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Accurate Pedestrian Indoor Navigation by
Tightly Coupling Foot-Mounted IMU

and RFID Measurements
Antonio Ramón Jiménez Ruiz, Fernando Seco Granja, José Carlos Prieto Honorato, and Jorge I. Guevara Rosas

Abstract—We present a new method to accurately locate per-
sons indoors by fusing inertial navigation system (INS) techniques
with active RFID technology. A foot-mounted inertial measuring
units (IMUs)-based position estimation method, is aided by the
received signal strengths (RSSs) obtained from several active
RFID tags placed at known locations in a building. In contrast to
other authors that integrate IMUs and RSS with a loose Kalman
filter (KF)-based coupling (by using the residuals of inertial- and
RSS-calculated positions), we present a tight KF-based INS/RFID
integration, using the residuals between the INS-predicted reader-
to-tag ranges and the ranges derived from a generic RSS path-loss
model. Our approach also includes other drift reduction methods
such as zero velocity updates (ZUPTs) at foot stance detections,
zero angular-rate updates (ZARUs) when the user is motionless,
and heading corrections using magnetometers. A complementary
extended Kalman filter (EKF), throughout its 15-element error
state vector, compensates the position, velocity and attitude errors
of the INS solution, as well as IMU biases. This methodology is
valid for any kind of motion (forward, lateral or backward walk, at
different speeds), and does not require an offline calibration for the
user gait. The integrated INS+RFID methodology eliminates the
typical drift of IMU-alone solutions (approximately 1% of the total
traveled distance), resulting in typical positioning errors along the
walking path (no matter its length) of approximately 1.5 m.

Index Terms—Dead reckoning, inertial navigation, Kalman fil-
ters, position measurement , RFID tags.

I. INTRODUCTION

A S GPS is essential for outdoor navigation, there is also a
growing need for accurate and continuous indoor local-

ization systems. Consequently, this topic has received signifi-
cant scientific research attention during the last years. There are
several location-aware application fields that can benefit from
indoor localization, such as, intelligent spaces, personal or asset
tracking, guidance of persons with mobility problems, or first-
responders.

Two main research approaches are used in the indoor po-
sitioning problem: 1) solutions that rely on the existence of
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a network of receivers or emitters placed at known locations
(beacon-based solutions); and 2) solutions that mainly rely
on dead-reckoning methods with sensors installed on the per-
son or object to locate (beacon-free solutions). Beacon-based
approaches, estimate position by trilateration or triangulation
from a set of measured ranges or angles, respectively. They are
usually termed local positioning systems (LPSs), in analogy to
GPS, although they normally use a different technology, such
as ultrasound, short-range radio (WiFi, UWB, RFID, Zigbee,
etc.) or vision. Some LPS surveys can be found in [1], [2].

The second approach (beacon-free or dead-reckoning) is
preferable in some applications since it does not depend on
a preinstalled infrastructure. During the last decade several
beacon-free methods based on inertial measuring units (IMUs)
have been proposed for the localization of persons [3]–[5].
These methodologies, often called pedestrian dead-reckoning
(PDR) solutions, can integrate the user step lengths and heading
angles at each detected step, to estimate the user’s position
[6]–[9]; or, alternatively, integrate accelerometer and gyroscope
readings of a foot-attached IMU (by strapdown inertial naviga-
tion system (INS) mechanization [10]) to compute the position
and attitude of the person [11]–[14].

IMU-based PDR solutions have the inconvenient of accu-
mulating errors that grow with the path length. This drift
problem is common to every dead-reckoning position estima-
tion method, although it can be minimized by using high-
performance IMUs. However, for a portable self-contained
PDR solution there is a limit to the weight, volume and power
consumption, and consequently low-performance microelectro-
mechanical systems (MEMS) IMUs have to be used [15].
Unfortunately, MEMS acelerometers and gyroscopes are sub-
ject to significant random noise and bias [16] that have to be
estimated on-line in to partially attenuate their drift effects. A
more effective way to eliminate the accumulated error, is to
fuse PDR with some indoor absolute positioning references,
such as a received signal strength (RSS)-based local positioning
system or RSS-LPS [17] or time-of-arrival (TOA) positioning
systems (TOA-LPS) [18]. This PDR+LPS integrated concept,
as already implemented in many outdoor applications fusing
INS and GPS [19], has the potential to provide an accurate drift-
free positioning solution.

RFID technology has several practical advantages over other
LPS approaches: it has an easier deployment (just stick several
RFID tags in the environment); no synchronization cables are
required (as opposite to TOA methods such as UWB); andthe
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density of nodes can be adapted and changed according to
the requirements of the application (i.e., a higher flexibility
than in other preinstalled networks such as the existing Access
Point in WiFi networks). For these reasons, we will use RFID
technology in this paper, and the RSS obtained from several
active RFID tags, placed at known locations in a building, will
be processed to cancel out the existing PDR drift. However, the
use of RSS is challenging due to the fading and the stochastic
behavior of Signal Strength values (caused by indoor obstacles,
reflections, body absorption, and so on).

The integration of RSS information with inertial data has
been proposed recently by a some authors; some of them use
the RSS from access points (AP) in a building ([20]–[22]), and
others use the RSS from RFID tags ([23]–[26]). Nevertheless,
no matter if the RSS is obtained from AP or RFID tags, the al-
gorithms to process RSS can be the same. Two main approaches
to integrate RSS measurements with Inertial data can be found
in the literature: 1) RSS-centric; and 2) Inertial-centric. The
RSS-centric approach is focused in position estimation from the
RSS data (by fingerprinting, Bayesian estimation or fitting data
to a path-loss model); some corrections from the inertial sensor
(in the form of incremental stride distances traveled) are fed
into the estimation filter to improve the movement model and
to smooth the estimated trajectory (otherwise quite noisy paths
are normally obtained using only RSS values [17], [27], [28]).
For example, in [21] a WiFi RSS-based fingerprinting method
is presented to estimate the position using a particle filter
implementation; the stride length (SL) estimation is fed (only
distance, no orientation) in the particle filter as a movement
model to sample the new particles positions in a circumference
having a normally distributed radius with mean equal to the
measured SL. A similar range-based movement model is found
in [22] where step lengths are used to adapt the transition
probabilities in a Hidden Markov Model (HMM).

In the Inertial-centric integration methods, the main fo-
cus of the estimation is on the inertial processing (INS or
SL-based) and the position information estimated with any
RSS-LPS method is used to update the position state of the
IMU-based PDR estimation. In [23] a SL-based PDR algo-
rithm, that uses information from several IMUs in the body,
is updated in position and orientation each time a user crosses
a door. An RFID tag is placed in the top center of the door’s
frame; when the RFID is detected (close-range coverage) the
PDR position is reset with the corresponding door’s position
(prestored in a database), and the yaw orientation is also reseted
to the door’s orientation. A similar close-range concept is used
as well in [29], in this case with a method denominated “RFID
time-based CoO”. Another SL-based PDR method imple-
mented with a particle filter (and map information) is improved
by weighting the particles by a probabilistic P(RSS|Position)
measurement model [20]. In [24], [25], [30] a INS-based PDR
method is updated with position and velocity estimations from
a parallel RFID probabilistic fingerprinting positioning method.
A separate Kalman filter (KF) is used for the INS estimation,
which is fed with the residuals between inertial- and RFID-
calculated positions.

The RSS+IMU integration methods presented until now in
the literature for PDR, in both RSS-centric and Inertial-centric

approaches, rely on the estimation of the position from RSS
information as an independent or separate building block, i.e.,
they perform a so called loose integration with IMU signals.
This loose approach is know in the GPS/INS community to be
less effective than other approaches that integrate raw sensor
data at a lower processing level (called a tight integration) [31].
Some of the benefits of tight integrations are: Drift reduction
even with only one node (RSS value) available; Feedback of
sensor error parameters (IMU bias, model constants), among
others. In [26] a path-loss model relating distance to RSS is pre-
sented; the authors suggest that it could be possible to integrate
the RSS data with the IMU using a tight KF-based estimation,
however they do not implement or detail how it could be imple-
mented, and consequently no localization tests are presented.

In this paper, we present, implement and test a new KF-based
INS/RFID tight integration method using the residual between
the INS-predicted range to tag, and the range derived from a
generic RSS path-loss model. Our approach also includes zero
velocity updates (ZUPTs) at detected foot stances, zero angular-
rate updates (ZARUs) at still phases, and heading drift reduc-
tion using magnetometers. A complementary extended Kalman
filter (EKF), throughout a 15-element error state vector [12],
[14], compensates position, velocity and attitude errors of the
INS solution, as well as IMU biases. Our methodology is valid
for any kind of motion (forward, lateral or backward walk),
and does not require a specific off-line calibration, neither for
the user gait, nor for the location-dependent RSS fading in the
building. In contrast to other works, several quite long trajec-
tories (more than 500-m long each) are evaluated in different
areas of an indoor building. The results demonstrate the effec-
tiveness of the methodology in eliminating positioning drifts.

The paper is organized as follows. The next section presents
the IMU and RFID sensors used for the indoor location tests.
Section III describes the KF-based INS/RFID tight integration
method, and finally, Section IV performs an evaluation of sev-
eral indoor localization tests. Conclusions and future research
directions are given in last section.

II. SENSORS AND INFRASTRUCTURE USED

For estimating the user’s position and displacement, we use
two sensors: one IMU to provide the inertial data, and a set of
several RFID tags with one long-range RFID reader, to get the
RSS information.

A. IMU

We use a commercially available IMU, model MTi
from Xsens Technologies B.V. (Enschede, The Netherlands;
www.xsens.com). Its size is 58 × 58 × 22 mm (length ×
width × height), and it weighs 50 g. It is configured to provide
inertial data at 100 Hz.

The IMU has three orthogonally oriented accelerometers,
three gyroscopes and three magnetometers. The accelerometers
and gyroscopes are solid state MEMS with capacitative readout,
providing linear acceleration and rate of turn, respectively.
Magnetometers use a thin-film magnetoresistive principle to
measure the earth ’s magnetic field. The performance of indi-
vidual MEMS sensors within the MTi IMU are summarized in
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TABLE I
PERFORMANCE OF INDIVIDUAL SENSORS IN XSENS IMU

Fig. 1. Xsens IMU attached to the right foot using the shoe’s laces.

Table I (Xsens specifications). As expected, they suffer from a
significant bias that also varies over time (bias stability).

This work uses the IMU mounted on the foot of a person to
take advantage of ZUPTs at foot stances. Fig. 1 shows the Xsens
sensor fixed to the right foot of a person, using the shoe’s laces.
The exact position and orientation of the IMU on the foot is not
important for the algorithms that we use to process the sensor
data (INS-based PDR [9]).

B. RFID

We use active RFID technology from the company RF Code
Inc. (Austin, TX, USA; www.rfcode.com). In our solution we
use several tags located at fixed positions within a building, and
a portable RFID reader (Fig. 2).

1) RFID Tags: We use active tags model M100, that are
battery-powered RF transmitters operating in the 433 MHz
radio band. Every tag broadcasts its unique ID and a status mes-
sage at a periodic rate (1 Hz) programmed at the factory. The
size of each tag is 46.74 × 34.28 × 11.68 mm (L × W × H).
Each tag weights 14.1 g, including a replaceable coin-cell
lithium battery (model CR2032). The expected lifetime is more
than seven years with one emission every 12.5 seconds (accord-
ing to the manufacturer), so for 1 Hz emission rate the battery
lifetime it is expected to be about 6 months. Tags can be put into
sleep mode (emissions disabled) using a tag activity controller,
model A600 from RFCode; this option is useful to preserve
batteries when the system is not to be used during long periods
of time.

2) RFID Reader: Among all the available RF Code readers,
we use the model M220 because it is a light-weight portable
battery-powered reader. It processes the signals coming from
neighboring active RFID tags, and can communicate to a

Fig. 2. RFID equipment from RFCode Inc. Left: RFID active tag model
M100. Right: RFID reader model M220.

Fig. 3. Distribution of 71 RFID tags (red circles) in our main building.

Bluetooth-enabled host processor (PC, PDA, smart phone),
and also by a wired USB-serial connection (Bluetooth 1.1 and
USB 2.0). The maximum read-out distance between the reader
and the tags is up to 70 m in ideal conditions (free space). The
RFID reader is equipped with two short range stub antennas. It
is also possible to install 1/4-wave articulated helical antennas
for operating at larger distances. Each reader reports the RSS
information at each antenna for every in-range tag. The reader
size is 111 × 76.5 × 25.1 mm (l × w × h), and it only weights
147 g.

C. Deployment of RFID Tags

We have installed 71 RFID tags in our CAR-CSIC main
building (2200 m2), a brick made construction with a ma-
jority of wooden doors. These tags are stuck on the walls at
approximately 2-m height (above most furniture or windows).
The tag distribution (Fig. 3) is somehow random, attempting to
obtain an homogeneous density, but trying to get at least three
non-aligned close-range tags from any indoor location (good
dilution-of-precision, or DOP [31]). Some tags are at some
strategic doorways that we believed could ease the location
during transitions from one corridor to a room, or viceversa.
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Fig. 4. Histogram of RSS values versus the tag-to-reader distance.

The tag density in the distribution of Fig. 3 is about 1 tag
every 30 m2. It is relatively high, but we decided to use enough
tags in to be able to study the influence of the tag density on
the final positioning results. In this way, it is straightforward
to simulate a lower tag density by simply not using some of
the RSS data coming from some selected tags. An optimum tag
density, as a trade-off between deployment cost and positioning
accuracy, will be studied in Section IV-D.

D. RSS Data Acquisition

Before defining in Section III the methodology to integrate
RFID measurements in the positioning method, we first present
some RSS data-collection experiments obtained by placing the
RFID reader at several static positions within the building. The
collected RSS data plotted versus the tag-to-reader range (see
Fig. 4) clearly shows the typical stochastic nature of RSS mea-
surements in complex indoor environments caused by multiple
fading, reflections, refractions, and multi-paths. This raw data
representation also gives insight on how RSS values depends
on the tag-to-reader distance. A generic model representing the
dependence of signal strength with range will be defined in
Section III and used in the integrated IMU+RFID positioning
algorithms.

The provided RSS value of RFCode reader is in fact a value
that ranges between 40 and 110, where a value of 40 corre-
sponds to the maximum signal strength, and values approaching
110 are the weakest signals.

The data presented in Fig. 4 corresponds to a total of 32
different reader positions along the main hall and corridor
of the CAR-CSIC building. In each position, measurements
were taken for one minute, with four different orientations
(approximately 15 seconds for each orientation). So the total
acquisition time was 32 minutes, and the resulting number of
RSS measurements was 46.687, that represents 34% of the
total number of emissions in 32 minutes (136.320 emissions =
32 minutes × 60 (emissions/minute) · tag × 71 tags). The fact
that only 34% of the total emissions were detected is caused
by a decreasing probability of detection at larger ranges (see
Fig. 5). Note that only a low percentage of detections are
produced above 25 m.

Fig. 5. Probability of tag detection clearly depends on the tag-to-reader
distance.

III. INTEGRATED IMU+RFID POSITIONING METHOD

Before presenting the RFID integration method, we quickly
review in the next subsection the basic framework for the
IMU-alone estimation (the core of RFID integration).

A. IMU-Alone IEZ+ Method

The IMU-alone IEZ+ method is a PDR positioning method,
that was recently presented by Jiménez et al. [14]. This method
is an extension of the ZUPTs Kalman-based methodology
presented by Foxlin [12]. The name of IEZ+ method is
a contraction of these acronyms: IMU-EKF-ZUPT-Extended,
that stands for “Inertial Measurement Unit—Extended Kalman
Filter—Zero Velocity Update—Extended”. The reader of this
paper is referred to Jiménez et al. [14] for implementation
details, nevertheless some key aspects will be highlighted here.

IEZ+ performs an INS mechanization on the foot’s position
based on IMU readings. This INS process, which is prone
to accumulate errors due to IMU biases, is corrected by the
15-element state vector of an EKF: X = [δAt, δωb, δPo,
δVe, δab]. This vector contains the estimated biases for the
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Fig. 6. IEZ+ methodology [14], integrated with RFID measurements for
drift-free pedestrian position estimation. Additional blocks for RFID integra-
tion are highlighted in gray color.

accelerometers and gyroscopes (δab and δωb, respectively), as
well as the 3D errors in orientation or attitude (δAt), position
(δPo), and velocity (δVe). Fig. 6 represents a block diagram
of the IEZ+ methodology (ignore the light-gray blocks that are
the additional components of the integrated RFID solution).

The EKF filter is executed at a 100-Hz refresh rate. Most
of the time only predictions are computed, but updates with
measurements (corrections) are also performed at the same rate
during foot stances. Hence, the EKF is updated with velocity
measurements by the ZUPTs strategy each time the foot is on
the floor; also with the angular rate of gyroscopes when the foot
is totally stationary (no walking, e.g., standing or sitting). The
latter update process is called ZARU, and provides a very good
method (fully observable) to quickly find an approximation of
gyroscope biases. IEZ+ also performs heading updates using
the magnetometer sensor to limit the drift.

The IEZ+ method, using only the self-contained information
of the IMU, has proven to be a very reliable PDR method, with
accumulated errors of approximately 1% of the total traveled
distance [12], [14]. However, over long-distance trajectories
this dead-reckoning method cannot avoid to progressively di-
verge from the true path. The integration of external RFID
measurements within the IEZ+ (next section) will help to solve
this problem.

B. Integration of RFID Measurements

We aid the IEZ+ method by means of a tight integration
using range residuals estimated from RFID signal strengths. In
contrast to other approaches ([20]–[24], [26]), which initially
estimate the position using a separate RFID-LPS system and

then incorporate positions into the KF in a loose integration,
we use the range-based tight approach which is known to have
better performance in GPS and other range-based application
systems [31].

The implemented RFID-aided INS indoor pedestrian naviga-
tor is depicted in Fig. 6. The whole block diagram corresponds
to the IEZ+ methodology that has been complemented or ex-
panded (to include the RFID information) with three additional
blocks: 1) RFID reader; 2) Range predictor; and 3) RSS-to-

distance model (blocks in light-gray in Fig. 6).
The first extra block in Fig. 6 (RFID reader) represents the

used RFID reader, and its outputs: several RSS values acquired
from different in-range tags. This RFID data is continuously
recorded in a buffer by the reader as received from the tags. We
collect the available RSS information in the reader at a 10 Hz
update rate. Since the reader has two antennas, most in-range
tags are detected by both antennas simultaneously, so we obtain
two RSS values from each tag. In our implementation we use
the mean of these two RSS values per each detected tag. If
n tags are detected in a 0.1 s time interval, then n RSS mean
values (denoted as RSSRFID

(1..n)) are used as measurements.
The second additional block in Fig. 6 is a range predictor,

which gives the distance between the current position estimated
by the INS mechanization, and the known position of tag i.
Each individual predicted tag-to-reader range, dINS

i , is com-
puted as

dINS

i =
√

(X INS − Xi)2 + (Y INS − Yi)2 (1)

where Xi and Yi are the known 2D -position coordinates of
tag i (prestored in a database); and X INS and Y INS are the
current position coordinates estimated by the IEZ+ architecture
at the INS output (Po = {X INS, Y INS, ZINS}). Usually, more
than one tag is detected (n), in that case, the complete set of
range predictions to the n tags is denoted by dINS

(1..n) = {dINS

i |i =

(1..n)}.
The third additional block in Fig. 6 (RSS-to-distance model)

transforms the RSS values into range data. Given the mean
RSS value from tag i, this model estimate the distance, dRFID

i ,
between tag i and the RFID reader, based only on RSS values,
i.e., dRFID

i = f(RSSi). The range residual, δdi, between the tag-
to-reader predicted distance, dINS

i , and the distance estimated
with the model, dRFID

i , is obtained as

δdi = dINS

i − dRFID

i . (2)

For a set of n detected tags we used the notation δd(1..n)

for the residuals. All available range residuals, as indicated in
Fig. 6, are fed into the EKF, at a 10 Hz rate. The success of
this RFID integration depends on the correctness of the model
relating the RSS with the true tag-to-reader distance. The model
used to relate RSS to range is presented in detail in the next
subsection.

C. RSS to Distance Model

The RSS value registered in a reader from the emission of
a tag, depends on their separation, or tag-to-reader range, but
also on some other unpredictable stochastic factors (specially
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indoors). The attenuation caused by the distance d between
an emitter and a reader, is known as the path loss [32]. This
attenuation is inversely proportional to the distance between
emitter and receiver raised to the so called path loss exponent p.
This exponent p equals two for an ideal spherical dispersion in
free space, is lower than two for propagation along waveguides
(e.g., corridors), and larger than two when multipath, refrac-
tion, or shadowing occurs in the propagation media (typical
in buildings). The received power (PR) at the reader can be
modeled as

PR ∝ PT ·
Gt · Gr

4πdp
(3)

where PT is the transmitted power at the emitter, Gt and Gr are
the antenna gains of transmitter and receiver, respectively, d is
the distance between emitter and receiver, and p is the path loss
exponent. Using logarithmic units in (3), and considering that
RSS is the received power in decibels, we obtain

RSS = RSS0 − 10 · p · log10

(

d

d0

)

+ v (4)

where RSS0 is a mean RSS value obtained at a reference
distance d0, and v is a Gaussian random variable with zero
mean and standard deviation σRSS that accounts for the random
effect of shadowing [28]. From (4), the maximum likelihood
estimate of distance d is given by

d = d0 · 10
RSS0−RSS

10·p . (5)

We obtained the unknown parameters RSS0 and p, by fitting
the experimental data presented in Fig. 4 to the RSS-distance
model (5). We found, for a reference distance d0 of 1 m, that
RSS0 equals 60 and p is −2.3 (both parameters have been
rounded). The minus sign in the path loss exponent accounts for
the inverse dependence of RFCode RSS read-out versus power
(decreasing values of RSS represent stronger signals).

The experimental standard deviation of RSS values, σRSS, has
been found to be almost independent of distance (σRSS = 6).
To obtain the standard deviation of the estimated distance,
σd, which is needed by the Kalman filter as an indication of
the belief we have on the modeled range value, we use the
following heuristic assumption: σd must be equal to σRSS when
the slope in model of (5) is one, and in general it should
be reasonably estimated as inversely proportional to the slope
of the distance model. If we differentiate (4) with respect to
distance d to obtain the slope, we get

∂RSS
∂d

= −10 · p ·
1

ln(10)
·
d0

d
·

1

d0
. (6)

Consequently, the sought standard deviation of distance (σd)
to be used in our model is

σd = σRSS ·
ln(10) · d

−10 · p
. (7)

This sigma model is linearly proportional to distance, so it
gives low standard deviation values at short ranges (low uncer-
tainty) and a larger sigma at long ranges (high uncertainty).

Fig. 7. RSS versus distance model. The solid line corresponds to the distance
model (5) evaluated for several RSS values; the dashed line corresponds to the
addition of±σd (from (7)) to the distance model for every RSS value evaluated.

The combined model representation of RSS versus distance
(d and σd) is depicted in Fig. 7. If for example, we have an
RSS value of 90, then, using (5) (solid blue line in Fig. 7), we
obtain an estimated range of 20 m; the uncertainty of this range
value is obtained with (7) (dashed lines), which gives a standard
deviation in distance, σd of about 12.5 m (symmetric at both
sides of the solid line plot).

D. Algorithm Implementation

To give enough details of the implemented software, we
present in Algorithm1’s box the pseudocode of the main pro-
gram, and that of the KF-based INS + RFID integration.
Within this code, several function calls are not detailed since
its functionality is clearly deduced from the function’s name
and the input and output parameters. The symbol of percentage,
“%,” is used to mark the beginning of comments (also in
blue color). Further INS and EKF implementation details were
already presented in [14].

Algorithm 1 Integrated IMU + RFID Positioning Algorithm.
More Kalman-related implementation details are in [14].

1: procedure MAIN % Main program
2: [State,Cov, Po, Ve, At, Potags] ← INITIALIZE();
3: STARTIMU&RFIDMEASUREMENTS();
4: loop % 100 Hz rate
5: WAITNEXTIMUSAMPLE; % Max. 10 ms
6: Data IMU ← [ωb,ab,mb] ← GETIMU Data ();
7: [Stance, Still] ← STEPDETECTION Data IMU;
8: if Stance then % Foot at stance
9: δVe ← VeINS % ZUPTs
10: θCompass ← COMPASS( Data IMU);
11: δθ ← θINS − θCompass % Compass
12: end if

13: if Still then % No walk
14: δw ← wIMU % ZARU
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15: end if

16: if TimeToSampleRFID then % 10 Hz rate
17: Data RFID ← GETRFIDDATA();
18: RSSRFID

(1..n) ← MEANRSS( Data RFID);
19: dRFID

(1..n) ← RSSMODEL(rssRFID

(1..n)); % eq. (5)
20: σRFID

d(1..n) ← RSSMODEL(dRFID

(1..n)); % eq. (7)

21: dINS

(1..n) ←
√

∑X,Y,Z
k (Po+

i−1 − Potags(1..n))2k
22: δd(1..n) ← dINS

(1..n) − dRFID

(1..n)

23: end if

24: m ← [δVe, δw, δθ, δd(1..n)]; % Measurements
25: Covm ← [σVe, σw, σθ, σ

RFID

d(1..n)] % Covariances

26: State ← [Po+
i−1, Ve+

i−1, At+i−1,X
+
i−1,X

−
i ]

27: Cov ← [P+
i−1,P

−
i ,Covm]

28: [State,Cov] ← INS&EKF( Data IMU, State,
Cov,m);

29: DISPLAY(Po+
i ← State) % Update display

30: end loop

31: STOPIMU&RFIDMEASUREMENTS();
32: STORESESSION(All variables); % For analysis
33: end procedure

34: procedureINS&EKF( Data IMU, State,Cov,m)
35: [δωb, δab] ← X−

i ← State
36: [ωb,ab]← ELIMINATEIMUBIAS(Data IMU, δωb, δab);
37: [Po−

i , Ve−i , At−i ] ← INS(Po+
i−1, Ve+

i−1, At+i−1,ω
b,ab);

38: if m �= nullthen % Measurements available
39: [H,R] ← COMPUTEH&R(m,Covm);
40: [X+

i ,P+
i ]←EKFCORRECTION(X−

i ,P
−
i ,m,H,R);

41: [Po+
i , Ve+

i , At+i ] ← CORRECTINS(X+
i , Po−

i ,
Ve−i , At−i );

42: else % No measurements; no corrections
43: [X+

i ,P+
i ] ← [X−

i ,P−
i ];

44: [Po+
i , Ve+

i , At+i ] ← [Po−
i , Ve−i , At−i ];

45: end if

46: [X−
i+1,P

−
i+1] ← EKFPREDICT(X+

i ,P+
i );

47: State ← [Po+
i , Ve+

i , At+i ,X+
i ,X−

i+1]

48: Cov ← [P+
i ,P−

i+1]
49: end procedure

Our software methodology has been implemented in the
Matlab programming language. It operates in real-time on a net-
book computer. When a person using the navigation equipment
walks inside or around the building, the estimated positions are
displayed on-line over a building layout map on the computer
screen (2 Hz position refresh rate with the netbook computer).
Sensor data and estimated parameters are stored at the end of
each test for subsequent analysis.

IV. INDOOR LOCALIZATION TESTS

A. IMU-Alone Estimation

In this subsection, we analyze the performance of the
proposed methodology without using the RFID informa-
tion, i.e., the performance of the IEZ+ method. The IEZ+
method, already presented and assessed in Jiménez et al. paper
[14], demostrated a positioning error of about 1% of the total
travelled distance (TTD). The results were very satisfactory, but

in that work the paths under evaluation consisted in just one
repetition of a given trajectory.

Now, we present a set of four indoor tests in our main
building, with different closed paths that were repeated several
times until the accumulated positioning error was significant
(larger than 5 m). Although, we just use an IEZ+ processing
(IMU-alone solution), during these tests we also recorded the
sensed RFID data so as to have the opportunity to replicate
exactly the same tests in next subsection, but in that case
integrating both IMU and RFID data.

The registration of data was performed by a person wearing
an IMU on the right foot and an RFID reader on the right side
of his waist with both sensors connected by USB to a netbook
computer. The person walked at a normal pace, approximately
at 1 m/s in the forward direction, along corridors and entering
into some room labs. The doors in the building were opened to
facilitate the navigation, but the system also works well if the
person has to stop to open a door or to wait for another person
in his path to pass. Some trajectories include 180◦ turns at
dead-ends.

The four tests together with the estimated trajectories using
IEZ+ (IMU-alone) are displayed in Fig. 8. The start position
is marked with a black square, and the final position with a
black circle and a magenta arrow indicating the direction of the
person. The small dots along the trajectory (approximately 1.4
m apart from each other along the path) represent the detected
right-foot stances. The exact trajectory of the multiple loops in
each path is not known with high accuracy (there is no ground-
truth data), however we known with centimeter accuracy that
the stop and start positions are the same. Therefore, the ac-
cumulated positioning error (used to evaluate the performance
of positioning algorithms) is computed as the 2-D Euclidean
distance between the start and stop positions.

As expected, the repetition of the same trajectory several
times has finally caused a drift of the position estimation toward
an arbitrary direction, and the total error grows proportionally
to the path length or the number of iterations. In Fig. 8(a),
for a 600-m-long path obtained with 8 repetitions, the error is
accumulated at a rate of almost 0.63 m per cycle, and the start/
stop total error is about 5 m, i.e., 0.8% of total travelled
distance. In Fig. 8(b), a 550-m-long path obtained with 13 rep-
etitions, the error is accumulated at a rate of almost 0.77 m per
cycle, and the final error is about 10 m, i.e., 1.8% of total
travelled distance. In Fig. 8(c), a 520-m-long path obtained with
8 repetitions, the error is accumulated at a rate of almost 0.7 m
per cycle and the final error is 7.7 m, i.e., 1.4% of total travelled
distance. Finally, in Fig. 8(d), a 1000-m-long path is obtained
repeating 8 times a cycle that includes indoor navigation, and a
partial outdoor path along a patio. The error is accumulated at a
rate of almost 1.4 m per cycle, and the total accumulated error
is 11.5 m, i.e., 1.1% of total travelled distance. In these 4 tests
the averaged error percentage with respect to the TTD is 1.27%.

B. Integrated IMU+RFID Estimation

It is expected that the results obtained in Fig. 8 should be
corrected by aiding the IMU-alone processing with an absolute
positioning reference given by the RFID localization system.
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Fig. 8. Different localization tests using the IMU-alone (no RFID information). Several closed cycles are performed along each path (8, 13, 11, and 8 repetitions),
with a total length of 600, 550, 520, and 1000 m, for tests (a), (b), (c), and (d), respectively. The total start to stop accumulated errors are 5, 10, 7.7, and 11.5 m.
In terms of the percentage of the total traveled distance, the errors were 0.8%, 1.8%, 1.4%, and 1.1%, respectively.

In this section we present the results of the full integrated
processing method as presented in Section III. This methodol-
ogy should limit the total error growth and keep it bounded by
a value that depends on the maximum accuracy obtainable by a
typical RFID-LPS system (about 2 m according to most papers
in literature [17], [33]). The same trajectories as in Fig. 8 are
now displayed in Fig. 9 with the full processing. The position
of the installed RFID tags are now displayed on the building
map using a red circle.

A first look at Fig. 9 shows that the positioning drift is now
eliminated when the RFID information is used. The contribu-
tion of RFID ranging information, in spite of having a highly
stochastic behavior, is incorporated into the final estimated tra-
jectory as smoothly as in the IMU-alone case (Fig. 8). The total
error is of 0.8, 2.3, 1.2, and 1 m, respectively, for Fig. 9(a)–(d).
On average, for these 4 tests, the total final error is 1.35 m (as
expected, bounded by the typical accuracy of RFID-based LPS,
about 2 m). The error percentage with respect to the TTD has
no sense in this case since it will tend to zero as the path length
increases.

In summary, the integrated IMU+RFID method provides
a drift-free solution, with a maximum absolute positioning
error dictated by the RFID positioning accuracy, and a very
smooth and precise trajectory estimation for short distances,
giving details with decimeter resolution for small displacements
and turns. Hence, the objective of getting together the best
properties of both estimation methods has been achieved.

These localization results are totally satisfactory for pedes-
trian indoor navigation; however, we also would like to analyze
how the performance is influenced by different settings in the
selected RSS-to-distance model parameters; and how the RFID
tag density in the building influences the positioning results.
These topics are treated in the next two subsections.

C. Sensitivity to RSS Model Parameters

As presented above, we use a simple and general purpose
RSS-to-distance model, whose parameters were found by fitting
some test data to actual ranges from RFID reader to tags. For
a reference distance d0 of 1 m we found with a high level of
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Fig. 9. Position estimation using the proposed integration of RFID to aid the IMU PDR method. The tests are the same of Fig. 8. The error accumulation, as
compared to Fig. 8, is strongly attenuated and the start/stop total error is significantly lower: 0.8, 2.3, 1.2, and 1.0 m, for tests (a), (b), (c), and (d), respectively. In
terms of a percentage of the total travelled distance, the error were 0.15%, 0.45%, 0.25%, and 0.1%, respectively (Obviously, in the INS+RFID case, it tends to
zero as path length increases).

confidence that the RSS0 value (RSS reference value at 1 m)
is approximately 60. The other parameter obtained from the
fitting was the path loss exponent p. We have used until now a
value for p of 2.3, but this value should depend on the building
structure (multipath and fading due to walls, doors, furniture),
and also could depend on the number of persons and activity
in the building (blockage by the trunk of the person to locate,
other persons walking around, and so on).

Our hypothesis is that our generic model should be good
and behave as an all-terrain model capable of performing
satisfactorily for most real indoor scenarios, without requiring
an intensive calibration or initial data recording. To test this
hypothesis we executed again the positioning algorithms for the
different tests presented in Fig. 9, but changing the path loss
exponent value p. Apart from the default value (2.3) we tested
these other ones: 1.5, 1.75, 2.0, 2.6, 3.0, and 4.0. The particular
positioning error found for each test and for each specific path
loss value is shown in Table II.

It is important to highlight that the average positioning error
for the different tests ranges between 1.32 and 2.29, in a path

TABLE II
EFFECT OF CHANGING THE PATH LOSS EXPONENT (p) IN THE

RSS-TO-DISTANCE MODEL FOR FOUR DIFFERENT TESTS

loss range from 1.5 to 4.0, which is a demonstration of the low
sensitivity of positing accuracy on the specific selection of the
path loss exponent. In fact, as can be better visualized in Fig. 10,
the optimum value for p lays in a smooth valley ranging from
1.8 to 2.8 that would account for positioning errors below 1.5 m.

D. Dependence on Density of RFID Tags

The results presented until now for the integrated INS+RFID
solution use a total of 71 RFID tags distributed quite uniformly
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Fig. 10. Path loss exponent influence on positioning accuracy (averaged for
four tests of Fig. 9) using all 71 tags.

TABLE III
EFFECT OF CHANGING THE NUMBER OF RFID TAGS FOR

FOUR DIFFERENT TESTS

on our main building, as presented in Fig. 3. With this tag
density, the person wearing the RFID reader will receive ap-
proximately 20 tags readings per second. All these tags provide
location information, although we know that weak RSS values
are less informative in terms of range certainty, i.e., a larger
range variance is expected for weak RSS or large distances,
as the RSS-to-distance model predicts (7). Nevertheless, it
is expected that the more information is available the better
positioning accuracy should be obtained. However, we do not
know which tag density could be sufficient to keep a satisfac-
tory accuracy while reducing significantly the tag density. This
section will study this point.

We will process again the tests presented in Fig. 9 for
71 tags, but in this occasion using a lower number of tags: 50,
30, 20, 14, 8, and 5. So, in this study the full recorded RSS
information will not be taken into account by the algorithms,
but only that coming from the particular set of tags under test.
As the most informative tags are supposed to be at short ranges
from the person (strong RSS values), we will select tags placed
at strategic positions, such as doorways, active for the different
groups of tags. The positioning error (start-to-stop distance)
for each individual test is presented in Table III. We also
included the results with no tags as in Fig. 8 for comparison.
The right column of this table shows the average for all tests
with the same number of tags. Fig. 11 display this average
graphically.

Fig. 11. Influence of the number of RFID tags on the mean positioning
accuracy. The case with zero tags corresponds to results in Fig. 8, and the use
of 71 was already presented in Fig. 9. A constant path loss exponent p equal to
2.3 is used.

Fig. 12. Distribution of eight RFID tags (red circles) in our main building.
This distribution is used in some of the results in Table III and Fig. 11.

It can be seen in Fig. 11 that the addition of just a few tags
(5) helps to reduce the original no-tags test from 8.5 m to 5.5 m,
but that improvement is not satisfactory enough. The addition
of a few more tags (8 tags distributed as in Fig. 12) improves
the accuracy to 2.7 m, which is a significant gain (68% error
reduction) using an infrastructure that only requires 1 tag per
275 m2 (as opposed to 1 tag per 30 m2 using 71 tags).

When we add more tags, from 8 to 71, we detect a pro-
gressive improvement from 2.7 m to 1.35 m accuracy, which
follows the expected behavior: the larger the density of tags the
better the accuracy. With respect to the no-tags case, a total
error reduction of 84% is obtained using 71 tags, and 68%
using only 8 tags. These results indicate that a decent accuracy
(3 m) can be obtained with few tags; if needed, accuracy
can be improved by just adding more tags to approach 1 m
accuracy.
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V. CONCLUSION

In this paper, we have presented a tight KF-based INS/RFID
integration method for indoor pedestrian localization and
navigation. This method uses the residuals between the
INS-predicted reader-to-tag ranges and the ranges derived from
a generic RSS path-loss model. We consider this RSS-to-
distance model as a general-purpose one, i.e., it is not too sensi-
tive to the selected path loss exponent in a range from 1.8 to 2.8.
This model was created from an off-line RFID data collection
stage (recommended to get insight into the location-dependent
RSS fading of a particular building), but not strictly necessary,
since the model is expected to work in most brick-made indoor
environments. The user gait is not important since the method
uses inertial navigation of the foot, and the stride length or way
of displacement (fast-slow, lateral, backwards motion) does not
affect the INS estimation, consequently an off-line calibration
of the user gait is not needed. Pedestrian navigation using only
an IMU on the foot, has been shown to slowly drift over long
paths or repeated local trajectories. However, our combined
integration of INS and RFID information has proven to limit
that positioning drift according to the accuracy provided by the
network of RFID tags (1 m for high density of tags, and 3 m for
a low density).

The results presented in this paper imply that a very accurate
pedestrian navigation or guidance is feasible with IMU and
RFID technology. This integrated local positioning technology,
which only requires some RFID tags distributed in a building
and a person carrying a small computing device (PDA, smart-
phone) connected to an IMU and RFID reader, can effectively
be applied to guide a person from one destination to another
in large unfamiliar indoor environments such as airports, office
buildings, shopping centers, hospitals, and so on, something
specially valuable for the elderly and visually-impaired people.
It also could be used in first responder activities to track and
control the position of fire-fighters inside buildings; in this case,
some RFID tags could be stuck at key positions (e.g., doorways)
by the first fire-fighter entering in the building; acting these on-
the-fly-placed RFID tags as references for the next incoming
personnel. As future work we would like to explore how the
use of a map of the building can improve current results, the
objective would be to reach 1 m accuracy with a very low
density of tags, or even none at all. We also plan to perform
activity recognition based on IMU signals to detect when a
person is going up- or down-stairs, on a ramp, opening a door,
in an elevator, on a moving escalator or conveyor belt; to obtain
position references that can be used to correct the accumulated
location error.

REFERENCES

[1] J. Hightower and G. Borriello, “Location systems for ubiquitous
computing,” Computer, vol. 34, no. 8, pp. 57–66, Aug. 2001.

[2] A. Jiménez, F. Seco, C. Prieto, and J. Roa, “Tecnologias sensoriales
de localización para entornos inteligentes,” in Proc. Simposio UCAmI

(Granada), España, 2005, pp. 75–86.
[3] Q. Ladetto and B. Merminod, “In step with INS navigation for the blind,

tracking emergency crews,” GPS World, vol. 13, no. 10, pp. 30–38,
Oct. 2002.

[4] L. Fang, P. Antsaklis, L. Montestruque, M. McMickell, M. Lemmon,
Y. Sun, H. Fang, I. Koutroulis, M. Haenggi, M. Xie, and X. Xie, “Design
of a wireless assisted pedestrian dead reckoning system—The NavMote

experience,” IEEE Trans. Instrum. Meas., vol. 54, no. 6, pp. 2342–2358,
Dec. 2005.

[5] J. Collin, “Investigations of self-contained sensors for personal naviga-
tion,” Ph.D. thesis, Tampere Univ. Technol., Tampere, Finland, 2006.

[6] R. Levi, “Dead reckoning navigational system using accelerometer to
measure foot impacts,” U.S. Patent 5 583 776, Dec. 10, 1996.

[7] R. Stirling, “Development of a pedestrian navigation system using shoe
mounted sensors,” M.S. thesis, Northwestern Univ., Evanston, IL, 2005.

[8] Q. Ladetto, J. V. Seeters, S. Sokolowski, Z. Sagan, and B. Merminod,
“Digital magnetic compass and gyroscope for dismounted soldier position
and navigation,” Proc. Sens. Electron. Technol. Panel, NATO Res. Technol.

Agency Sens., pp. 1–15, 2002.
[9] A. Jiménez, F. Seco, J. Prieto, and J. Guevara, “A comparison of pedes-

trian dead-reckoning algorithms using a low-cost MEMS IMU,” in Proc.

IEEE Int. Symp. Intell. Signal Process., Aug. 2009, pp. 37–42.
[10] A. Chatfield, Fundamentals of High Accuracy Inertial Navigation.

Reston, VA: AIAA, 1997.
[11] L. Hutchings, “System and method for measuring movement objects,”

U.S. Patent 5 724 265, Mar. 3, 1998.
[12] E. Foxlin, “Pedestrian tracking with shoe-mounted inertial sensors,” IEEE

Comput. Graph. Appl., vol. 25, no. 6, pp. 38–46, Nov.–Dec. 2005.
[13] R. Feliz, E. Zalama, and J. García-Bermejo, “Pedestrian tracking using

inertial sensors,” J. Phys. Agents, vol. 3, no. 1, pp. 35–43, Jan. 2009.
[14] A. Jiménez, F. Seco, J. Prieto, and J. Guevara, “Indoor pedestrian navi-

gation using an INS/EKF framework for Yaw drift reduction and a foot-
mounted IMU,” in Proc. 7th WPNC, 2010, vol. 10, pp. 135–143.

[15] N. El-Sheimy and X. Niu, “The promise of MEMS to the navigation
community,” in Proc. Inside GNSS, 2007, pp. 46–56.

[16] S. Nassar, “Improving the Inertial Navigation System (INS) error model
for INS and INS/DGPS applications,” Ph.D. dissertation, Dept. Geomatics
Eng., Univ. Calgary, Calgary, AB, Canada, 2003.

[17] A. Koutsou, F. Seco, A. Jiménez, J. Roa, J. Ealo, J. Prieto, and J. Guevara,
“Preliminary localization results with an RFID based indoor guiding sys-
tem,” in Proc. IEEE Int. Symp. Intell. Signal Process., Alcalá de Henares,
Spain, 2007, pp. 917–922.

[18] V. Amendolare, D. Cyganski, R. Duckworth, S. Makarov, J. Coyne,
H. Daempfling, and B. Woodacre, “WPI precision personnel locator sys-
tem: Inertial navigation supplementation,” in Proc. Position, Location,

Navig. Symp. IEEE/ION, 2008, pp. 350–357.
[19] I. Skog and P. Handel, “In-car positioning and navigation technologies-

a survey,” IEEE Trans. Intell. Transp. Syst., vol. 10, no. 1, pp. 4–21,
Mar. 2009.

[20] O. Woodman and R. Harle, “RF-based initialisation for inertial pedes-
trian tracking,” in Proc. 7th Int. Conf. Pervasive Comput., Nara, Japan,
May 11–14, 2009, p. 238.

[21] H. Wang, H. Lenz, A. Szabo, J. Bamberger, and U. D. Hanebeck,
“WLAN-based pedestrian tracking using particle filters and low-cost
MEMS sensors,” in Proc. 4th Workshop Positioning, Navig. Commun.,
Mar. 2007, pp. 1–7.

[22] J. Liu, R. Chen, L. Pei, W. Chen, T. Tenhunen, H. Kuusniemi, T. Kroger,
and Y. Chen, “Accelerometer assisted robust wireless signal positioning
based on a hidden Markov model,” in Proc. PLANS IEEE/ION, 2010,
pp. 488–497.

[23] V. Renaudin, O. Yalak, P. Tomé, and B. Merminod, “Indoor navigation of
emergency agents,” Eur. J. Navig., vol. 5, no. 3, pp. 36–45, Jul. 2007.

[24] K. Zhang, M. Zhu, G. Retscher, F. Wu, and W. Cartwright, “Three-
dimension indoor positioning algorithms using an integrated RFID/INS
system in multi-storey buildings,” in Proc. Location Based Services

TeleCartography II, 2009, pp. 373–386.
[25] M. Zhu, K. Zhang, W. Cartwright, and G. Retscher, “Possibility studies

of integrated INS/RFID positioning methods for personal positioning
applications,” in Proc. Global Navig. Satellite, 2009, pp. 1–9.

[26] G. Retscher and Q. Fu, “Integration of RFID, GNSS and DR for ubiq-
uitous positioning in pedestrian navigation,” J. Global Positioning Syst.,
vol. 6, no. 1, pp. 56–64, 2007.

[27] G. Retscher and Q. Fu, “Active RFID trilateration for indoor positioning,”
Coordinates, pp. 10–15, May 2008.

[28] S. Mazuelas, A. Bahillo, R. M. Lorenzo, P. Fernandez, F. A. Lago,
E. Garcia, J. Blas, and E. J. Abril, “Robust indoor positioning provided
by real-time RSSI values in unmodified WLAN networks,” IEEE J. Sel.

Topics Signal Process., vol. 3, no. 5, pp. 821–831, Oct. 2009.
[29] G. Retscher and Q. Fu, “Continuous indoor navigation with RFID and

INS,” in Proc. Position Location Navig., 2010, pp. 102–112.
[30] Q. Fu and G. Retscher, “Using RFID and INS for indoor positioning,” in

Proc. Location Based Services TeleCartography II, 2009, pp. 421–438.
[31] J. A. Farrell and M. Barth, The Global Positioning System and Inertial

Navigation. New York: McGraw-Hill, 1999.



JIMÉNEZ RUIZ et al.: PEDESTRIAN INDOOR NAVIGATION BY FOOT-MOUNTED IMU AND RFID MEASUREMENTS 189

[32] S. Seidel and T. Rappaport, “914 MHz path loss prediction models for
indoor wireless communications in multifloored buildings,” IEEE Trans.

Antennas Propag., vol. 40, no. 2, pp. 207–217, Feb. 1992.
[33] F. Seco, C. Plagemann, A. Jiménez, and W. Burgard, “Improving RFID-

based indoor positioning accuracy using Gaussian processes,” in Proc. Int.

Conf. Indoor Positioning Indoor Navig., 2010, pp. 15–17.

Antonio Ramón Jiménez Ruiz received the degree
in physics and computer science and the Ph.D. de-
gree in physics from the Universidad Complutense
de Madrid, Madrid, Spain, in 1991 and 1998,
respectively.

From 1991 to 1993, he worked in industrial
laser applications with the Technological Center of
Madrid. Since 1994, he has been a Researcher within
the Instituto de Automática Industrial (now named
Centro de Automática y Robótica), belonging both
to the largest Public-funded Agency for Research

in Spain (Consejo Superior de Investigaciones Científicas). Since 2005, he
belongs to the LOPSI group, specialized in designing local positioning so-
lutions for indoor localization and navigation. His current research interests
include: sensors, signal processing, and algorithms applied to the precise
indoor/outdoor localization of persons and robots. He has a special interest
in creating prototypes to demonstrate the functionality of local positioning
Systems using acoustic/ultrasonic and RFID technology, as well as, Pedes-
trian Dead-Reckoning solutions using foot-mounted IMUs. He is author and
reviewer of many international journals and communications in the field.

Fernando Seco Granja was born in Madrid, Spain,
in 1972. He received the degree in physics from
the Universidad Complutense of Madrid, Madrid,
Spain, in 1996 and the Ph.D. degree in physics from
the Universidad Nacional de Educación a Distancia,
Madrid, Spain, in 2002. His dissertation dealt with
the generation of ultrasonic waves applied to a mag-
netostrictive linear position sensor.

Since 1997, he has been with the Centro de
Automática y Robótica, Consejo Superior de Investi-
gaciones Científicas-UPM, Madrid, Spain, where he

holds a research position. His main research interest lies in the design and devel-
opment of local positioning systems, particularly those based on ultrasound and
RFID, and specifically on the topics of signal processing of ultrasonic signals,
multilateration algorithms, and Bayesian localization methods.

José Carlos Prieto Honorato was born in León,
Spain, in 1978. He received the Technical degree
in industrial electronics and the B.S. degree in
electronics engineering from the Universidad de
Extremadura, Badajoz, Spain, in 1999 and 2003,
respectively, and the Master’s degree in robotics
from the Universidad Politécnica de Madrid, Madrid,
Spain, in 2007. He is currently working toward the
Doctoral degree in robotics with the Universidad de
Alcalá, Madrid, Spain.

Since 2004, he has been a Researcher with the
Centro de Automática y Robótica, Consejo Superior de Investigaciones
Científicas-UPM, Madrid, Spain. His research interests are focused in lo-
calization systems, mainly those based in ultrasonic signals, with special
emphasis in signal design and processing, positioning algorithms, robustness,
standardization, optimal configurations, calibration methods, and development
of new transducers.

Jorge I. Guevara Rosas was born in Lima, Peru,
in 1978. He received the B.S. degree in electronics
engineering from the Universidad Católica Nuestra
Señora de la Asunción, Asunción, Paraguay, in 2004.
He is currently working toward the Ph.D. degree in
electric engineering with the Centro de Automática
y Robótica, Consejo Superior de Investigaciones
Científicas-UPM, Madrid, Spain.

His research interests are in the area of localization
systems, in particular, automatic calibration methods
for ultrasonic positioning systems.


