrast, LOCUS [20] focuses on

segmentation accuracy and does not report these statistics.

The work of Berg et al. [1] is related to ours in that they

also cast object detection as a point-matching problem. As

an important difference, it treats training images individu-

ally, without learning a shape or deformation model. More-

over, it requires hand-segmented training images. Although

1



a) training examples

c) initial shapeb) model parts

refined shape (iter 2)refined shape (iter 1)d) points on initial shape

e) first mode of variation

Figure 1. a) 4 out of 24 training examples. b) Model parts. c) Se-

lected occurrences. d) Shape refinement iterations. e) First mode

of variation (mean shape in the middle).

ideas for training without segmentations are mentioned, the

reported shape-matching results do use them.

Learning and matching shapes. Numerous methods ap-

peared for learning and matching deformable shape mod-

els [4, 6, 9, 10]. Several approaches learn global modes of

variation using PCA, following the seminal work of Cootes

on Active Shape Models [4, 10]. Models of different nature

have also been proposed, such as pairwise geometric rela-

tions between landmarks [6], or representing shapes as con-

figurations of independently deforming triangles [9]. The

main point is that all these techniques need shapes as input

(i.e. sets of points on object outlines) [4, 9, 10], or, equiv-

alently, clutter-free cartoon drawings [6]. Besides, only

some methods automatically extract the necessary land-

mark points and their correspondences from the training

shapes [6, 10], while others require them as additional in-

put [4, 9]. In contrast, in this paper we automatically learn

shapes, correspondences, and deformations from images.

Most existing shape matching techniques work in clut-

tered images only if initialized near the object to be

found [3, 4, 5]. In our approach instead, this initialization is

automatic (section 4.1). Two exceptions are [9], which has

high computational complexity, and [7], against which we

compare experimentally in section 5.

3. Learning a class-specific shape model

Given image windows with example instances (fig-

ure 1a), we learn the shape of the class and the principal

intra-class deformation modes. To achieve this, we present

a technique for discovering which contour points belong to

the common class boundaries (e.g. the outline of the mug,

as opposed to the varying labels), and for putting them in

full point-to-point correspondence across the training exam-

ples. The technique is composed of four steps (figure 1b-d).

First, we determine model parts as local contour features

(subsection 3.1) frequently reoccurring with similar loca-

tions, scales, and shapes (subsection 3.2). Next, an initial

shape is assembled by sampling a specific feature for each

model part from the training examples (section 3.3). The

shape is then matched back on the training images (subsec-

tion 3.4), thus producing different shape variations, all in

point-to-point correspondence. These are used to refine the

model shape and to learn intra-class deformations (subsec-

tion 3.5).

3.1. Local contour features

We employ the scale-invariant local contour features re-

cently proposed by [8]. Edgels are found by the Berke-

ley edge detector [14], and then grouped into pairs of ad-

jacent, approximately straight segments (figure 2a). Each

such PAS feature P has a location (mean over the two seg-

ment centers), a scale (distance between the segment cen-

ters), a strength (mean edge detector confidence), and a de-

scriptor invariant to translation and scale. The descriptor

encodes the shape of the PAS, by the segments’ orientations

and lengths normalized by scale, and their relative location.

PAS features are particularly suited to our framework.

First, they are robustly detected because they connect seg-

ments even across gaps between edgel-chains. Second,

the descriptor records only properties of the two segments,

without including other nearby edgels (as opposed to patch

descriptors). This is valuable as non-boundary edgels just

outside/inside the object would otherwise corrupt the de-

scriptor of a PAS lying on the object boundary. Finally,

since a correspondence between two PAS induces a trans-

lation and scale change, they can be easily used within a

Hough-style voting scheme for object detection [13, 15, 16].

We construct a codebook by clustering all PAS inside

the training bounding-boxes according to their descriptors

(see [8] for details of the similarity measure between de-

scriptors). For each cluster, we retain the centermost PAS,

minimizing the sum of dissimilarities to all the others. The

codebook is the collection of these centermost PAS, the PAS

types (figure 2b). A codebook is useful for efficient match-

ing, since all features similar (up to some threshold) to a

type are considered in correspondence.
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Figure 2. a) three example PAS. b) some frequent PAS types. c) two

model parts with high connectedness. d) two model parts with even

higher connectedness (equivalent parts).

3.2. Finding model parts

The key insight is that PAS belonging to the desired class

boundaries will reoccur consistently across several training

instances at similar locations and scales, and with similar

shapes. In contrast, PAS not belonging to the common

boundaries are not correlated across different examples.

The first step of our algorithm is to align the training

bounding-boxes by transforming them into a zero-centered

rectangle with unit height and width equal to the geometric

mean of the training aspect-ratios (i.e. width over height).

In addition to removing translation and scale differences,

this effectively cancels out shape variations due to different

aspect-ratios (e.g. tall mugs versus coffee cups).

The core of the algorithm maintains a separate voting

space for each PAS type, where it accumulates votes from

all training PAS. Each PAS votes for the existence of a part

of the class boundary with shape, location, and size like its

own. More precisely, a PAS is soft-assigned to all codebook

types within a dissimilarity threshold, and casts a vote in

each corresponding accumulator space. Votes are weighted

proportionally to the PAS’ edge strength, and inversely pro-

portionally to the shape dissimilarity to the codebook type.

The output of the algorithm are the local maxima in lo-

cation and scale of the accumulator spaces. Each maximum

yields a model part, which has a specific location and size

relative to the canonical bounding-box, and a specific shape

(the codebook type corresponding to the accumulator space

where the maximum was found). Moreover, the value of

the local maximum provides a measure of the confidence

that the part really belongs to the class boundaries (part

strength).

This procedure benefits from adopting PAS as basic

shape elements (as opposed to individual edgels): it is

highly unlikely that a significant number of unrelated PAS

will accidentally have similar locations, scales, and shapes.

Hence, recurring PAS stemming from the desired class

boundaries will tend to form peaks in the accumulator

spaces, whereas background clutter and details of individual

training instances won’t.

The proposed algorithm has two important properties.

First, it sees all training data at once, and therefore

reliably selects parts and robustly estimates their loca-

tions/scales/shapes. This is more stable than matching pairs

of training instances and then recombines their output a pos-

teriori. Second, its complexity is linear in the number of

training instances, so it can learn from large training sets

efficiently.

3.3. Assembling the initial model shape

The learned model parts already capture the shape of the

object class quite well (figure 1b). The outer boundary of

the mug and the handle hole are included, whereas the label

is largely excluded. However, this doesn’t look like the out-

lines of an average class member yet. There are often mul-

tiple stokes along what should be a single line. Adjacent

parts don’t fit well together in terms of their relative loca-

tions and sizes, resulting in short, discontinuous lines. This

is because individual parts are learnt independently, without

trying to assemble them into a proper whole shape. In the

following we describe how to build such a shape, made of

single-stroked, long continuous lines.

Let us notice that each model part occurs several times

on the training examples. These occurrences present

roughly similar, yet different alternatives for the part’s lo-

cation, size, and shape. Hence, we can assemble several

variants of the overall shape by selecting different occur-

rences for each part. The main idea is to select occurrences

so as to form larger aggregates of connected occurrences

stemming from only a few training images. The intuition

being that occurrences from the same training image fit to-

gether naturally.

A training PAS o is an occurrence of model part P if

they are sufficiently similar according to a confidence mea-

sure based on their shapes, locations, and scales. We de-

note an occurrence with P → o, and its confidence with

conf(P → o) ∈ [0, 1].
Recall that a model part P has two segments P1, P2. Let

the equivalence between two model segments be

eq(Pi, Qj) =
X

{s|Pi→s,Qj→s}

conf(Pi → s) + conf(Qj → s)

(1)

with i, j ∈ 1, 2 and s any training segment on which both
Pi, Qj occur. Two model segments have high equivalence if
they frequently occur on the same training segments. Lastly,
we define the connectedness between two model parts P, Q
as

conn(P, Q) = max(eq(P1, Q1) + eq(P2, Q2), (2)

eq(P1, Q2) + eq(P2, Q1))

i.e. the combined equivalence of their segments (for the

best of the two possible segment matchings). Two parts

have high connectedness if their occurrences frequently



share a segment (figure 2c+d). Moreover, two parts can

even share both their segments. In this case, their connect-

edness is even higher, indicating they explain the same por-

tion of the class boundaries. Equivalent model segments are

the origin of the multiple strokes in figure 1b. Equation (2)

measures connectedness/equivalence by smoothly integrat-

ing evidence over the whole training set.
The occurrence selection task can now be formulated

precisely as follows. Find the assignment A(P ) = o of
occurrences to parts that maximizes the objective function
(exactly one occurrence is assigned to each part):

X

P

conf (P → A(P )) − λimgNimg (3)

+λconn

X

P,Q

conn(P, Q) · 1img (A(P ),A(Q))

where the indicator function 1img takes value 1 if two

occurrences stem from the same image, and 0 otherwise.

Nimg is the number of images contributing an occurrence

to A, and λimg, λconn are predefined weights. The first

term of (3) prefers high confidence occurrences. The second

term discourages scattering occurrences across many train-

ing images, while the third term favors assigning connected

parts to occurrences from the same training image. Overall,

the function encourage the formation of aggregates of good

confidence and properly connected occurrences, which typ-

ically fit well together. Moreover, the last two terms push

equivalent model segments to be assigned to the same train-

ing segments, hence suppressing multiple strokes.

Although function (3) cannot be optimized exactly, as

the space of all possible assignments is huge, in practice

the following approximation algorithm brings satisfactory

results. We start by assigning the part which has the single

most confident occurrence. Next, we iteratively consider

the part most connected to those assigned so far, and assign

it to the occurrence which maximizes (3).

Figure 1c shows an example of the selected occurrences.

The shape is composed of three blocks, each from a differ-

ent training image. Within each block, segments fit well to-

gether and form continuous lines. Nevertheless, there are

still discontinuities between blocks, and some redundant

strokes still remain (lower half of handle).

3.4. Model shape refinement

We can improve the model shape by treating it as a de-

formable point set and matching it back onto the training

images. For this, the image edgels are now treated individ-

ually, no longer grouped into PAS features. We iterate over

three steps:

1. Backmatching. The model shape is matched back to each

training image, using an extension of the non-rigid robust

point matcher by Chui and Rangarajan [3]. This powerful

algorithm estimates a Thin-Plate Spline (TPS) transforma-

tion and at the same time rejects image points not corre-

sponding to any model point (see subsection 4.2 for details).

We initialize the algorithm by transforming the model shape

so that its bounding-box perfectly aligns with the training

bounding-box. This strong initialization makes the matcher

very likely to succeed.

2. Mean shape. The shapes generated by backmatching are

in full point-to-point correspondence, because they are all

smooth deformations of the same initial shape. Hence, we

apply Procustes analysis [4] to align them w.r.t. to trans-

lation, scale, and orientation. The model shape is now up-

dated by setting it to the mean of the aligned shapes. The

combined effects of backmatching and computing the mean

shape are very beneficial (figure 1d-middle). Model seg-

ments move, bend, and stretch in order to form smooth,

connected lines, and to recover the shape of the class well

on a global scale (e.g. topmost and leftmost segments in fig-

ure 1d-middle). The reason for these improvements is that

backmatching manages to deform the initial shape onto the

class boundaries of the training images, thus providing a set

of natural, well formed shapes. The averaging step then in-

tegrates them all into a generic-looking shape, and smoothes

out occasional inaccuracies of the individual backmatches.

3. Remove redundant points. As another effect, the previous

steps tend to crush multiple strokes (and other clutter points)

onto the correct class boundaries. This results in redundant

points, roughly coincident with other segments. We remove

them by deleting any point lying very close to points from a

stronger part. If a significant proportion of points (> 10%)

are removed, the procedure iterates to point 1. Otherwise, it

is completed.

As shown in figure 1d-right, the running example im-

proves further during the second (and final) iteration (e.g.

handle). It now has a clean overall shape, and includes no

background clutter and very little interior clutter. Notice

how the fine scale structure of the double handle arc is cor-

rectly recovered.

3.5. Learning shape deformations

The previous subsection matches the model shape to

each training image, and thus provides examples of the vari-

ations within the object class we want to learn. Since these

examples are in full point-to-point correspondence, we can

learn a compact model of the intra-class variations using the

statistical shape analysis technique by Cootes [4].

The idea is to consider each example shape as a point in a

2p-D space (with p the number of points on each shape), and

model their distribution with Principal Component Analysis

(PCA). The eigenvectors returned by PCA represent modes

of variation, and the associated eigenvalues λi their impor-

tance (how much the example shapes deform along them,

figure 1e). By keeping only the n largest eigenvectors E1:n
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Figure 3. a) A challenging test image and its edgemap b). The

object covers only about 6% of the image surface, and only about 1

edgel in 17 belongs to its boundaries. c) Initialization with a local

maximum in Hough space. d) Output shape with unconstrained

TPS-RPM. e) Output shape with shape-constrained TPS-RPM.

representing 95% of the total variance, we can approximate

the region in which the training examples live by x̄+E1:nb,

where x̄ is the mean shape, b is a vector representing shapes

in the subspace spanned by E1:n, and b’s ith component

is bound by ±3
√

λi. This defines the valid region of the

shape space, containing shapes similar to the example ones.

Typically, n < 15 eigenvectors are sufficient (compared to

2p ≃ 200).

In subsection 4.3, we exploit this deformation model to

constrain the matching of the model to novel test images.

Notice that previous works on these deformation models re-

quire at least the example shapes as input [10], and many

also need the point-to-point correspondences [4]. In con-

trast, we automatically learn shapes, correspondences, and

deformations given just images.

4. Object detection
In this section we describe how to accurately localize

novel object instances in a test image. We first obtain rough

estimates for their location and scale based on a Hough-

style voting scheme (subsection 4.1). These estimates are

then used to initialize the non-rigid shape matcher [3] (sub-

section 4.2). This combination enables shape matching in

cluttered images, and hence to localize object boundaries.

In subsection 4.3, we constrain the matcher to explore only

the region of shape space spanned by the training exam-

ples, thereby ensuring that output shapes are similar to class

members.

4.1. Hough voting
In subsection 3.2 we represented the shape of the class

as a set of PAS parts, each with a specific shape, location,

size, and strength. Here we match these parts to PAS from

the test image, based on their shape descriptors. Since a pair

of matched PAS induces a translation and scale transforma-

tion, we let each match vote for the presence of an object

instance at a particular image location (object center) and

scale (in the same spirit as [13, 15, 16]). Votes are weighed

by the shape similarity between the model part and test PAS,

the edge strength of the PAS, and the strength of the part.

Local maxima in the voting space define rough estimates of

the location and scale of candidate object instances.

4.2. Shape Matching by TPS-RPM
For each candidate location l and scale s we obtain a

point set V by centering the model shape on l and rescaling

it to s, and a set X which contains all image edge points

within a larger rectangle of scale 1.8s (figure 3c). Given

this initialization, we want to put V in correspondence with

the subset of points of X lying on the object boundary. We

estimate the associated non-rigid transformation, and reject

image points not corresponding to any model point, with the

Thin-Plate Spline Robust Point Matching algorithm (TPS-

RPM [3]).

TPS-RPM matches the two point sets V = {va}a=1..K

and X = {xi}i=1..N by applying a non-rigid TPS mapping

{d, w} to V (d is the affine component, and w the non-rigid

warp). It estimates both the correspondence M = {mai}
between V and X , and the mapping {d, w} that mini-

mize an objective function of 1) the distance between TPS-

mapped points and their corresponding points of X , 2) the

regularization terms for the affine and warp components of

the TPS. In addition to its inner K × N part, M has an ex-

tra row and an extra column which allow to reject points as

unmatched.
Since neither the correspondence nor the mapping are

known beforehand, TPS-RPM iteratively alternates be-
tween updating M , while keeping {d, w} fixed, and updat-
ing the mapping with M fixed. M is a continuous-valued
soft-assign matrix, allowing the algorithm to evolve through
a continuous correspondence space, instead of jumping
around in the space of binary matrices (hard correspon-
dence). It is updated by setting mai as a function of the
distance between xi and va mapped by the TPS. The update
of the mapping fits a TPS {d, w} between V and the current
estimate of the corresponding points

Y = {ya =
N

X

i=1

maixi} (4)

This minimizes the proximity of TPS-mapped points to ya

under the influence of the regularization terms, which penal-

ize local warpings w and deviations of d from the identity.

The optimization procedure is embedded in a determin-

istic annealing framework by introducting a temperature pa-

rameter T , which decreases at each iteration. This gradually

makes M less fuzzy, progressively approaching a hard cor-

respondence matrix. At the same time, the regularization

terms get less weight. Hence, the TPS is rigid in the begin-

ning, and gets more and more deformable as the iterations



continue. These two phenomena enable TPS-RPM to find

a good solution even when given a rather poor initializa-

tion. At first, when the correspondence uncertainty is high,

each ya essentially averages over a wide area of X around

the TPS-mapped point (equation (4)), and the TPS is con-

strained to near-rigid transformations. As the temperature

decreases, M looks less and less far, and pays increasing

attention to the differences between matching options from

X . Since the uncertainty diminishes, it’s safe to let the TPS

looser, freer to fit the details of X more accurately.

We have extended TPS-RPM by adding two terms to

the objective function: the orientation difference between

corresponding points (minimize), and the edge strength of

matched image points (maximize). In our experiments,

these extra terms made TPS-RPM more accurate and sta-

ble, i.e. it succeeds even when initialized farther away from

the best location and scale.

4.3. Constrained shape matching

TPS-RPM treats all shapes according to the same generic

TPS deformation model, simply preferring smoother trans-

formations. This might result in shapes unlike any of the

training examples. Here, we extend TPS-RPM with the

class-specific deformation model learned in subsection 3.5.

We constrain the optimization to explore only the valid re-

gion of the shape space, containing shapes plausible for the

class (defined by x̄, E1:n, λi from subsection 3.5).

At each iteration of TPS-RPM we project the current

shape estimate Y (equation (4)) inside the valid region, just

before fitting the TPS. This amounts to:

1) align Y on x̄ w.r.t. to translation/rotation/scale

2) project Y on the subspace spanned by E1:n :

b = E−1(Y − x̄) , b(n+1):2p = 0

3) bound the first n components of b by ±3
√

λi

4) transform b back into the original space: Y c = x̄ + Eb

5) apply to Y c the inverse of the transformation used in 1)

The assignment Y ← Y c imposes hard constraints on

the shape space. While this guarantees output shapes simi-

lar to class members, it might sometimes be too restrictive.

To match a novel instance accurately, it could be necessary

to move a little along some dimensions of the shape space

not recorded in the deformation model. The training data

cannot be assumed to present all possible intra-class vari-

ations. Hence, we also propose a soft constrained variant,

where Y is attracted by the valid region, with a force that

diminishes with the temperature: Y ← Y + T
Tinit

(Y c −Y ).
This causes TPS-RPM to start fully constrained, and then,

as temperature decreases and M looks for correspondences

closer to the current estimates, later iterations are allowed to

apply small deformations beyond the valid region (typically

along dimensions not in E1:n). As a result, output shapes fit

the image data more accurately, while still resembling class

members. Notice how this behavior is fully in the spirit of

TPS-RPM, which also lets the TPS more and more free as

T decreases.

The proposed extension to TPS-RPM reaches deep into

its heart as it alters the search through the transformation

and correspondence spaces. Beside improving accuracy, it

can take TPS-RPM out of a local minima far from the cor-

rect solution, thus avoiding a gross failure.

4.4. Detections

Every local maximum in Hough space leads to a shape

matched to the test image, a detection. Each detection is

scored based on four terms: 1) average proximity of the

TPS-mapped points to their corresponding image points; 2)

deviation of the affine component of the TPS from the iden-

tity; 3) amount of non-rigid warp of the TPS; 4) number of

model points matched with good confidence (max mai val-

ues). If two detections overlap substantially, we remove the

lower scored one. Notice that the method can detect multi-

ple instances of the same class in an image.

5. Results and conclusions

We present an extensive evaluation over six diverse ob-

ject classes from two existing datasets. The first one is

the ETHZ Shape Classes [7], which contains a total of 255
images divided among apple logos (40), bottles (48), gi-

raffes (87), mugs (48), and swans (32). It’s highly chal-

lenging as objects appear in a wide range of scales, they

exhibit considerable intra-class variation, and many images

are extensively cluttered. The second dataset is the INRIA

Horses [11], consisting of 170 images containing horses,

and 170 without horses. Horses appear at different scales,

and against cluttered backgrounds.

Models from real images. Experiments are conducted in

5-fold cross-validation. For each class of the ETHZ dataset

we learn 5 different models by sampling 5 subsets of half

of the class images at random. The test set for a model then

consists of all other images in the dataset. This includes

about 200 negative images, hence supporting accurate esti-

mation of the false-positive rate. For the INRIA dataset, we

sample 5 subsets of 50 horse images for training, and use all

other images for testing (i.e. 120 positive and 170 negative).

We report object detection performance as the detection-

rate at the moderate rate of 0.4 false-positives per image

(FPPI), averaged over the 5 trials (table 1, second row). In

order to compare to [7], we adopt their criterion: a detec-

tion is counted as correct if its bounding-box overlaps more

than 20% with the ground-truth one, and vice-versa. As the

table shows, our method performs well 2 on all classes but

2Using the somewhat stricter PASCAL Challenge criterion (bounding-

box intersection over union > 50%) lowers detection rates by only

0%/1.6%/3.6%/4.9% for apple logos/bottles/mugs/swans. This indi-

cates that bounding-boxes are accurate. For horses and giraffes the de-

crease is more significant (18.1%, 14.1%), because the legs of the animal

are harder to detect.



Applelogos Bottles Giraffes Mugs Swans Horses

Hough alone: 35.9 (7.5) 71.1 (4.6) 56.8 (9.7) 51.4 (4.8) 63.3 (8.1) 85.8 (1.6)

full system: 83.2 (1.7) 83.2 (7.5) 58.6 (14.6) 83.6 (8.6) 75.4 (13.4) 84.8 (2.6)

accuracy: 1.5 (0.2) 2.4 (0.3) 3.5 (0.6) 3.1 (0.7) 3.0 (0.2) 5.4 (0.6)

Ferrari et al. [7]: 72.7 / 56.8 90.9 / 89.1 68.1 / 62.6 81.8 / 68.2 93.9 / 75.8 -

our system: 86.4 / 84.1 92.7 / 90.9 70.3 / 65.9 83.4 / 80.3 93.9 / 90.9 -

accuracy: 2.2 2.9 3.9 4.0 3.2 -

Table 1. Experimental results. The top 3 rows cover the experiments based on models learnt from real images. Entries of the first two rows

report the average detection-rate at 0.4 FPPI, and its standard-deviation (in brackets). The ‘accuracy’ row refers to the accuracy of the

produced shapes averaged over all detections at 0.4 FPPI (lower values are better, see main text). The bottom 3 rows cover experiments

based on hand-drawings. Rows 4 and 5 show detection-rates at 0.4 and 0.3 FPPI (before and after ‘/’ respectively). The accuracy of the

shapes matched by our system is given in the last row.

giraffes, mainly due to the difficulty of building shape mod-

els from their extremely noisy edge maps. For comparison,

the first row of table 1 reports the detection performance

obtained by the Hough voting stage alone (subsection 4.1),

without the shape matcher on top. The full system performs

considerably better, showing the benefit of treating object

detection fully as a shape matching task, rather than sim-

ply matching local features. Moreover, the shape match-

ing stage also makes it possible to localize complete object

boundaries (figure 4). Notice that the standard-deviations

in table 1 reflect variations in the randomized training and

test sets for different models. When the test set is fixed

for all models to include all images in the dataset, the stan-

dard deviations diminish by about half, reaching low values.

This suggests the proposed shape learning technique is sta-

ble with respect to the choice of training images.

In addition to the above evaluation we also measure

how accurately the output shapes delineate the true object

boundaries (ground-truth annotations). For this we use the

symmetric Chamfer distance, normalized by the ground-

truth diagonal, and averaged over correct detections and tri-

als. The system brings a convincing performance also in

this respect, with low errors around 3% (see third and sixth

rows of the table and the examples in figure 4).

Models from hand-drawings. Our system can directly

input one hand-drawing as model of the class shape, in-

stead of learning it from images. In this case, the model-

ing stage simply decomposes the model into PAS. Object

detection then uses these PAS for the Hough voting step,

and the hand-drawing itself for the shape matching step.

This allows a comparison to [7] using their exact setup,

with a single hand-drawing per class and all 255 images

of the ETHZ Shape Classes as test set. Our method per-

forms better than [7] on all 5 classes (fifth row of the table).

Moreover, our approach offers three additional advantages

over [7]: it can train from real images, it supports branching

and self-intersecting models, and it is more robust as it does

not need the test image to contain long chains of contour

segments around the object.

Interestingly, hand-drawings lead to better results than

when learning models from images. This can be explained

by the fact that hand-drawings are essentially the prototype

shapes the system tries to learn.

Conclusions. The experiments confirm that the presented

approach can learn class-specific shape models from im-

ages annotated with bounding-boxes, and then localize the

boundaries of novel class instances in the presence of exten-

sive clutter, scale changes, and intra-class variability. In ad-

dition, it is also very effective when given hand-drawings as

models. By supporting both images and hand-drawings as

training data, our approach bridges the gap between shape

matching and object detection.
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