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ABSTRACT

We introduce an ordinal classification algorithm for photometric redshift estimation, which

significantly improves the reconstruction of photometric redshift probability density functions

(PDFs) for individual galaxies and galaxy samples. As a use case we apply our method to

CFHTLS galaxies. The ordinal classification algorithm treats distinct redshift bins as ordered

values, which improves the quality of photometric redshift PDFs, compared with non-ordinal

classification architectures. We also propose a new single value point estimate of the galaxy

redshift, which can be used to estimate the full redshift PDF of a galaxy sample. This method is

competitive in terms of accuracy with contemporary algorithms, which stack the full redshift

PDFs of all galaxies in the sample, but requires orders of magnitude less storage space.

The methods described in this paper greatly improve the log-likelihood of individual object

redshift PDFs, when compared with a popular neural network code (ANNZ). In our use case,

this improvement reaches 50 per cent for high-redshift objects (z ≥ 0.75). We show that using

these more accurate photometric redshift PDFs will lead to a reduction in the systematic biases

by up to a factor of 4, when compared with less accurate PDFs obtained from commonly used

methods. The cosmological analyses we examine and find improvement upon are the following:

gravitational lensing cluster mass estimates, modelling of angular correlation functions and

modelling of cosmic shear correlation functions.

Key words: catalogues – surveys – galaxies: distances and redshifts.

1 IN T RO D U C T I O N

The determination of distance, or redshift, estimates to galaxies is a

vital requirement before using large-scale photometric galaxy sur-

veys for many cosmological analyses. Large-scale surveys, such as

the SDSS (York et al. 2000), PanSTARRS (Tonry et al. 2012), DES

(Flaugher 2005) and LSST (Tyson et al. 2003), rely on a combina-

tion of photometric and more accurate spectroscopic redshifts when

providing distance estimates to photometrically identified galaxies.

Photometric redshifts are used throughout astrophysics and cos-

mology, for example in large-scale structure analyses (Staniszewski

et al. 2009; de Simoni et al. 2013), in galaxy cluster weak lensing

analyses (Gruen et al. 2013) and in galaxy–galaxy lensing analyses

(Brimioulle et al. 2013). Photometric redshifts are obtained using

⋆ E-mail: mmrau@usm.lmu.de

either machine learning methods or template fitting techniques (see

e.g. Benı́tez 2000; Csabai et al. 2000; Bender et al. 2001; Feldmann

et al. 2006; Ilbert et al. 2006; Greisel et al. 2013). Machine learn-

ing techniques range from early works employing artificial neu-

ral networks (Firth, Lahav & Somerville 2003; Collister & Lahav

2004) as photometric point predictors to recent developments that

estimate the full photometric redshift probability density function

(PDF) of the galaxy (Lima et al. 2008; Cunha et al. 2009; Car-

rasco Kind & Brunner 2013; Bonnett 2015). For detailed reviews

and comparisons of different photometric redshift techniques, we

refer the reader to Sánchez et al. (2014), Hildebrandt et al. (2010)

and Dahlen et al. (2013). This work focuses on machine learn-

ing methods for photometric redshift PDF estimation for samples

of galaxies (hereafter sample PDF) as well as individual galaxies

(hereafter individual PDFs). We apply the results to a range of anal-

yses in weak gravitational lensing, cosmic shear and large-scale

structure.
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Accurate photometric redshift PDF estimation 3711

In general, machine learning algorithms learn a mapping between

the photometry of an object and the spectroscopic redshift. To train

the machine learning models to learn this mapping, one typically

identifies spectrophotometric data that overlap with the photometric

feature space of the final data sample for which one would like to

estimate redshifts. However, recent work shows that machine learn-

ing can also be performed with spectroscopic reference data that are

brighter than the photometric sample (Hoyle et al. 2015b). Many

photometric surveys include a dedicated spectroscopic follow-up

programme, which allows such a machine learning system to be

built, e.g. SDSS-I/II (York et al. 2000), 2dF (Colless et al. 2001),

VVDS (Le Fèvre et al. 2005) and WiggleZ (Drinkwater et al. 2010).

The mapping obtained with machine learning is only approxi-

mate: the redshift of an object cannot be exactly determined by its

corresponding photometry. Moreover, most machine learning meth-

ods produce a point estimate, which reduces the individual PDF to

one number. The point estimate only predicts the most likely value

of the redshift, irrespective of the quality of the photometry, and

the shape of the distribution. In order to enter the era of precision

cosmology, one must be able to incorporate the uncertainty in the

redshift estimate into the cosmological analysis. This means that

the use of single point redshift predictions is no longer sufficient.

To achieve precision cosmology, we are required to incorporate the

full redshift uncertainty using the individual PDFs.

We can obtain a sample PDF by stacking the individual PDFs.

This distribution describes the probability that a randomly sampled

galaxy has a certain redshift. The accurate estimation of the redshift

distribution of the full sample is important for many cosmological

analyses, e.g., in large-scale structure, weak gravitational lensing

and cosmic shear.

However, effectively estimating and storing the photometric red-

shift PDF instead of the point estimate, for each object in a large

astronomical data set, is a challenging task. This process requires

efficient and accurate photometric estimation algorithms, and scal-

able data storage solutions. These algorithms must be benchmarked

using carefully constructed performance metrics to be useful for

the next-generation large-scale structure photometric surveys (e.g.

Laureijs et al. 2011).

We discuss such metrics to quantify performance of photomet-

ric redshift PDF estimation in Section 2. We describe the ordinal

class PDF (OCP) algorithm in Section 3.2, which improves the es-

timation accuracy over commonly used non-ordinal classification

architectures. We continue in Section 3.4 by showing how the OCP

method can become more storage efficient, by combining it with the

Gaussian mixture model. This enables the storage of the PDFs of

individual galaxies even within massive data sets without significant

demands on disc space.

Many applications in cosmology require an estimation of the

sample PDF. We propose a single point estimator for this quantity

in Section 3.5, and show how this single floating point number can

be computed very efficiently, and achieves good performance when

compared with algorithms that stack individual PDFs. The perfor-

mance of the proposed techniques is demonstrated and analysed in

a method comparison in Sections 5.1 and 5.2 using a spectrophoto-

metric data set (Section 4) obtained from the public CFHTLS Wide

survey.

Finally, we demonstrate in Section 5.3 that the methods intro-

duced in this work improve the precision of gravitational lensing

cluster mass estimates, measurements of angular correlation func-

tions and analyses of cosmic shear correlation functions, when com-

pared with results obtained using a common neural network code.

We conclude and summarize in Section 6.

2 FU N DA M E N TA L C O N C E P T S

The following section gives a brief review of important statistical

concepts needed in this work. We start with a short introduction to

density estimation, introduce metrics to quantify the performance

of density estimators and finally describe a scheme to assess the

performance of a machine learning model.

2.1 Kernel density estimation

The goal of kernel density estimation is to find a good estimator1

p̂(x) for the PDF p(x) of a random variable X using N samples

xi . Consider a small region R centred on a point x. We can then

assume that p(x) is approximately constant across R. Based on this

assumption, we can estimate the density at point x as

p̂(x) =
k

NVR
. (1)

The number of objects2 k in equation (1) can be estimated by con-

sidering a D dimensional hyper cube with volume

VR = hD (2)

centred on the point x with side length h. Using equation (1), we

obtain k as

k =
N

∑

i=1

K

(

x − xi

h

)

, (3)

where

K(d) =
{

1, |di | ≤ 1/2, 1 ≤ i ≤ D

0, otherwise
(4)

is an example of a kernel function. Note that this kernel has discon-

tinuities at the boundaries. The bandwidth h determines how much

the kernel density estimate interpolates (or smoothes) between the

given data points. A bandwidth that is too large oversmoothes im-

portant structures in the density whereas one that is too small leads

to a noisy density estimate. The density estimate p̂(x) can then be

written as

p̂(x) =
1

N

N
∑

i=1

1

hD
K

(

x − xi

h

)

=:
1

N

N
∑

i=1

K̃ (x, xi, h) . (5)

Instead of using equation (4), which has discontinuities at the bound-

aries, we can alternatively use smooth and symmetric functions, for

example, a Gaussian.

The estimation of photometric redshift PDFs for individual ob-

jects (individual PDFs) is an application of conditional PDF es-

timation, since the individual PDF p(z| f ) is conditional on the

object’s photometry f . The estimation of conditional PDFs can be

formulated in close analogy with equation (5). We can estimate the

individual PDF p(z| f ) as a weighted kernel density estimate in

redshift space of the form

p̂(z| f ) =
Ntr
∑

i=1

wi( f )K(z, z
spec
i , h) , (6)

using a data set, the so-called training set, containing Ntr objects.

K(z, z
spec

i , h) denotes a kernel function with bandwidth h centred

1 In the following, we will mark the estimator for a quantity with a hat.
2 Fixing the number of points k that fall into R and estimating the volume

VR leads to the k nearest-neighbour density estimation technique (see e.g.

Scott 1992).
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3712 M. M. Rau et al.

on the spectroscopic redshift values z
spec

i . The weights wi( f ) sum

to unity and depend on the photometry f of the object.

The conditional cumulative distribution function F (z| f ) defined

as

F (z| f ) =
∫ z

−∞
p(z′| f )dz′ (7)

can be estimated (Meinshausen 2006) as

F̂ (z| f ) =
Ntr
∑

i=1

wi( f )I (z
spec

i ≤ z) . (8)

I (z
spec

i ≤ z) equates to unity if z
spec

i ≤ z and to zero otherwise.

The redshift distribution p̂(z) of a sample (sample PDF) contain-

ing N objects can be estimated by stacking the individual PDFs

p̂(z) =
N

∑

i=1

wstack,i p̂(z| f i) . (9)

The normalized weights wstack, i can be set to 1/N or chosen to

give more weight to certain subpopulations. For example, we can

favour certain redshift intervals z ∈ [a, b] by defining weights as

wstack =
∫ b

a

p(z| f )dz = F̂ (b| f ) − F̂ (a| f ) , (10)

and we show an example of such a weighting in Section 5.2. The

above weights are normalized afterwards to sum to unity.

2.2 The Gaussian mixture model

In this paper, we consider kernel density estimators and Gaussian

mixture models for density estimation. A Gaussian mixture model

(see, for example, Bishop 2006) for the PDF p(x) of a random

variable X is a linear combination of K normal densities defined as

p(x) =
K

∑

i=1

αiN (x, μi, σi) , (11)

where αi is the amplitude, μi is the mean and σ i is the standard

deviation of the mixture component i.

We define the weight proportion γ k(x) of component k as

γk(x) =
αkN (x, μk, σk)

∑K

j=1 αjN
(

x, μj , σj

) , (12)

where γ k(x) determines how much a certain component of the Gaus-

sian mixture model contributes to the total density at point x.

2.3 Evaluation metrics

Consider an estimate p̂(x) of the true PDF p(x) describing the dis-

tribution of the random variable X . We can measure the quality of

the estimate p̂(x) by its distance D(p̂(x)||p(x)) to the true distri-

bution p(x), which is generally unknown. The Kullback–Leibler

divergence between the true density p(x) and the estimate p̂(x) is

defined using the natural logarithm as

D(p||p̂) =
∫ ∞

−∞
p(x) log

(

p(x)

p̂(x)

)

dx . (13)

A good estimate p̂ for p should minimize D(p||p̂). Rewriting the

logarithm we obtain

D(p||p̂) =
∫ ∞

−∞
p(x) log (p(x)) dx −

∫ ∞

−∞
p(x) log (p̂(x)) dx,

(14)

and we note that the first term is a constant that does not depend on

the model parameters, for example bandwidth, kernel, or shape of

kernel function. Thus, the second term in equation (14) can be used

as a relative measure of the accuracy of p̂(x). If we use the sample

mean to estimate the expectation with respect to p(x), we obtain

the mean negative log-likelihood loss, hereafter MNLL (Habbema,

Hermans & Van den Broek 1974; Duin 1976),

MNLL = −
1

N

N
∑

i=1

log (p̂(xi) + ǫ) , (15)

where we set ǫ = 10−6 to avoid floating point underflow. The

Kullback–Leibler divergence is a distance and thus non-negative

and it is smallest if the MNLL is smallest.

A suitable loss function for individual PDFs can be defined anal-

ogously (see e.g. Frank & Bouckaert 2009; Takeuchi, Nomura &

Kanamori 2009; Sugiyama et al. 2010). We estimate p(z| f i) for

each of the N objects in the sample, in order to establish perfor-

mance using a sample of objects for which spectroscopic redshift

values have been observed. We then evaluate p̂(z| f i) at the ob-

ject’s observed spectroscopic redshift p̂(z = zspec,i | f i). In the rest

of the paper, the abbreviation MNLL refers to the mean negative

log-likelihood loss evaluated for individual PDFs.

2.4 Model training

We randomly sample three non-overlapping data sets without re-

placement from the available data: the training set, the validation

set and the test set. The model is trained on the training set and

the model parameters (Table 1) are chosen by testing the perfor-

mance of the trained model with different parameter settings on the

validation set.

Table 1. Model parameters of the QRF, the classification-based PDF estimation algorithms

(OCP/NOCP) and the OCP algorithm used with the Gaussian mixture model OCP GMM. ‘nodesize’

and ‘mtry’ are model parameters of the random forest described in Section 3. ‘BW mod’ is the

bandwidth modification factor employed in the Scott’s rule (equation 24) and Gauss Comp. denotes

the maximum number of components allowed in the Gaussian mixture model. The best parameter

configuration for each algorithm picked on the validation set during model tuning (Section 2.4) is

marked in bold type.

QRF/HWE OCP NOCP OCP GMM

nodesize 3,5,7,10 1,2,3,5,7,9 1,2,3,5 1,2,3,5,7,9

mtry 1,2,3,4,5 1,2,3,4,5 1,2,3,4,5 1,2,3,4,5

BW mod 0.5,0.6,...,1.8,...,3.0 0.5,0.6,...,2.5,...,3.0 0.5,0.6,...,2.0,...,3.0 –

Gauss Comp. – – – 1,2,3

MNRAS 452, 3710–3725 (2015)
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The validation set is used during model tuning and therefore it

does not provide a good estimate of the performance on unseen

data. We measure this generalization performance on a test set that

is not used during training and tuning.

To evaluate the machine learning algorithms, we construct a train-

ing set containing 9000 objects, a validation set containing 3000

objects and a test set containing 22 072 objects. After the valida-

tion set has been used to determine the best combination of model

parameters, we merge the training set and the validation set, and

train the respective model again with this best setup. In this way, we

make optimal use of the available data to build the final model. All

results described in Section 5 are obtained on the test set, which,

we reiterate, was not used in all prior steps of model training and

tuning.

In this work, we choose to use the aperture magnitudes of the

CFHTLS Wide five-band photometry as input attributes. Other

photometric features may be used, for example see Hoyle et al.

(2015a) for a feature importance analysis.

3 A L G O R I T H M S

We have introduced the estimator for the photometric redshift PDF

of individual objects (individual PDF) in equation (6) as a weighted

kernel density estimate that depends on the weights w( f ). The

following section discusses two algorithms that can be used to

estimate these weights.

3.1 Quantile regression forest (QRF)

The quantile regression forest3 (Meinshausen 2006) is a general-

ization of the random forest (Breiman 2001) that can be used to

reconstruct individual PDFs, an algorithm known as TPZreg (Car-

rasco Kind & Brunner 2013) in astrophysics.

A regression/classification tree partitions the input space and re-

turns the mean/majority vote of the response values (i.e. the redshift

values) of the training set objects in each partition as the final pre-

diction for new objects falling into that partition. The tree partitions

the input data such that the training set objects in each partition are

most similar with respect to their response values. In regression,

we measure similarity using the sum of squares loss function SSE,

defined as

SSE =
l

∑

τ=1

∑

f i∈Rτ

(

zspec,i −
〈

zspec,τ

〉)2
. (16)

The sum runs over all l leaf nodes of the tree 1 ≤ τ ≤ l, each of

which represents a certain partition Rτ in input space, and over

all objects in the training set ( f i, zspec,i) with attribute values f i

that fall into Rτ . The term 〈zspec, τ 〉 denotes the mean spectroscopic

redshift of all training set objects that fall into Rτ .

The binary tree is recursively grown by choosing a splitting at-

tribute and split point for each region using brute-force search such

that the SSE is minimized.

The random forest algorithm combines several trees by bootstrap

aggregation which is described as follows. New training sets are

drawn from the original training set with replacement, which is also

known as bootstrapping. We train a tree model on each of these

bootstrapped training sets, to obtain an ensemble of trees. Combin-

ing the estimates from all trees in the ensemble reduces variance. In

3 The method was originally developed to estimate conditional quantiles,

and hence the name quantile regression forest.

addition, the random forest algorithm makes the resulting models

even more diverse by modifying the way each tree is grown. Before

each split selection, the routine randomly selects a certain number

of attributes, as specified by the ‘mtry’ parameter, on which the

algorithm can perform the split.

The complexity of the tree model is governed by the size of the

leaves of the tree. We stop the recursive tree building process when

a specified minimum number of objects in each leaf, denoted as

‘nodesize’, is reached. If the nodesize is small, very complex trees

are grown and the tree might overadapt to the training set. This is

an example of overfitting. The prediction from the random forest

is the mean, in regression, or the majority vote, in classification, of

the predictions from the ensemble of trees.

A single tree in the random forest splits the space spanned by the

input attributes derived from the photometry of the objects into par-

titions which are represented by the tree leaves. Each leaf defined

in this manner is associated with the mean spectroscopic redshift

value of the training set objects in this leaf. The tree therefore ap-

proximates the underlying smooth function by a step function. If

a new object is queried, it will be placed in a leaf containing ob-

jects with similar photometry. Following the formulation by Mein-

shausen (2006), we can write the photometric redshift prediction

zphot( f ) =
Ntr
∑

i=1

wi( f )zspec,i (17)

as a weighted sum over the spectroscopic redshift values zspec, i

of the Ntr training set objects. In order to distinguish the different

trees in the ensemble, which are characterized by different split

selections, we introduce a parameter θ , which characterizes each

tree. All training set objects with photometry f tr
i that are located

in the same region Rl(f,θ ) (defined by the leaf l( f , θ )) as the newly

queried object with photometry f get a constant weight, and all

other training set objects get zero weight. This can be written as

wi( f , θ ) =
I

(

f tr
i ∈ Rl( f ,θ )

)

∑Ntr

j=1 I
(

f tr
j ∈ Rl( f ,θ )

) , (18)

where the weights are normalized such that they sum to unity.

The same concept holds for the random forest prediction, in which

the weights associated with each training set object are averaged

over k trees, each grown on different bootstrapped data sets, and

therefore each described by a different parameter θb:

wi( f ) =
1

k

k
∑

b=1

wi( f , θb) . (19)

The weights can be used to estimate the individual PDF and cor-

responding statistics like the conditional mean, the conditional cu-

mulative distribution function, or the conditional standard deviation

defined as

σ̂ 2(z| f ) =
Ntr
∑

i=1

w( f i)
(

zspec,i − zphot( f i)
)2

. (20)

The following section introduces an alternative way of estimating

the weights in equation (6), using a classification scheme.

3.2 OCP estimation

The basic idea of classification-based PDF estimation is to bin the

spectroscopic data by redshift and use a classification algorithm that

outputs probabilities for bin membership to reconstruct the PDF.

Bin membership is viewed as an ordinal variable. Ordinal scale

MNRAS 452, 3710–3725 (2015)
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Figure 1. An illustrative example of a nominal classification problem with

four redshift bins. These bins can be reformulated into three binary clas-

sification problems by merging neighbouring bins. The class probabilities

from the binary classification problems can be recombined to incorporate the

ordering between the redshift bins (see the text) into the final classification.

variables, in contrast to nominal ones, exhibit an intrinsic order. If

the classes in a classification problem are ordinal, we can use this

information to improve the classification (Frank & Hall 2001).

Current classification-based PDF estimation methods in the as-

trophysics literature (e.g. Carrasco Kind & Brunner 2013; Bonnett

2015) treat redshift bins as nominal classes. In the following, we will

refer to the latter as the non-ordinal class PDF (NOCP) algorithm.

The OCP algorithm trains a separate classifier that estimates the

probability p(z ≥ zi) that a new object has redshift z above a certain

threshold zi given by the edge of the respective redshift bin. This

scheme is illustrated in Fig. 1. The probability that the redshift of

an object resides in the original bins is then calculated from these

separate classification models as (Frank & Hall 2001)

(1) p(z ∈ [z1, z2[) = 1 − p(z ≥ z2)

(2) p(z ∈ [zi − 1, zi[) = p(z ≥ zi − 1) − p(z ≥ zi)

(2) p(z ∈ [zk − 1, zk[) = p(z ≥ zk − 1) , 1 < i < k .

The reconstruction of the class probabilities p(zi) has the idealistic

assumption that each of the classifiers used to estimate the probabil-

ity p(z ≥ zi) outputs perfect probabilities. In practice, this will not be

the case and the recovered cumulative distribution function, which is

a monotonically increasing function, has to be calibrated. Schapire

et al. (2002) and Frank & Bouckaert (2009) use a heuristic approach

to ensure this monotonicity requirement. Alternatively, we use the

‘isotonic’ regression technique to calibrate the class probabilities.

Isotonic regression is synonymous for monotonically increasing re-

gression and is a technique for which efficient implementations are

available (de Leeuw, Hornik & Mair 2009).

For increasing bin index, isotonic regression optimizes the mean

squared error between the original function values and the isotonic

fit such that the fit is a monotonic increasing step function as shown

in Fig. 2.

We use bins of fixed size 	z = 0.01 in the range between the

minimum and the maximum spectroscopic redshift values in the

training set, since we found that equal-frequency binning degrades

photometric redshift accuracy for catalogues with long-tailed sam-

ple PDF. The weights sum to unity and are calculated using

wi( f ) =
p̂(bi | f )

nbi

, (21)

Figure 2. Ordinal classification can result in non-monotonic cumulative

distribution functions. We calibrate them using isotonic regression. Isotonic

regression (black) approximates the original estimate (red) as a monotoni-

cally increasing step function.

where nbi
is the number of training objects with a redshift value in

bin bi. The quantity p̂(bi | f ) is an estimate for the class probability

that a newly queried object with photometry f has a spectroscopic

redshift inside the bin bi. The method used to obtain the class

probability estimates p̂(bi | f ) is interchangeable [e.g. using neural

networks (Bonnett 2015) or the random forest (Frank & Bouckaert

2009; Carrasco Kind & Brunner 2013)]. We use the random forest

algorithm for consistency with the QRF and implemented the OCP

algorithm using the ‘RANDOMFOREST’ (Liaw & Wiener 2002) package

for the R programming language (R Core Team 2013).

The original paper by Schapire et al. (2002) used the histogram

estimator defined in Frank & Bouckaert (2009) as

p̂(z| f ) =
Ntr
∑

i=1

wi( f )
I (bzi

= bz)

rbz

. (22)

Here bz is defined as an index denoting the bin in which z is located

and rbz
denotes the corresponding bin width. We can interpret this

histogram as a weighted kernel density estimate with value r−1
bz

for all training set objects in a bin specified by bz and zero outside.

Frank & Bouckaert (2009) improved the algorithm using a Gaussian

kernel function and demonstrated its superiority over the histogram

kernel in numerical experiments on machine learning benchmark

data sets that are unrelated to the photometric redshift problem.

3.3 Bandwidth selection

The algorithms we use to obtain PDFs for individual objects require

the selection of an appropriate bandwidth for the weighted kernel

density estimator (equation 6). This section proposes a bandwidth

selection scheme that selects the bandwidth for the Gaussian kernel

during model tuning using the MNLL.

The choice of a proper bandwidth depends on the shape of the

underlying distribution and the number of objects available to con-

struct the estimator. Assuming a normal distribution and a Gaussian

kernel function, one can obtain the optimal bandwidth as

σscott = 1.06
σ̂

N1/5
, (23)

where σ̂ is the sample standard deviation and N denotes the number

of objects. This so-called Scott’s rule is commonly used in the

MNRAS 452, 3710–3725 (2015)
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machine learning and statistics literature (e.g. Wang & Wang 2007;

Takeuchi et al. 2009). To apply this bandwidth selection rule to

weighted data, we need to calculate the weighted standard deviation

from the weighted training set using equation (20). Scott’s rule gives

a good first estimate of a suitable bandwidth for distributions which

are approximately normal.

Photometric redshift PDFs are in general not normal distributions

and equation (23) can pick a non-optimal bandwidth. Thus, we

modify equation (23) as

σscott = a
σ̂

N1/5
, (24)

with a pre-factor a that is chosen to minimize the MNLL on the

validation set. We can stack the Nte individual PDFs in the test set

using an individual bandwidth σ a for each object

p̂(z) =
Nte
∑

a=1

wstack,a

Ntr
∑

i=1

wi( f a)N (z, zi, σa) , (25)

or we can use a global bandwidth σ a = σ .

3.4 The Gaussian mixture model estimator

Storing the individual PDFs obtained by weighted kernel density

estimation for every element in the test set requires a large amount

of storage. Carrasco Kind & Brunner (2014) proposed several dif-

ferent methods, including a Gaussian mixture model, to more ef-

ficiently store a previously obtained estimate. The authors store

individual PDFs using 10–20 numbers compared with 200 used pre-

viously. Instead of giving a previously estimated individual PDF a

sparse representation, we fit the Gaussian mixture model directly to

the weighted spectroscopic redshift values in the training set and

ensure model sparsity by penalizing the model likelihood dependent

on the number of components in the mixture model.

More specifically, we fit the Gaussian mixture to the weighted

spectroscopic data with the expectation maximization algorithm

(for an introduction see Chen & Gupta 2010) as implemented in

the RMIXMOD package (Biernacki et al. 2006; Auder et al. 2014). In

Sections 5.1 and 5.2 during the analysis using CFHTLS, we select

the number of Gaussian components for each object in the test

set using the normalized entropy criterion (Celeux & Soromenho

1996; Biernacki, Celeux & Govaert 1999), abbreviated as NEC in

the following. The maximum number of Gaussian components that

can be included in the mixture model is a parameter that is selected

during model tuning as described in Section 2.4.

For a K component Gaussian mixture model fitted on the weighted

training data, the NEC criterion reads

NEC(K) =
E(K)

L(K) − L(1)
, (26)

where L(K) denotes the maximum weighted log-likelihood

L(K) =
N

∑

i=1

w( f i) log

(

K
∑

k=1

αkN
(

zspec,i, μi, σi

)

)

(27)

for the K component Gaussian mixture model. The entropy E(K) is

defined as

E(K) = −
K

∑

k=1

N
∑

i=1

w( f i)γk

(

zspec,i

)

log
(

γk

(

zspec,i

))

≤ 0 , (28)

where the definition of the component weight proportions, following

equation (12), is used. We pick the number of components K such

that the NEC criterion is minimized, where NEC(1) = 1 (Biernacki

et al. 1999).

The NEC criterion normalizes the entropy by the maximum

weighted log-likelihood, in which the offset for a one-component

mixture is subtracted. There are two reasons (Celeux & Soromenho

1996) why we cannot use the entropy E(K) directly. The entropy

for K = 1 provides a lower bound

E(K) ≥ E(1) ∀K > 1 (29)

and the maximum weighted log-likelihood function is an increas-

ing function of K, which makes E(K) unequal for different values

of K. The entropy term E(K) measures how much overlap there is

between the different components of the Gaussian mixture model.

In the case where the components in the model fit completely sep-

arated data clusters, the entropy term approaches zero. If we select

too many components, the quantity E(K) will increase because the

components will overlap strongly. This can be compensated by the

higher likelihood of the more complex model. In this way, we can

efficiently determine a suitable number of components to include

into the mixture.

3.5 Highest weight element

A common application for individual PDFs is the estimation of the

sample PDF. Storing and processing individual PDFs is computa-

tionally expensive. We propose the highest weight element (here-

after HWE), a single point estimate for each object from which we

can accurately reconstruct the sample PDF. We first run the QRF

algorithm to determine weights as for individual PDF estimation.

Instead of using the individual PDF, we select the spectroscopic red-

shift value that is associated with the maximum weight. If more than

one spectroscopic redshift value has the same maximum weight, we

randomly select one of those values.

4 DATA SE T

We use photometric imaging data from the CFHTLS Wide sur-

vey using the u∗, g′, r′, i′ and z′ bands as obtained from the pub-

lic CFHTLenS data release (Erben & CFHTLenS Collaboration

2012).4 We obtain the photometry analogously to Brimioulle et al.

(2013), i.e. we degrade all images to match the band with the worst

seeing, and use the unconvolved i′ band as the detection band and

the convolved frames as the extraction band. Then we correct for the

remaining zero-point calibration uncertainties and varying galactic

extinction by comparing the measured star colours from the cata-

logues with predictions of the Pickles star library (Pickles 1998). In

this way, we eliminate possibly remaining field-to-field variations

in the photometric calibration.

We then match our photometric catalogues to public spectro-

scopic redshift samples. These samples are the Visible Multiobject

Spectrograph (VIMOS) VLT Deep Survey (VVDS; Le Fèvre et al.

2004; Garilli et al. 2008), VVDS-F22, the Deep Extragalactic Evo-

lutionary Probe-2 (DEEP-2) programme (Vogt et al. 2005; Weiner

et al. 2005; Davis et al. 2007) and the VIMOS Public Extragalac-

tic Redshift Survey (Garilli et al. 2014; Guzzo et al. 2014). We

only make use of spectroscopic redshifts with confidence values

of at least 95 per cent and only use pointings where the i′ data are

available and where the i′ band serves as detection band.

4 http://www.cfhtlens.org
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Figure 3. Spectroscopic redshift and MAG_AUTO i′ distributions of the com-

piled data set described in Section 4. Objects matched from different spectro-

scopic surveys are indicated by different colours. We limit the spectroscopic

redshift range to zspec < 1.5 in the plots excluding 34 objects with higher

redshift.

This produces a total sample of 28 159 objects with i′ ≤ 22.5 and

additional 5893 objects with 22.5 < i′ ≤ 24.5 with spectroscopic

redshifts and five-band photometry. We illustrate the spectroscopic

redshift and MAG AUTO i’ distributions of the compiled dataset in

Fig. 3.

5 R ESU LTS

Future large-area photometric surveys will produce large amounts

of photometric data for which we need to obtain redshift informa-

tion. Efficiency in terms of runtime and disc space will be important

in order to use algorithms for photometric redshift estimation ef-

fectively on these large data sets. Additionally, we are required to

produce high-quality photometric redshift PDFs in order to obtain

accurate constraints on, for example, cosmological parameters or

cluster masses.

We use the public CFHTLS data described in Section 4, to com-

pare the accuracy of photometric redshift PDFs estimated by the

algorithms described in Section 3. We show that these methods im-

prove the modelling of angular correlation functions, cluster mass

estimates and the modelling of shear correlation functions compared

to results obtained with the neural network code ANNZ (Collister &

Lahav 2004) commonly used in the literature (e.g. Sheldon et al.

Table 2. Point prediction performance of the neural

network code ANNZ and the template fitting code PHOTOZ

quantified by the metrics described in Section 5.1.

η σ (	z) 〈	z〉 σ 68

ANNZ 1.23 per cent 0.092 −0.001 0.044

PHOTOZ 2.27 per cent 0.129 −0.008 0.050

Figure 4. Density contours of photometric redshift estimates from ANNZ

against the spectroscopic redshift.

2009; Williamson et al. 2011; Smith et al. 2012; Planck Collabora-

tion 2015).

5.1 Comparison with ANNZ

We train an ensemble of 20 neural networks with two hidden layers,

each consisting of 12 nodes, following the methodology described

in Section 2.4.

The photometric redshift estimates obtained from ANNZ are com-

petitive compared to those obtained with the template fitting code

PHOTOZ (Bender et al. 2001; Brimioulle et al. 2008; Greisel et al.

2013) in terms of common photometric redshift performance met-

rics. As shown in Table 2, ANNZ improves upon the photometric red-

shift performance obtained with PHOTOZ by 46, 29, 88 and 12 per cent

in terms of outlier rate, scatter, bias and spread of the residuals. The

outlier rate η is defined as the fraction of objects with |zspec −
zphot| > 0.15. The bias 〈	z〉 and scatter σ (	z) are the mean and

standard deviation of the distribution of the residuals 	z = zphot −
zspec. The spread of the residual distribution is measured by the σ 68

metric which is defined as half the difference between the 16 and

84 per cent quantile.

The quality of the photometric redshifts obtained with ANNZ is

illustrated in Fig. 4. It shows a tightly aligned correlation between

photometric and spectroscopic redshift. We estimate sample PDFs

from the ANNZ point predictions and the stacked normal densities

constructed from the ANNZ error estimates, in the following referred

to as ‘ANNZ-stack’. While showing excellent point prediction perfor-

mance, ANNZ and ANNZ-stack do not accurately estimate the sample

PDF as shown in Fig. 5. The sample PDF constructed from ANNZ-

stack deviates from the true spectroscopic redshift distribution in

the central redshift range [0.45, 0.85]. We will show in the following

sections that these deviations from the true spectroscopic redshift

PDF introduce a systematic bias in several important analyses in

MNRAS 452, 3710–3725 (2015)
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Figure 5. Sample PDF estimated using ANNZ and the HWE. The histogram

shows the true spectroscopic redshift distribution.

Table 3. MNLL of the QRF, the classification-based PDF estimation al-

gorithms (OCP/NOCP) and the OCP algorithm used with the Gaussian

mixture model (GMM). The values are evaluated over the full spec-

troscopic redshift range and in three bins. The result is illustrated in

Fig. 6.

Total [0, 0.585[ [0.585, 0.7488[ [0.7488, 3.818[

OCP −1.3577 −1.3905 −1.6432 −1.0395

NOCP −1.2847 −1.3029 −1.5880 −0.9648

QRF −1.3483 −1.3627 −1.6470 −1.0347

GMM −1.3181 −1.3591 −1.5606 −1.0354

ANNZ −1.1588 −1.3138 −1.4891 −0.6731

cosmology. To compare the quality of photometric redshift PDFs of

individual objects (individual PDFs), we evaluate the MNLL (equa-

tion 15) of the four discussed algorithms (QRF, NOCP, OCP and

OCP GMM) on the full range of redshift values and in three redshift

bins ([0, 0.585[, [0.585, 0.7488[ and [0.7488, 3.818[). The results

are shown in Table 3 and illustrated in Fig. 6. QRF, NOCP and OCP

employ the weighted kernel density estimate. OCP GMM denotes

the Gaussian mixture model applied in combination with weights

determined using the ordinal classification method described in

Section 3.2.

We illustrate the relative improvement MNLLrel gained by ap-

plying these algorithms compared with ANNZ-stack

MNLLrel =
(

MNLLANNz − MNLLalg.

|MNLLANNz|

)

(30)

in Fig. 6. A high value in terms of MNLLrel translates into an im-

provement in the log-likelihood of the individual PDFs over those

obtained with ANNZ-stack. The boundaries of the redshift intervals

are picked such that they contain approximately the same number

of test set objects. All discussed methods improve over ANNZ-stack.

For the highest redshift objects, our methods show improvement of

up to 50 per cent. The OCP routine performs the best and improves

the NOCP routine. This verifies the superiority of the ordinal classi-

fication technique. The QRF performs on par with OCP. OCP GMM

shows mediocre results, but provides the most efficient parametriza-

tion using a single normal density per object.

Figure 6. Relative improvement in MNLL over the performance of ANNZ-

stack. We compare the classification-based PDF estimators (OCP, NOCP),

the ordinal classification PDF estimator combined with a Gaussian mixture

model (OCP GMM) and the QRF in three spectroscopic redshift bins. The

plotted points show the average improvement over the full spectroscopic

redshift range.

5.2 Stacked photometric redshift distribution

Applications like shear tomography require the photometric se-

lection of objects in a certain redshift range. We stack the indi-

vidual PDFs compared in Section 5.1 using weights that quantify

their overlap with a certain redshift interval using equation (10).

These estimates are compared with the weighted kernel density es-

timate obtained from the spectroscopic redshift values using the

same weights. The weights are determined using each of the OCP,

NOCP, OCP GMM and QRF methods individually. The HWE uses

the weighted kernel density estimate with weights determined using

the QRF algorithm. We use Scott’s rule to choose the bandwidth

for the weighted kernel density estimates of the HWE and the spec-

troscopic redshift values. The sample PDFs obtained with the OCP,

NOCP and QRF algorithms are very similar. We therefore restrict

the following discussion to the OCP method.

The results shown in Fig. 7 compare the weighted sample PDFs

obtained with the HWE, OCP and OCP GMM methods in the

redshift intervals [0, 0.585[, [0.585, 0.7488[ and [0.7488, 3.818[.

They differ mainly in the amount of smoothing present in the es-

timate. Notably the OCP GMM method oversmoothes features in

the density estimate. This is because a single Gaussian was se-

lected during model tuning based on the performance of individual

object PDFs. Allowing more components reduces the amount of

smoothing. The HWE is competitive with methods that estimate

the individual PDFs, with the advantage that the HWE is extremely

efficient to calculate and, being a point estimate, requires storing

only a single floating point number per object.

The weighted distributions of all methods have tails that extend

outside the desired redshift range. We can reduce these tails by

stacking only the objects with the highest weight in the respective

redshift bin as demonstrated in the lower-right panel of Fig. 7. We

estimate the sample PDF from the HWE predictions of the objects

with the 5000 highest weights in the respective redshift bin. The

estimated weighted sample PDF of these objects has less overlap

with neighbouring redshift bins, compared with the estimate that

incorporates all objects. Furthermore, it agrees well with the equally

weighted spectroscopic redshift distribution of the corresponding

objects.

MNRAS 452, 3710–3725 (2015)
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Figure 7. Sample PDFs weighted in three redshift intervals [0, 0.585[, [0.585, 0.7488[ and [0.7488, 3.818[. The PDFs are obtained using the HWE (upper

left), the ordinal classification PDF estimator (upper right) and the ordinal classification PDF estimator combined with a Gaussian mixture model (lower left).

The histograms show the weighted spectroscopic redshift distribution using weights determined using the respective algorithms. The lower-right panel shows

the weighted distribution of the HWE predictions for the objects with the 5000 highest weights in the three intervals (blue) and the corresponding weighted

histogram of spectroscopic redshifts (red).

Instead of weighting the objects in the respective redshift range,

we can select objects based on a photometric redshift point es-

timate in analogy with Benjamin et al. (2013). We perform the

same cut in MAG_AUTO i′ < 23.0 and estimate the sample PDF in the

same photometric redshift intervals selected after our ANNZ estimate.

The results for the HWE are shown in Fig. 8 and agree well with

the spectroscopic redshift distribution. The agreement is better in

the central bins, which contain more objects, because the histogram

approximates the underlying distribution better.

5.3 Applications to cosmology

We now investigate how the previously discussed methods can be

used to improve analyses that use photometric redshifts. We estimate

the sample PDF using the HWE and ANNZ. We use kernel density

estimates with bandwidths selected using Scott’s rule.

Where required, we impose a flat � cold dark matter (�CDM)

cosmology with �m = 0.3, �� = 0.7, ns = 0.96, H = 0.7, σ 8 = 0.79.

5.3.1 The angular power spectrum

The angular power spectrum measures the clustering of galaxies

and is an important tool to constrain cosmological models.

In the following, we adopt the notation of Thomas, Abdalla &

Lahav (2010). Consider the line-of-sight projection of the 3D mass

distribution in the universe, δ2D. The harmonic modes of δ2D are

given by

δℓ = iℓ

∫

d3k

(2π)3
δ(k)Wℓ(k) , (31)

where the window function Wℓ(k) is sensitive to the sample PDF of

light sources, p(z), and can be computed by the integral

Wℓ(k) =
∫

p(z)D(z)

(

dz

dx

)

jℓ(kz)dz . (32)

Here D(z) is the linear growth factor, jℓ(kz) are the Bessel functions

and
(

dz
dx

)

relates the redshift to the radial comoving coordinate x.

The angular power spectrum Cℓ is the variance of the modes δℓ,5

Cℓ =
〈

δℓδ
∗
ℓ

〉

= 4π

∫

	2(k)W 2
ℓ (k)

dk

k
, (33)

where the dimensionless 3D power spectrum 	2(k) is given in terms

of the usual 3D matter power spectrum Pδ(k) as

	2(k) =
4πk3Pδ(k)

(2π)3
. (34)

5 In our analysis, we are assuming a galaxy-dark matter bias equal to one.
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Figure 8. Sample PDFs estimated using the HWE for subsamples selected in analogy with Benjamin et al. (2013, fig. 1) using a cut at MAG_AUTO i′ < 23.0.

The subsamples are selected using the photometric redshift estimates from ANNZ in intervals shown in the subfigure titles.

From equation (32) it can be seen that the modelling of Cℓ depends

highly on the assumed sample PDF of the data. We use the dis-

tributions shown in Fig. 5 to model the angular correlation power

spectrum with the CLASS software package (Blas, Lesgourgues &

Tram 2011). We define the bias introduced by the C
phot

ℓ of the angu-

lar correlation function estimated using photometric redshifts, as the

relative difference to the results based on the PDF of spectroscopic

redshifts C
spec

ℓ :

BiasCℓ
=

(

C
phot

ℓ − C
spec

ℓ

C
spec

ℓ

)

. (35)

The resulting biases are shown in Fig. 9. We find that the results

obtained with the HWE have a lower systematic bias in Cℓ by a

factor of 4 compared to the ANNZ results and that the improvement

is almost independent of ℓ.

5.3.2 Gravitational lensing

We investigate two important applications in gravitational lensing:

quantifying cluster masses by the light deflection from background

sources and obtaining cosmic shear correlation functions. In con-

trast to the previously considered analysis of the angular correlation

function, applications in gravitational lensing require careful se-

lection of sources with successfully measured shapes. Since the

spectrophotometric data set used previously is not representative

Figure 9. Bias in the angular correlation power spectrum obtained for dif-

ferent estimates for the sample PDF. We restrict the comparison to ℓ < 1200.

for data sets generally used in gravitational lensing analyses, we

first weight our catalogue such that it mimics a CFHTLS shape cat-

alogue. To do this, we obtain a photometric shape catalogue from

public CFHTLS data, which is then used as the reference to weight

the spectrophotometric data set.

MNRAS 452, 3710–3725 (2015)
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5.3.3 Catalogue creation and weighting

Whether the shape of an object can be measured depends primar-

ily on its intrinsic size and magnitude in the respective band. We

therefore re-weight our spectrophotometric catalogue such that it

resembles a CFHTLS shape catalogue in terms of these properties.

We obtain the shape catalogue in analogy with Brimioulle et al.

(2013) for the full CFHTLS survey region. Intrinsic sizes sintr are

calculated for each object from the measured FWHMimage and cor-

rected for seeing as follows:

sintr =
√

FWHMimage
2 −

〈

FWHMpsf

〉2
, (36)

where
〈

FWHMpsf

〉

is the average size of the point spread function

for the respective chip.6

In this way, we obtain sintr and MAG_AUTO i′ entries for each

object in the shape and spectrophotometric catalogue. We now de-

termine weights for the spectrophotometric catalogue such that,

after weighting, it matches the size and magnitude distribution of

the shape catalogue. Furthermore, the results obtained with the re-

weighted spectrophotometric catalogue have to be robust against

the removal of the objects with the highest weights (Sánchez

et al. 2014). Since we do not have enough spectroscopically ob-

served objects to mimic the shape catalogue at the faint end, we

have to employ a magnitude cut in order to fulfil both require-

ments. For the analyses presented in Sections 5.3.4 and 5.3.5, we

employ a magnitude cut at MAG_AUTO i′ < 23.5 and MAG_AUTO

i′ < 23.0, respectively. We give a detailed discussion of these cuts in

Appendix A.

We combine bootstrap re-sampling with the k nearest-neighbour

estimator to determine weights for the elements in the spectrophoto-

metric catalogue, such that the weighted catalogue mimics the distri-

bution of the shape catalogue in the two-dimensional space spanned

by the intrinsic size of the objects and their magnitude MAG_AUTO

i′. To this end, we draw bootstrap samples from the shear catalogue

and find the k nearest neighbours in the spectrophotometric cata-

logue. The nearest neighbour of an object in the spectrophotometric

catalogue is the object in the shear catalogue with the lowest Eu-

clidean distance to this object. Accordingly, the k nearest-neighbour

algorithm selects the k nearest objects with respect to the Euclidean

distance. The number of times an object in the spectrophotometric

catalogue is selected as one of the k nearest neighbours corresponds

to its weight. This process is similar to previous work done by

Lima et al. (2008), which employs a nearest-neighbour-based ap-

proach to determine weights for objects in a spectroscopic sample

to estimate the sample PDF of the photometric data. In contrast to

our method, which is based on bootstrap re-sampling, they calcu-

late the density ratio between the distributions characterizing the

two catalogues using a nearest-neighbour approach. For the data

at hand, we draw 106 bootstrap samples and consider three nearest

neighbours k = 3. This method accurately weights the spectropho-

tometric data to mimic the size and i-band magnitude distributions

of the shape catalogue, as shown in Figs 10 and 11. The following

analysis uses the estimated weights to weight the sample PDF of

ANNZ, ANNZ-stack, the HWE and the spectroscopic data as shown in

Fig. 12.

6 We work on image stacks, but (as in Brimioulle et al. 2013) only consider

objects, for which all images contribute to the stack from the same CCD-

chip.

Figure 10. Distributions in MAG_AUTO i′ band for the original spectropho-

tometric data set, the re-weighted spectrophotometric data set and the shape

catalogue for MAG_AUTO i′ < 23.5.

Figure 11. Distributions in intrinsic size (equation 36) for the original

spectrophotometric data set, the re-weighted spectrophotometric data set

and the shape catalogue for MAG_AUTO i′ < 23.5.

Figure 12. Weighted stacked sample PDF estimated using ANNZ, ANNZ-stack

and the HWE. The histogram shows the weighted spectroscopic redshift

distribution. We use a cut on MAG_AUTO i′ < 23.5. The used weights and

cuts are described in Section 5.3.3.
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5.3.4 Cluster mass measurement

Galaxy clusters are one of the primary tools to probe the �CDM

model (for a review, see e.g. Allen, Evrard & Mantz 2011). Cluster

masses can be determined by measuring the tangential alignment

of gravitationally lensed galaxies7 located behind the clusters. The

accuracy of these weak lensing mass estimates suffers from un-

certainties in the photometric redshift of the lensed sources. In

combination with other effects such as cluster mass profile vari-

ances, they can introduce systematics at the 5–10 per cent level (see

e.g. Applegate et al. 2014). In the following, we will only consider

uncertainties due to errors in photometric redshift estimates (Seitz

& Schneider 1997; Mandelbaum et al. 2008; Dawson et al. 2012;

Gruen et al. 2013, 2014; Applegate et al. 2014). The excess surface

density inside radius R

〈�(r)〉r<R − �(R) = �crit γtan(R) (37)

is proportional to the critical surface density

〈�cr〉 ∝
∫ ∞

zLens

dz p(z)

(

Dd(zLens)Dds(zLens, z)

Ds(z)

)

(38)

of the lens at redshift zLens. Here Dd, Ds and Dds denote the angu-

lar diameter distance to the lens, the source and between the lens

and the source, respectively. Uncertainties in the sample PDF of

background sources p(z) will propagate into systematic errors in

the determination of the critical surface density. This introduces

systematic errors in the excess surface density and therefore in the

cluster mass estimate.

We quantify the systematic bias of the critical surface density as

Bias〈�cr〉 =
( 〈�cr〉photo − 〈�cr〉spec

〈�cr〉spec

)

, (39)

where 〈�cr〉photo is estimated from the photometry of the objects

(e.g. using machine learning) and 〈�cr〉spec from the spectroscopic

redshifts.

We estimate the error σ on this bias with respect to our test set

containing N objects as

σ 2 =

(

σphoto(�cr)√
N 〈�cr〉spec

)2

. (40)

The mean and standard deviation of the distribution of �cr are

estimated using the PDF estimates obtained from ANNZ and the HWE

and we present the results in Fig. 13.

The HWE estimate for the sample PDF reduces the systematic

bias in the critical surface density compared with ANNZ by a factor

of 4 for medium lens redshifts z ∈ [0.45, 0.6]. The systematic bias

in 〈�cr〉 obtained from the HWE is consistent with zero for lens

redshifts z < 0.7 and, in general, outperforms the results obtained

with ANNZ. Higher lens redshifts are however unrealistic for current

survey depths.

5.3.5 Cosmic shear

Cosmic shear is the weak lensing effect generated by the inho-

mogeneous matter distribution of the universe and has become

an important tool to constrain cosmological parameters (see, e.g.,

Kilbinger et al. 2013, and references therein). Similar to our discus-

sion of the angular correlation function, we derive a power spectrum

7 For an introduction into gravitational lensing, we refer to Bartelmann &

Schneider (2001).

Figure 13. Relative bias in the mean critical surface density (equation 39)

for different lens redshifts obtained using different estimates for the sample

PDF. The filled area shows the 1σ error interval.

Pκ (ℓ) of the lensing convergence κ , which is the source of the lens-

ing potential, defined with respect to the radial comoving coordinate

x

Pκ (ℓ) =
∫ ∞

0

dx

(

q2(x)

x2

)

Pδ

(

ℓ

x
, x

)

. (41)

We calculate the power spectrum Pδ

(

ℓ
x
, x

)

using the halofit formula

from Smith et al. (2003). The lensing efficiency q(x) quantifies how

strongly the objects in an infinitesimal shell of radial comoving co-

ordinates deflect the light coming from background sources. Since

the radial comoving coordinates of the objects are related to their

redshifts, the lensing efficiency q(x) depends on the sample PDF

p(z). From the lensing convergence power spectrum, we can obtain

the two shear correlation functions (Kaiser 1992) as

ξ±(θ ) =
1

2π

∫ ∞

0

dℓ ℓ Pκ (ℓ) J0,4(ℓθ ) , (42)

where the Bessel function J0 (J4) corresponds to the ξ+ (ξ−) correla-

tion function. In analogy with the previous sections, we quantify the

bias in the shear correlation functions obtained from photometric

data ξ
phot
± by their relative error with respect to the results obtained

from the spectroscopic data ξ
spec
± ,

Biasξ± =

(

ξ
photo
± − ξ

spec
±

ξ
spec
±

)

. (43)

The results are presented in Figs 14 and 15. We reduce the bias in

the shear correlation function estimates, using the HWE estimate

instead of the photometric redshift estimates from ANNZ, by a factor

of 12 for ξ− and a factor of 6 for ξ+.

6 SU M M A RY A N D C O N C L U S I O N S

The next-generation photometric surveys will measure the positions

on the sky of thousands of millions of galaxies. We must be able to

reliably estimate the distance to, or the redshift of, each photometri-

cally identified galaxy before we can use these galaxies in analyses

to derive the values of cosmological parameters. Furthermore to

maximize the precision and accuracy of any derived parameters,

we require a complete understanding of the full shape of the photo-

metric redshift PDF for both each individual object and the entire

galaxy sample.
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Figure 14. Relative bias in the shear correlation function estimate for ξ−
(equation 43) obtained using different estimates for the sample PDF.

Figure 15. Relative bias in the shear correlation function estimate for ξ+
(equation 43) obtained using different estimates for the sample PDF.

In this work, we develop and discuss methods drawn from ma-

chine learning, to accurately estimate photometric redshift PDFs,

which will meet both the future storage demands of large surveys

and the precision demands for cosmological parameter estimation.

As a working example, we apply these algorithms to a sample of

galaxies selected from the CFHTLS survey for a set of cosmological

analyses. We demonstrate that these methods reduce the biases in

all of the analyses examined. We also show that these biases result

from the mishandling of the full shape of the photometric redshift

PDFs.

This advancement is quantified by comparing several accurate

methods to estimate photometric redshift PDFs for individual ob-

jects. We estimate individual PDFs using a classification scheme

that classifies objects into redshift bins and thereby constructs the

PDF using the probabilities for bin membership. In contrast to the

classification-based PDF estimation methodology commonly used

in the astrophysics literature, we incorporate the order of consecu-

tive redshift bins into the classification framework. This produces

more accurate individual PDFs. We quantify the performance of the

methods by measuring the average log-likelihood of all PDF esti-

mates in a test sample. Our method outperforms other non-ordinal

classification and regression schemes, for example classification

trees and neural networks. Specifically, for high-redshift objects,

our method reaches performance gains of over 50 per cent in aver-

age log-likelihood when compared with the results obtained using

the common neural network code ANNZ. We construct the individual

PDFs using kernel density estimation which inherently requires the

selection of a suitable bandwidth to govern the smoothing scale.

We propose an efficient method to choose the smoothing scale on

an object-by-object basis. We further discuss a Gaussian mixture

model, whose complexity is adaptively selected for each individ-

ual object, using a criterion that penalizes model complexity. This

method shows solid performance compared with kernel density

estimates, while providing a more efficient parametrization of indi-

vidual PDFs.

Many cosmological analyses require accurate knowledge of the

full shape of the galaxy sample PDF, instead of estimates for the in-

dividual PDFs of each galaxy. Sample PDFs are typically obtained

by stacking the PDFs of individual galaxies, and so their estima-

tion and storage are required. This reconstruction of the individual

PDF typically requires the storage of several hundred floating point

numbers. Complex post processing algorithms can reduce this num-

ber to 10–20 floating point numbers per object at the expense of

additional computation time. However, in this work, we propose a

new single point estimator for each galaxy, called highest weight

element (HWE), which can be used to accurately reconstruct the

full sample PDF. This leads to a significant reduction in the storage

requirements of future photometric surveys. Furthermore, we note

that reconstructing the full sample PDF using the point estimator

method described in this paper requires orders of magnitude less

computation time than using other common redshift codes.

Applications such as shear tomography require the accurate pho-

tometric selection of objects in redshift bins. We weight photomet-

rically observed galaxies such that their sample PDF lies within the

predefined redshift range. The weights are estimated from the over-

lap between the individual redshift PDFs and the redshift selection

interval. We further use these weights to improve the selection of

a sample of galaxies, such that their sample redshift PDF is more

accurately confined to be within the predefined redshift bin.

We now return our attention to the specific use case highlighted

above using CFHTLS galaxies. In particular, we examine the fol-

lowing cosmological analyses: the estimation of cluster masses us-

ing weak gravitational lensing, the modelling of galaxy angular

correlation functions and the modelling of cosmic shear correlation

functions. In each case, we compare the results, and estimate biases,

using results obtained with ANNZ.

For lensing clusters within the redshift interval 0.45 < z < 0.6, we

show that our methods reduce the relative bias in the cluster mass

reconstruction by up to a factor of 4. Furthermore, our methods

improve the relative biases in the modelling of the explored large-

scale structure and cosmic shear correlation functions by similar

values.

In this paper, we have shown that the usual point estimate of a

photometric redshift is a poor estimator when used to reconstruct

the full sample redshift PDF. We note that these point estimates are

still used in many recent analyses, and we have shown that their

continued use can lead to large biases in cosmological analysis.

By using the new HWE point estimator method, highlighted in

this paper, we show that the full shape of the sample PDF can be

estimated more accurately and that this reduces the biases incurred

by misestimating the sample PDF.

The results discussed in this paper have been obtained under the

idealized assumption that the data used to train the models are com-

pletely representative of the test data. In applications where this is
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not the case, data augmentation techniques (Hoyle et al. 2015b) can

be used to artificially populate regions of colour–magnitude space,

which are not fully covered by spectroscopy. These techniques as-

sume a model for the data distribution and can be seen as a form

of extrapolation. Weighting methods (Section 5.3.3) are in some

cases an alternative to data augmentation. If all relevant attributes

are included, these algorithms can be used to determine weights,

such that the weighted data set resembles a reference data set.

To aid the common adoption of these tools and techniques, we

will make the source code of all algorithms publicly available on

the homepage of the first author.
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A P P E N D I X A : T E S T S O F W E I G H T I N G

SCHEM E

The analyses in Sections 5.3.5 and 5.3.4 have been carried out by

weighting the photospectroscopic data set such that it resembles

a shape catalogue. If only a few objects in the re-weighted cat-

alogue are given high weights, the analyses can strongly depend

on these objects. We lack spectrocopically observed objects at the

faint end of the shape catalogue and therefore employ a magnitude

cut to avoid giving large weight to the faint, unrepresentative part

of the spectrophotometric catalogue. In analogy with Sánchez et al.

(2014), we test the robustness of our weighting scheme with respect

to the considered applications by excluding the top 5 per cent of the

objects that are given the highest weights.

The bias in the critical surface density is robust against the ex-

clusion of the highest weighted objects for a magnitude cut at

MAG_AUTO i′ < 23.5 as shown in Fig. A1. The results improve

Figure A1. Relative bias in the mean critical surface density (equation 39)

for different lens redshifts obtained using different estimates for the sample

PDF. We show the relative biases obtained for the weighted data set cut at

MAG_AUTO i′ < 23.5 in solid lines, and the corresponding results with the

5 per cent highest weighted objects removed in dashed lines.

Figure A2. Relative bias in the shear correlation function estimate for ξ−
(equation 43) obtained using different estimates for the sample PDF. We

show the relative biases obtained for the weighted data set cut at MAG_AUTO

i′ < 23.5 in solid lines and MAG_AUTO i′ < 23.0 in dashed lines and the

corresponding results with the 5 per cent highest weighted objects removed.

Figure A3. Relative bias in the shear correlation function estimate for ξ+
(equation 43) obtained using different estimates for the sample PDF. We

show the relative biases obtained for the weighted data set cut at MAG_AUTO

i′ < 23.5 in solid lines and MAG_AUTO i′ < 23.0 in dashed lines and the

corresponding results with the 5 per cent highest weighted objects removed.

Figure A4. The sample PDFs for a cut at MAG_AUTO i′ < 23.5 expressed

in radial comoving coordinates x for the spectroscopic, ANNZ and HWE

reconstructions (top panel). The bias (equation A1) obtained with the sample

PDFs from ANNZ and the HWE for the example l = 100 (bottom panel).
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for all algorithms if these objects are removed. The conclusions of

the analysis, i.e. that the HWE leads to a lower bias compared with

ANNZ, remain valid.

The analysis of the biases incurred in estimates of the cosmic

shear correlation functions requires a more conservative cut at

MAG_AUTO i′ < 23.0, to be robust against the removal of a small

number of highly weighted objects, as can be seen in Figs A2

and A3. For a magnitude cut at MAG_AUTO i′ < 23.5, ANNZ
8 gives a

better overall result compared with the HWE, while the opposite is

true if the 5 per cent objects with the highest weight are left out.

Note that this is not because the p(z) reconstruction of ANNZ

is superior at faint magnitudes. Instead, this can be explained by

considering the bias in the integrand in equation (42) with respect

to the spectroscopic result given as

Bias =
ℓ

2π

J0,4(lθ )
(

P phot
κ (ℓ) − P spec

κ (ℓ)
)

. (A1)

8 The results for ANNZ-stack are very similar. Therefore, we do not show

them here.

As shown in Fig. A4, ANNZ both partly underestimates and overes-

timates the true spectroscopic integrand at different redshift values

such that these two effects compensate each other. Since the lens-

ing efficiency is dominated by the high-redshift tail of the stacked

PDF, the peculiar shape of the ANNZ reconstruction in this range

happens to outperform the otherwise superior HWE method. The

shape of the high-redshift tail strongly depends on a small num-

ber of faint objects, which are given a high weight. Accordingly,

this artefact is no longer present if the top 5 per cent of the objects

with the highest weights are left out. For a more conservative cut at

MAG_AUTO i′ < 23.0, the analysis is no longer dominated by a few

highly weighted objects at the faint end of our spectrophotometric

catalogue, the ANNZ analysis does not outperform the HWE and the

interpretation does not depend on the removal of the objects with

the highest weights.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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