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Metagenome studies have retrieved vast amounts of sequence

data from a variety of environments leading to new discoveries

and insights into the uncultured microbial world. Except for very

simple communities, the encountered diversity has made

fragment assembly and the subsequent analysis a challenging

problem. A taxonomic characterization of metagenomic

fragments is required for a deeper understanding of shotgun-

sequenced microbial communities, but success has mostly been

limited to sequences containing phylogenetic marker genes.

Here we present PhyloPythia, a composition-based classifier

that combines higher-level generic clades from a set of 340

completed genomes with sample-derived population models.

Extensive analyses on synthetic and real metagenome data sets

showed that PhyloPythia allows the accurate classification of

most sequence fragments across all considered taxonomic ranks,

even for unknown organisms. The method requires no more than

100 kb of training sequence for the creation of accurate models

of sample-specific populations and can assign fragments Z1 kb

with high specificity.

The emerging field of metagenomics is dedicated to the study of
sequences obtained by high-throughput sequencing of DNA sam-
ples from microbial communities. The approach has already
provided exciting insights into the lifestyle, evolution and char-
acteristics of microbial organisms1–3. Such insights could not have
been obtained otherwise as the vast majority of microbes cannot be
cultivated using standard techniques4. From a technical standpoint,
the field has created new computational challenges. These include a
need for assembly and gene-finding programs able to handle highly
diverse sequence collections of organisms sampled with different
coverage, and tools for characterizing the phylogenetic provenance
of the vast amounts of generated short sequences.

One approach to classifying metagenomic sequence fragments is
the use of ‘marker genes’, for example ribosomal RNAs (rRNAs), as
phylogenetic anchors for identification of the source organism of a
fragment. rRNAs are highly conserved and allow the most accurate
placement within the tree of life of an organism or fragment
containing the respective marker. See refs. 5,6 for the original
observation and the resulting framework for the quantification of
evolutionary relationships using rRNAs. Even though the marker-

gene collection has been expanding through the inclusion of
ubiquitous and slowly evolving or clade-specific proteins7–9, the
approach permits the characterization of only a limited number of
fragments. Sensitive identification (to species level) using a marker-
gene approach requires a very large database; presently the largest
available database is for 16S rRNA10. In samples like the enhanced
biological phosphorus-removing (EBPR) sludge11, Sargasso Sea1

and Minnesota soil2 samples, however, a mere 0.17%, 0.06% and
0.017% of the contigs, respectively, carry 16S rRNA markers. Even if
one includes other markers such as recA and rpoB, less than 1% of
the contigs in a metagenomic assembly are identifiable with a
marker-gene approach.

For a very low complexity community found in acid-mine
drainage3, whose dominant species exhibited considerable differ-
ences in their G+C content, the organism-specific ‘binning’ of
fragments based on G+C content and read coverage retrieved near-
complete genomes. The use of tetranucleotide signatures has also
shown promise in the characterization of low-complexity commu-
nities, and for the dominant organisms of more complex popula-
tions12. However, these schemes are unable to characterize more
diverse, and thus more challenging, metagenomes such as the
Sargasso Sea sample, or samples of the highly complex soil com-
munities that are estimated to contain millions of distinct taxa13.
For an extremely complex sample of Minnesota soil, only a gene-
centric characterization could be carried out, as less than 1% of
reads could be assembled. Gene-centric analyses allow determina-
tion of genes important for the overall community function, but
the taxonomic composition of the sample remains largely unre-
solved. It is thus imperative that fast and accurate tools be
developed that allow the taxonomic characterization of short
genomic sequence fragments and permit more comprehensive
metagenome analyses.

Genomic sequence composition has been shown to reflect
organism-specific characteristics and is dubbed the ‘genome sig-
nature’14–16. The phenomenon is sufficiently pronounced to allow
the simultaneous supervised or unsupervised discrimination
among several different species12,17–19. Given the availability of
near-complete genomes for training, 85% accuracy has been
reported for fragments as short as 400 bp from a mixture of
28 organisms. Furthermore, genomic signatures also carry
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phylogenetic information, as recent studies have shown20–22. In this
context, a method based on a self-organizing map (SOM) has been
described as being able to cluster fragments of completely
sequenced genomes, by organism and higher-level phylotypes,
with high accuracy22.

Here we present PhyloPythia, a method that uses sequence
composition to phylogenetically characterize sequence fragments.
The method is named after Pythia, the priestess at Apollo’s oracle in
ancient Delphi. PhyloPythia uses a multiclass support vector
machine (SVM) classifier with the oligonucleotide composition
of variable-length genome fragments as the input space. It is the
first method that uses a state-of-the-art technique for supervised
classification of high-dimensional, sparse input data (that is,
oligonucleotide counts in relatively short sequence fragments) to
solve the problem of phylogenetic assignment to known clades
(dominant sample populations or higher level clades). PhyloPythia
allows the accurate phylogenetic classification of genomic frag-
ments Z1–3 kb for all taxonomic ranks considered (domain,
phylum, class, order and genus). More importantly, PhyloPythia
can also achieve this for fragments originating from new organisms.
In addition to the generic higher-level classifiers derived from the
completed genomes, PhyloPythia allows the inclusion of sample-
specific clades trained with marker-gene carrying fragments.

We used PhyloPythia to analyze three metagenomes: the Sargasso
Sea sample and two samples of EBPR-sludge used in industrial
wastewater processing11. For all analyzed samples, our method has
substantially improved performance over earlier approaches, accu-
rately assigning fragments Z1 kb to the correct clades. For the
dominant populations of the samples, PhyloPythia accurately
retrieved fragments even with as little as 100 kb of training
sequence. Moreover, it confidently assigned genomic fragments
that could not be characterized otherwise. Finally, PhyloPythia
automatically characterized large portions of the processed samples
at higher taxonomic levels, in agreement with existing marker-gene
studies of sample composition.

RESULTS
Classifier building
We performed an extensive evaluation with the genome sequences
of 340 organisms and identified the optimal sequence sources,
parameter settings and model architecture for composition-based
taxonomic classification. Coding sequence and genomic fragments

carry (slightly different) types of taxonomic information (Supple-
mentary Note and Supplementary Fig. 1 online). As the assign-
ment accuracy depends critically on the amount of available
sequence, it is advantageous to use complete genomic fragments
for composition-based phylogenetic assignment. This choice also
obviates the requirement for prior gene identification.

We also searched extensively for the best oligonucleotide pattern
space (Supplementary Table 1 and Supplementary Fig. 2 online).
The lower-ranking clades from the genus to the class can be
discriminated best using 5-mers of contiguous nucleotides. For
clades at the ranks of phylum and domain, more complex 6-mer
signatures ((w ¼6, l ¼ 4) and (w ¼ 6, l ¼ 6), with w being the
pattern width and l the number of literal characters, respectively)
are needed to best capture the characteristics of a joint ancestry.

Our evaluation of different kernel functions showed that for
feature spaces with more than w2 dimensions, the Gaussian kernel
outperforms the linear one (Supplementary Table 2 online).

We also extensively investigated the relation between fragment
length and classification accuracy for training and testing frag-
ments. This is necessary as assembled metagenomes contain
fragments whose lengths range from several megabases down to
r700 bp for individual reads, or even r100 bp if pyrosequencing
is used23 (Supplementary Note and Supplementary Fig. 3 online).

PhyloPythia incorporates the results of these analyses and can
process fragments of all lengths. A query fragment is examined by
applying a series of classifiers trained with fragments of decreasing
lengths. This continues until the query is assigned or we reach a
classifier that was trained with shorter fragments than that respec-
tive query. If the query cannot be assigned to a known clade, it is
assigned to the class ‘other’. At the domain level there is no broadly
defined ‘other’ class to which items with unclear signal can be
assigned. We thus make an exception to the above scheme for
domain assignments and apply a classifier trained with fragments
of similar length to the query.

Assignment accuracy
We evaluated assignment accuracy for the sequences of known and
unknown organisms to the classifier. For fragments of unknown
organisms, PhyloPythia correctly assigns between 79–96% for all
tested lengths and taxonomic ranks (Fig. 1 and Supplementary
Table 3 online). This specificity is matched by a high sensitivity
(‘microaccuracy’) for all fragments Z5 kb (Fig. 1). Only for
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Figure 1 | Accuracy of phylogenetic assignments for differently sized genomic fragments with PhyloPythia. (a,b) classification accuracy for fragments from

unknown organisms (of which no fragments were included in the training data for the classifier). (c,d) Classification accuracy for organisms of which some

fragments are known (other genomic fragments than the ones tested were included in the training data for the classifier). Class-normalized sensitivity (a,c) and

specificity (b,d) of phylogenetic assignments for fragments from 340 different organisms (Supplementary Methods). The numbers in parentheses indicate the

number of modeled clades for the phylogenetic classifiers.
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fragments shorter than 5 kb, and in parti-
cular for those shorter than 3 kb, the sensi-
tivity decreases markedly. It is important to
stress that this high accuracy is achieved
based on the clade-specific signal that was
learned from other organisms of a given
clade only. This takes place in a setting
where a fragment can be assigned to any
one of 31 different clades (Fig. 2) and in the
presence of considerable ‘noise’ from frag-
ments of organisms of unknown clades.
Notably, the latter fragments are accurately
identified as ‘unknown’ in most cases.

Accuracy increases further when assign-
ing fragments from known organisms. For
fragments Z3 kb, the sensitivity and speci-
ficity are 90–99% for clades from the rank of
domain to order (Fig. 1 and Supplemen-
tary Table 4 online). For fragments as short
as 1 kb, that is, only slightly longer than a
single read, specificity reaches 88.7–96.7%,
whereas sensitivity ranges from 7.1% at the
genus level to 57.7% at the domain level.

Impact of nontaxonomic signals
Genome sequence composition is shaped by
many factors, including translational selec-
tion exerted on the synonymous codon
usage of the protein-coding sequences24,
lateral gene transfer and the optimal growth
temperature of the organism25. As our
approach uses a suitable supervised classifi-
cation technique, it is able to learn the
characteristics that are relevant for taxo-
nomic classification from an input space
that is also shaped by nontaxonomic influ-
ences. For instance, PhyloPythia is able to
accurately distinguish, in most cases, geno-
mic fragments of different domains for
both thermophiles and nonthermophiles
(Supplementary Fig. 4 online).

We also examined the impact of transla-
tional selection on classification accuracy by
comparing for unknown organisms the
accuracy of classifying 3 kb fragments to
the accuracy for ribosomal protein–carrying 3-kb fragments
(Supplementary Fig. 5 online): PhyloPythia also achieves a simi-
larly high accuracy for both types of fragments from the genus to
the phylum level and a specificity of 83–92%.

Characterizing the EBPR-sludge metagenomes
We used PhyloPythia to characterize two metagenomic samples of
lab-scale EBPR sludge, obtained from Madison, Wisconsin, USA
and Brisbane, Australia (referred to as US and OZ, respectively).
For these, assemblies between 20 and 28 Mbps of sequence each
were generated using the PHRAP (US and OZ data) and JAZZ
(US data) assemblers11.

Both communities were dominated by the uncultured
bacterium, Candidatus Accumulibacter phosphatis (CAP). A 16S

rRNA–based analysis revealed that CAP is the only species common
to both communities above the detection threshold. However,
overlap exists at higher phylogenetic levels11.

We extended the multiclass, higher-level phylogenetic classifiers
with models of the dominant sample populations. In particular, we
created an order-level, multi-class model with an additional clade
for the Rhodocyclales, based on genomic sequence fragments from
Dechloromonas aromatica and known CAP sequences, and
sample-specific lower-level clades for CAP and a Thiothrix sp.–
like population abundant in the OZ sample. All three assemblies
were characterized with PhyloPythia using this extended
model architecture.

To test validity, we examined the consistency (nesting) of assign-
ments for the fragments at the different taxonomic ranks.
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Figure 2 | Phylogenetic classification accuracy of PhyloPythia by clade for differently sized genomic

fragments from unknown organisms. From top to bottom, the clade-specific specificity, class-normalized

sensitivity and specificity (Supplementary Methods) is shown for fragments of 340 organisms at the

ranks of domain, phylum, class, order and genus (rank is given above each graph). The legend specifies

the color code for the respective fragment length in the graphs.
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PhyloPythia’s predictions are consistent: 93–97.7% of all assign-
ments (99.6–99.8% for high-confidence assignments) nest across
all ranks (Table 1). Additionally, we analyzed the assignments for
the 54 rRNA–containing fragments and found all assignments to be

correct for fragments 42 kb: for fragments shorter than 2 kb
specificity was 86% (95% for high-confidence assignments).

At the phylum level, culture-independent analyses based on 16S
rRNA indicated that the samples are dominated by CAP and other

Table 1 | Phylogenetic characterization of two metagenome samples from phosphorus removing sludge

Sample US JAZZ US PHRAP OZ PHRAP

Fragments 5,426 16,370 11,632

Sequence (Mb) 20.6 28.7 26.9

Assigned (high confidence) 3,444 (2,905)a 12,782 (11,459) 9,908 (9,062)

Consistency (%) 97.7 (99.8) 96.7 (99.6) 93 (99)

Known CAP fragments 7 665 584

Snfragments � CAP (%) 100 (85.7) 86.2 (49.2) 79.8 (52.7)

Snkb � CAP (%) 100 (97.1) 97.5 (80.1) 94.9 (73.6)

Clade Fragments

assigned (kb)

Fragments

assigned (%)

Fragments

assigned (kb)

Fragments

assigned (%)

Fragments

assigned (kb)

Fragments

assigned (%)

Bacteria 18,916 91.8 25,450 89 24,537 91.2

Not assigned (other) 1,635 7.9 3,100 11 1,576 5.9

Archaea 38 0.2 106 0.4 691 2.6

Eukaryota 9 0 75 0.3 85 0.3

Proteobacteria 15,406 74.8 17,965 63 17,797 66.2

Not assigned (other) 3,814 18.5 9,086 32 6,283 23.4

Actinobacteria 580 2.8 663 2.3 295 1.1

Firmicutes 429 2.1 456 1.6 354 1.3

Bacteroidetes 299 1.5 319 1.1 568 2.1

Euryarchaeota 21 0.1 74 0.3 649 2.4

Spirochaetes 27 0.1 52 0.2 695 2.6

Cyanobacteria 8 0 35 0.1 111 0.4

Deinococcus-Thermus 3 0 39 0.1 107 0.4

Betaproteobacteria 11,129 54 13,085 46 9,150 34

Not assigned (other) 5,827 28.3 13,253 46 10,254 38.1

Gammaproteobacteria 2,576 12.5 1,229 4.3 5,190 19.3

Actinobacteria (class) 460 2.2 340 1.2 150 0.6

Clostridia 284 1.4 196 0.7 60 0.2

Alphaproteobacteria 245 1.2 442 1.5 646 2.4

Bacilli 14 0.1 28 0.1 106 0.4

Bacteroides (class) 18 0.1 17 0.1 127 0.5

Mollicutes 22 0.1 60 0.2 31 0.1

Spirochaetes (class) 14 0.1 37 0.1 563 2.1

Deinococci 0 0 2 0 38 0.1

Deltaproteobacteria 0 0 28 0.1 193 0.7

Epsilonproteobacteria 6 0 6 0 94 0.3

Methanomicrobia 0 0 5 0 283 1.1

Rhodocyclales 9,948 48.3 11,020 38 7,507 27.9

Not assigned (other) 9,233 44.8 17,351 60 14,427 53.6

Xanthomonadales 1,218 5.9 194 0.7 361 1.3

Burkholderiales 84 0.4 44 0.2 76 0.3

Actinomycetales 59 0.3 28 0.1 3 0

Pseudomonadales 49 0.2 65 0.2 8 0

Spirochaetales 0 0 9 0 90 0.3

Thiotrichales 4318 16.1

Not assigned (other) 10,738 52.1 18,053 63 15,771 58.6

Accumulibacter 9,861 47.9 10,680 37 6,801 25.3

Thiothrix 4,318 16.1

US JAZZ and US PHRAP are assemblies with the JAZZ and PHRAP assembler of the US data set, respectively. OZPHRAP is the PHRAP-assembled OZ data set. All phylogenetic clades assigned Z50 kb
are shown. From top to bottom, the percentage of fragments assigned to clades at the ranks domain, phylum, class, order and genus is shown. Sn � CAP gives the sensitivity per fragment
(Snfragments � CAP) and per kilobase (Snkb � CAP) of recovering known CAP sequences in a cross-validation experiment in which the CAP models were trained from the fragments of one sample and
applied for classification of the other sample. aValues for high confidence assignments (P Z 0.85) are given in brackets.
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proteobacterial species, flanked by much less abundant species
belonging to the Bacteroidetes, and for the OZ sludge only,
representatives of the Firmicutes, Verrucomicrobia and Chlorobi
phyla11. PhyloPythia’s assignments correlate well with this com-
munity structure (Table 1). The majority of fragments of both
samples were assigned to the Proteobacteria (63–74.8%). Notably,
PhyloPythia also assigned a small fraction of fragments from both
samples to the Actinobacteria, which is supported by identification
of a partial rRNA gene in the US sludge. Several fragments were
assigned to Spirochaetes and Euryarchaeaota that were not found
by 16S rRNA analysis, providing testable hypotheses about
community structure.

At the rank of order, apart from the Rhodocyclales (which
comprises CAP), the Xanthomonadales were identified as one of
the more frequent clades in both samples, in agreement with the
marker gene–based studies (Table 1).

ForAccumulibacter phosphatis, the relative percentage of assigned
fragments qualitatively agrees with the rRNA-derived abundance
estimates. As a third test, we used the fact that both sludge
communities have CAP in common to provide an estimate of the
Accumulibacter sp. binning accuracy. We constructed CAP-specific
classifiers from the known CAP genome fragments of one sample
and evaluated the success of recovering known CAP fragments in

the other sample. PhyloPythia mainly missed very short fragments,
successfully recovering 95–100% of the known fragments for all
assemblies (Table 1); 74–97% could be assigned with high con-
fidence (P Z 0.85).

The 16S rRNA markers also indicate that a Thiothrix-like species
is relatively well represented in the OZ data set (13.8% of OZ
PHRAP contigs containing 16S rRNA genes). The genus Thiothrix
belongs to the Gammaproteobacteria and, presently, no larger
fragments of genomic sequence are available. Based on an initial
set of 17 fragments (0.7 Mb), PhyloPythia retrieved an additional
3.7 Mb of Thiothrix sequences. We verified these assignments by
using the scaffolding information provided by read pairs, that is,
contiguous sequence fragments (contigs) linked by end reads of the
same cloned insert. Overall, 97% of PhyloPythia’s Thiothrix assign-
ments were consistent (Fig. 3); the remaining 3% of the fragments
were either misclassified or not assigned at all, and mainly comprise
small contigs with reduced composition signal, larger contigs that
contain laterally transferred genes (for example, prophage) or
repeat structures like CRISPR26. The majority of contigs in these
scaffolds are either classified as Thiothrix with high confidence
(62%), or assigned to consistent higher taxonomic levels with high
confidence (35%). Based on the number of distinct tRNA synthe-
tases identified in the Thiothrix contigs (Fig. 3), we estimate that
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93,223 bp

94,796 bp
100,040 bp
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124,355 bp
126,261 bp

130,126 bp
145,130 bp
148,338 bp

163,169 bp
193,346 bp

211,393 bp
252,141 bp

LengthBacteria; Proteobacteria; Gammaproteobacteria; Thiotrichales; Thiotrichaceae

Prophage

CRISPR

Thiothrix

Gammaproteobacteria

Proteobacteria

Bacteria
Unclassified

Different order

Different class
tRNA synthetases

(genus)

(class)

(phylum)

(domain)

Figure 3 | Binning accuracy of Thiothrix sp. contigs using PhyloPythia. Each line represents a scaffold, which is a collection of contigs (boxes) linked by end

pair read information, indicating that those contigs belong to the same genome. The colors indicate the most specific taxonomic rank to which a contig could

reliably (P 4 0.85) be assigned by PhyloPythia. The majority of contigs were identified as belonging to Thiothrix (dark green 62%) or a consistent lower level

classification (yellow to light green, 35%), with only 3% being unclassified (white) or misclassified (red). Some misclassifications could be correlated with

atypical sequence composition due to laterally transferred genes (for example, prophage) or noncoding repeat sequences (for example, CRISPR elements). The

number of distinct tRNA synthetases found in the Thiothrix scaffold set (indicated by stars) can be used as a proxy for genome completeness. We estimate that

72% of the Thiothrix genome has been recovered based on the presence of 13 of 18 tRNA synthetase types on high confidence Thiothrix contigs. Only scaffolds

longer than 12 kb or containing a tRNA synthetase are shown.
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72% of the Thiothrix genome was recovered, and that its genome is
B6 Mb in size. Such estimates of individual population genome
size and coverage within metagenomic data sets are useful for
estimating the reliability of metabolic reconstruction and for
guiding additional sequencing efforts.

In summary, PhyloPythia assigned approximately 90% of the
fragments from the two sludge samples at the domain level,
70–81.5% at the phylum level, 61.9–71.1% at the class level,
40–65.5% at the order level, and 37–47.9% to sample-derived
A. phosphatis and Thiothrix-like population bins. Based on the
sample-specific models, known fragments of CAP could be
retrieved with high accuracy, and 3.7 Mb of additional genomic
sequence were assigned to the Thiothrix-like organism, a deep-
branching Gammaproteobacterium, for which no sequence data
are available presently.

Characterizing the Sargasso Sea metagenome
We used PhyloPythia to characterize the recently reported Sargasso
Sea sample1. With more than 800,000 contigs totaling 41 Gb of
sequence, it is the largest metagenome set available. We used
463 annotated small subunit rRNA genes as a reference for evalua-
tion. Based on taxonomic assignments generated for the correspond-
ing contigs (and contigs linked via a scaffold) of these genes,
we quantitatively assessed assignment accuracy on real meta-
genome data.

As before, we combined models of the dominant sample popula-
tions with the generic higher-level models created from the
completed genomes. We used between 100 and 162 kb of sequence
to train sample-specific population models for each of the four
dominant populations (Prochlorococcus, unidentified Gammapro-
teobacteria, Shewanella and Burkholderia spp.). We used the
resulting multilevel model to characterize all 811,371 contigs of
the sample.

Notably, we found that the specificity deteriorates slightly when
the reference is extended by contigs that are linked to the marker-
gene carrying contigs via a common scaffold. Mostly, this is due to
false assignments of such scaffold-linked contigs from the low-
coverage assembly (Table 2). This indicates assembly issues for the
data, as has been described earlier for scaffolds containing both
archaeal and bacterial rRNA markers27. Generally, however, our
in silico estimates map reasonably to a real metagenome data set.
For the more reliable smaller reference set, 68–98% of the contigs
Z1 kb (representing 97–99% of the total sequence) could be
assigned, and of these, 64–100% of the contig assignments were

correct (91–100% per nucleotide). For sequences o1 kb, the
accuracy of our method decreased, as for the sludge samples.

For the binning of dominant populations, we compared Phylo-
Pythia to a TETRA-like method. TETRA is specific, allowing the
recovery of most large fragments. However, we found that Phylo-
Pythia was substantially more sensitive, in particular for shorter
fragments and for fragments of the higher-level Gammaproteo-
bacterial sample population, without sacrificing specificity. Phylo-
Pythia’s shortest assignment was a 1.5-kb fragment, whereas
TETRA’s shortest assignment was 12 kb in length (Supplementary
Tables 5 and 6 online).

We also compared our results to the phylotypes derived from the
association of fragments from known organisms with sample
fragments on a SOM. The SOM has been described as able to
cluster input fragments from completely sequenced genomes with
high accuracy by organism and higher-level phylotypes. In our
analysis of the high coverage fragments of the Sargasso Sea sample,
we found that the SOM correctly assigned only nine fragments of
the dominant Shewanella and Burkholderia species populations, for
which nearly identical genomes have been already sequenced. For
the extended reference of sequences Z1 kb, the specificity of the
SOM assignments decreased to 16%, compared to 48% for Phylo-
Pythia (Supplementary Tables 5 and 6). We surmise that the SOM
may require large input sets of sequences for a particular organism
to place these in a consistent cluster (as in the case of multiple
fragments from organisms with completed genomes) and that its
generalization ability for less abundant input species is diminished.
Generally, a supervised classification procedure like the SVM,
which creates clade models in a directed fashion based on phylo-
genetically relevant features from the high-dimensional feature
space of sequence composition, is likely to perform better in a
classification problem than an unsupervised procedure that has no
knowledge of relevance of features.

The Sargasso Sea sample contains large amounts of a cyanobac-
terial Prochlorococcus population (one of the four dominant popu-
lations), one of the most abundant microorganisms found in the
oceans. Cyanobacteria evolve rapidly in terms of their sequence
composition, and the known Prochlorococcus spp. differ by as much
as 27% in their average genomic G+C content. For the completely
sequenced genomes, PhyloPythia shows considerable accuracy in
identifying fragments of unknown Cyanobacteria (Supplementary
Table 3). PhyloPythia achieves a sensitivity of 475% for all
fragments 43 kb and a specificity of more than 93% across all
fragment lengths. For Proteobacteria, PhyloPythia’s accuracy

Table 2 | Classification accuracy for contigs from the Sargasso Sea metagenome sample

Number of

contigs Asgctg Spctg

Contig

sequence (bp) Asgnt Spnt

Number of

contigs Asgctg Spctg

Contig

sequence (bp) Asgnt Spnt DSpctg

Dominant sample

populations

19 68.4 100.0 361,704 97.33 100.00 69 53.62 100.00 1,994,724 96.3 100.00 0

Genus level 23 52.1 91.7 362,687 92.7 98.53 79 34.18 78.12 1,940,738 94.03 97.21 13.55

Order level 33 36.3 91.7 401,613 83.74 98.53 136 23.53 68.42 2,091,355 88.28 96.38 23.25

Class level 86 26.7 64.0 521,725 73.66 91.69 333 27.33 62.5 2,632.674 80.3 93.48 1.5

Phylum level 114 36.0 67.4 578,482 74.17 90.6 393 52.1 47.95 2,754,514 86.63 86.66 19.49

Domain level 140 97.9 94.9 655,980 99.43 98.2 512 98.44 88.69 3,148,484 99.55 95.55 6.2

From top to bottom, for the dominant sample populations to higher-level clades, the percentage of assigned sequence (Asg) in terms of contigs (ctg) and per base (bp) is shown, next to the
specificity (Sp., percentage of correct assignments). The reference contigs Z1 kb were determined based on the presence of a small subunit rRNA marker (columns 1–6), or also including contigs
linked by a scaffold to these contigs (columns 7–12). Column 13 gives the difference in specificity for the first relative to the second set, which (mostly caused by inconsistent assignments for the
low coverage sequences) indicates assembly issues.
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exceeds 90% for fragments 43 kb, with a specificity of more than
95% across all fragment lengths. As a particularly difficult case, we
investigated the accuracy of finding (G+C)-rich Prochlorococcus sp.
fragments using a low-(G+C) model and vice versa (Supplemen-
tary Table 7 online). This allowed the accurate retrieval of fragments
of half of the organisms. Notably, fragments of the (G+C)-richest
genome were retrieved with high accuracy by our method with the
low-(G+C) model. We improved the model by including fragments
of all genomes except the one being tested, which resulted in good
accuracy for five of the six genomes. Fragments of the last outlier
genome (Prochlorococcus marinus str. MIT 9313) could be accurately
retrieved only by building a model based on fragments of all

genomes. This experiment nicely demonstrates the advanced cap-
abilities of our method as well as the difficulties one may encounter.

In the Sargasso Sea sample, PhyloPythia identified 463 contigs or
1.94 Mb of sequence for the dominant Prochlorococcus sp.
population (Prochlorococcus SAR-1; Table 3); 87% of the high
coverage contigs among these contain regions most similar to
Prochlorococcus sp. genes in RefSeq, demonstrating the reliability
of these assignments. In the original annotation, 370 kb are
annotated for this population with 222 kb overlapping our
assignments. Most of the additional 1.7 Mb of assigned sequence
comes from low-coverage contigs that were not annotated in
the original release.

For the dominant Shewanella and Burkholderia species popula-
tions, 8.2 Mb and 9.07 Mb of sequence, respectively, were retrieved.
Both populations show high consistency in the assignments for the
marker gene–characterized reference set, indicating that these
assignments are largely correct. Of these, 6.9 Mb and 8.4 Mb,
respectively, are in the original annotation for the high-coverage
contigs. Based on assignment sensitivity and specificity for
the reference set, we estimate that the sample in total contains
B9.27 Mb and B8.3 Mb of sequence from the dominant
Burkholderia and Shewanella species populations.

Table 3 | Phylogenetic characterization of sequences from the Sargasso
Sea metagenome sample

Rank

Number of

contigs

Contigs

assigned (%)

Contig

sequence (Mb)

Sequence

assigned (%)

Domain

Bacteria 112,111 83.57 231.06 85.77

Archaea 17,591 13.11 30.77 11.42

Not assigned 3,576 2.67 5.41 2.01

Eukaryota 871 0.65 2.15 0.80

Phylum

Not assigned 68,695 51.21 107.01 39.72

Proteobacteria 16,430 12.25 57.09 21.19

Cyanobacteria 17,755 13.24 43.84 16.27

Firmicutes 17,967 13.39 35.03 13.01

Euryarchaeota 9,091 6.78 18.01 6.69

Spirochaetes 1,316 0.98 2.31 0.86

Fusobacteria 1,241 0.93 2.30 0.85

Ascomycota 255 0.19 1.09 0.40

Arthropoda 392 0.29 0.73 0.27

Actinobacteria 349 0.26 0.61 0.23

Bacteroidetes 185 0.14 0.34 0.13

Chordata 224 0.17 0.33 0.12

Chlamydiae 78 0.06 0.33 0.12

Deinococcus-Thermus 81 0.06 0.18 0.07

Crenarchaeota 90 0.07 0.16 0.06

Class

Not assigned 107,513 80.14 182.98 67.93

Gammaproteobacteria 6,084 4.54 25.09 9.31

Betaproteobacteria 2661 1.98 16.47 6.11

Mollicutes 9,340 6.96 15.58 5.78

Cyanobacteria 1741 1.3 11.16 4.14

Methanomicrobia 1,401 1.04 4.74 1.76

Bacilli 1374 1.02 3.96 1.47

Deltaproteobacteria 672 0.5 2.21 0.82

Spirochaetes (class) 1,108 0.83 1.88 0.70

Alphaproteobacteria 632 0.47 1.47 0.55

Epsilonproteobacteria 563 0.42 0.77 0.28

Clostridia 198 0.15 0.57 0.21

Sordariomycetes 99 0.07 0.49 0.18

Thermoplasmata 133 0.10 0.46 0.17

Fusobacteria (class) 137 0.10 0.35 0.13

Chlamydiae (class) 61 0.05 0.27 0.10

Actinobacteria (class) 124 0.09 0.26 0.10

Insecta 101 0.08 0.26 0.10

Deinococci 31 0.02 0.10 0.04

Order

Not assigned 126,987 94.66 226.53 84.09

Burkholderiales 851 0.63 13.06 4.85

Prochlorales 1,607 1.20 10.59 3.93

Alteromonadales 207 0.15 8.21 3.05

Mycoplasmatales 2,831 2.11 4.59 1.70

Vibrionales 206 0.15 2.01 0.74

Lactobacillales 638 0.48 1.91 0.71

Chroococcales 134 0.10 0.57 0.21

Enterobacteriales 86 0.06 0.37 0.14

Spirochaetales 164 0.12 0.34 0.13

Campylobacterales 253 0.19 0.33 0.12

Pseudomonadales 45 0.03 0.29 0.11

Methanosarcinales 31 0.02 0.21 0.08

Thermoplasmatales 66 0.05 0.17 0.06

Genus

Not assigned 131,913 98.33 238.43 88.51

Burkholderia 667 0.50 12.46 4.63

Prochlorococcus 1,235 0.92 8.54 3.17

Shewanella 207 0.15 8.21 3.05

Vibrio 49 0.04 1.15 0.43

Streptococcus 38 0.03 0.24 0.09

Pseudomonas 4 0.00 0.15 0.06

Mycoplasma 26 0.02 0.12 0.05

Dominant populations

Not assigned 132,703 98.92 246.86 91.64

Burkholderia 103 0.08 9.07 3.37

Shewanella 207 0.15 8.21 3.05

Gammaproteobacteria 673 0.5 3.31 1.23

Prochlorococcus 463 0.35 1.94 0.72

From top to bottom, for contigs Z1 kb, the percentage of sequence assigned to clades at the
ranks domain, phylum, class, order and genus is shown. All phylogenetic clades assigned
Z100 kb are shown.

Rank

Number of

contigs

Contigs

assigned (%)

Contig

sequence (Mb)

Sequence

assigned (%)
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Most importantly, our analysis shows that the Sargasso Sea
sample represents a treasure trove of information, with many
phyla awaiting a more detailed investigation. The compilation of
more population models, which can be built using as little as 100 kb
of training sequence, should allow the fragment retrieval and
population-based binning for more populations from this sample
leading to new insights and understanding of the microbial
populations inhabiting this marine environment.

DISCUSSION
We demonstrated that sequence composition allows the accurate
characterization of genomic fragments from the complete
phylogenetic spectrum that has been sampled to date by genome
projects. For several metagenome samples of considerable complex-
ity (two phosphorus-removing sludge samples and the Sargasso
Sea sample), our technique permitted a comprehensive phyloge-
netic characterization well beyond what has been possible
before. Fragments were assigned to either well characterized high-
er-ranking clades or to clades that could be modeled for sample-
populations based on marker gene–carrying contigs and similar
means. For the dominant genera, several more megabases of
sequence could be assigned. Additionally, large parts of the samples
were characterized at higher taxonomic levels. Specific assignments
were possible even for fragments as short as 1 kb, and in the
presence of considerable noise from organisms of unknown clades.

The analysis of the Sargasso Sea sample demonstrated the gain in
classification accuracy in comparison to the unsupervised cluster-
ing of fragments with sequences of known organisms. Owing to
their capability for data exploration and hypothesis generation,
unsupervised techniques represent a valuable complement to
supervised methods such as the one we presented. The results for
PhyloPythia and TETRA in binning of the dominant sample
populations showed that both methods can be used to accurately
identify most of the larger fragments of the dominant sample
populations. PhyloPythia additionally excels in its ability to assign
short fragments of the dominant sample populations and frag-
ments of higher-level clades that are best described by more
complex shapes in the feature space (see below).

What type of metagenome fragments can be reliably assigned is a
complex function, depending on the complexity of the organismal
population, the amount of available training data for the
relevant clades, the parameter space of sequence composition, the
fragment length and the type of available training data (organismal
or only related higher-level clades). Our evaluation suggests
that highly complex and mostly unassembled samples (such as
soil samples) will remain largely uncharacterizable. Assignment of
short fragments has been reported for organisms from mixtures of
lower complexity, based on the availability of near-complete
genomes of these organisms for training. Conceivably, similar
approaches to ours that are optimized for fragments o1 kb
might be able to characterize unassembled reads of unknown
organisms for moderately complex samples. If the soil problem
could be reduced to separate analyses of distinct partly enriched
subpopulations, this would likely permit considerable progress in
the subsequent in silico characterization of such samples. If the
objective is to recover the genome of a particular low-abundance
population, then some form of pre-enrichment, such as flow
sorting28 or single-cell amplification29, will likely ensure a better
sequencing cost benefit.

An advantage of the SVM technique is its ability to learn the
relevant class-specific characteristics, even in a space where con-
siderable variation is caused by other influences. For example,
sequence composition is dominated by influences such as global
G+C content and thermophily at the domain level25, and is quite
varied for the archaeal genomes30. Nonetheless, PhyloPythia can
accurately discriminate among fragments of the different domains.
One intriguing observation here is the higher complexity of the best
feature space at domain level compared to lower phylogenetic
ranks. Although the accuracy differences for hexamers and shorter
patterns are not dramatic, they indicate the complex shape of the
structure that is required for effective discrimination among the
domains. Evolutionary relationships at this level cannot be
described by simple, unifying patterns that summarize the varia-
tions of lower-ranking clades.

Phenomena such as horizontal gene transfer can complicate
composition-based phylogenetic classification, as evidenced by
some misplaced fragments of the Thiothrix population (see
above). In contrast, such composition-based ‘misplacement’ can
provide interesting indications of the potential origin18,31. For
instance, our in silico evaluation at the domain level showed that
fragments of the Thermotoga maritima genome, which is known
to contain archaeal regions32, were assigned to the Archaea
(Supplementary Fig. 4).

Assignment accuracy increases with the number of clades
common to both the classifier and the analyzed sample. Although
our present knowledge of the phylogenetic space is far from
complete, for higher-ranking clades there is already sufficient
coverage to allow a partial characterization of the samples
from most environments. At the phylum level, we were able to
model 11 of the approximately 53 existing prokaryotic phyla4.
The class-level model contains 18 prokaryotic clades. Organisms
from several unexplored phyla are currently being sequenced and
will soon allow the addition of new clades to composition-
based models.

We believe that composition-based taxonomic classification can
have an important role and complement comparative sequence
analysis. Composition-based analysis evaluates global, clade-speci-
fic characteristics of sequence fragments. Comparative analysis can
provide the a priori knowledge and initial data sets for composi-
tion-based classification, to allow the characterization of a large
fraction of a sample at higher phylogenetic levels and to identify
further sequences of specific sample populations. For best results,
initial collections of training sequences can be compiled based on
phylogenetic markers and similar means, analogous to our ana-
lyses. For very diverse communities, a viable strategy may be the
isolation and sequencing of fosmid-sized fragments bearing these
marker genes.

Additional advantages of composition-based classification
include automation and speed: tens of thousands of fragments
can be classified across all ranks with a few days of computation on
a single processor. The advent of such techniques for the analysis of
metagenome samples will likely increase our understanding of the
uncultured microbial world.

METHODS
Compositional sequence patterns. For compositional feature
analysis, we map a given piece of DNA sequence s to a higher-
dimensional space of nucleotide patterns o¼ {o1, o2,y, oq}, where
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o is defined by the pattern length w and the number of literals l33.
In this space, s is represented by the compositional input vector
v ¼ (a1, a2,y, aq); where ai is the frequency of pattern oi in s.
Input vectors are normalized by the total number of patterns for
each sequence.

Phylogenetic modeling. Phylogenetic classification is a multiclass
problem, where at any given rank an organism belongs to exactly
one of all existing clades (that is, classes). Our overall classification
framework includes multiclass classifiers trained with genomic
fragments of different length at the rank of domain, phylum, class,
order and genus as well as sample-specific classifiers. In the
models, each adequately sampled clade at a given rank (Z3
distinct species of the clade have been sequenced) is represented
by a class. A class ‘other-unknown’ is trained with sequences from
all poorly sampled clades in our data set.

We implemented a phylogenetic framework across multiple
taxonomic ranks. Every rank includes several multiclass SVM
classifiers that are trained with fragments of a certain length.
The input items for the SVM are the compositional vectors
derived from DNA sequence fragments. Intrinsically, the SVM is
a binary classifier. For multiclass classification, we apply the ‘all-
versus-all’ technique, where N(N – 1) / 2 distinct binary classifiers
are trained, one for each possible pair of classes. Fragments are
assigned to a class with a voting mechanism. In a post-processing
step, every assignment to a known clade is re-evaluated with a
classifier trained to discriminate between fragments of this clade
and all others (one-versus-all approach); at this point false positive
assignments to known clades are frequently discarded.

We used more than 1 Gb of genomic sequence from 340
organisms34 for training. The input data represent all 3 domains,
14 different phyla, 22 classes, 29 orders and 31 genera with 3 or
more species (Supplementary Fig. 6 online). We obtained the
taxonomic information on the organisms and their phylogenetic
relationships from the US National Center for Biotechnology
Information (NCBI) Taxonomy database35.

Availability. A web server with different models is available for the
processing of smaller sequence sets online (http://cbcsrv.watson.
ibm.com/phylopythia.html). Please contact the authors for the
analysis of larger samples and creation of new models with other
sample-specific clades.

Additional methods. Further information on the methods for
pattern discovery, accuracy evalutation, construction of the meta-
genome classifier used for the analysis of the Sargasso Sea sample
is available in Supplementary Methods online.

Note: Supplementary information is available on the Nature Methods website.
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