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Abstract

Prediction of cell type-specific, in vivo transcription factor binding sites is one of the central challenges in regulatory

genomics. Here, we present our approach that earned a shared first rank in the “ENCODE-DREAM in vivo Transcription

Factor Binding Site Prediction Challenge” in 2017. In post-challenge analyses, we benchmark the influence of different

feature sets and find that chromatin accessibility and binding motifs are sufficient to yield state-of-the-art

performance. Finally, we provide 682 lists of predicted peaks for a total of 31 transcription factors in 22 primary cell

types and tissues and a user-friendly version of our approach, Catchitt, for download.
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Introduction
Activation or repression of transcription is one of the

fundamental levels of gene regulation. Transcriptional

gene regulation depends on transcription factors (TFs),

which specifically bind directly to sites in promoters

or enhancers of regulated genes or bind indirectly via

other, sequence-specific TFs. Modeling binding specifici-

ties, typically represented as sequence motifs, has been an

important topic of bioinformatics since its infancy [1, 2].

However, it soon became evident that in silico binding site

predictions based on sequence motifs alone are insuffi-

cient to explain in vivo binding of TFs and that determi-

nants beyond sequence specificity likely play an important

role [3, 4].

The emergence of high-throughput techniques like

ChIP-chip [5] or ChIP-seq [6] allowed for experimentally

determining in vivo TF binding regions on a genome-

wide scale. While especially ChIP-seq and derived tech-

niques have the potential to measure TF-specific and cell

type-specific binding, the experimental effort and costs

currently preclude ChIP-seq experiments for hundreds to

thousands of TFs in a variety of different cell types and

tissues. Hence, there is a demand for computational meth-

ods predicting cell type-specific TF binding with high
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accuracy. Fortunately, the existence of genome-wide ChIP

data for a subset of TFs and cell types also opens up the

opportunity to generate more accurate models by super-

vised machine learning techniques, which may consider

further features beyond motif matches. The main idea

of replacing laborious and expensive wet-lab experiments

by computational predictions to yield information about

further cell types has also been investigated for other

epigenomic assays [7, 8].

High-throughput sequencing may also be used to

obtain genome-wide assays of chromatin accessibility

(e.g., DNase-seq [9] and ATAC-seq [10]), which has been

considered one of the key features distinguishing func-

tional from non-functional TF binding sites [11, 12].

Chromatin accessibility data may yield genome-wide

maps of functional binding sites of a large fraction of

TFs but, in contrast to ChIP-seq, does not identify the

TF binding to a specific region. Hence, the association

between bound regions (“footprints”) and TFs is typically

derived computationally [13].

Following this path, a plenitude of tools (Additional

file 1: Table S1; detailed discussion in Additional file 1:

Text S1) hasbeenproposedover the last years (e.g., [13–28]).

While the general notion of combining sequence signals

with chromatin accessibility data and, in some cases, other

features is common to the majority of approaches, they

differ in several aspects. Specifically, approaches differ in

the source of motif information, which may stem from

motif databases or from de novo motif discovery. Matches
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to these motifs are either used as prior information and

filtered by their respective DNase-seq signals in a sub-

sequent step, or DNase footprints are first detected and

annotated with TFs based on motif matches in those foot-

prints, or, finally, motif and DNase-seq information are

processed jointly. Supervised approaches rely on labeled

training data, whereas unsupervised approaches may be

applied without any a priorily known binding sites of the

TF at hand. Finally, motif and chromatin accessibility data

may be complemented with further experimental or com-

putational assays like histone modifications or sequence

conservation.

Each of these approaches has its benefits and downsides,

and the results of benchmark studies in the respective

original publications are ambiguous with regard to their

prediction performance. Against this background, the

“ENCODE-DREAM in vivo Transcription Factor Binding

Site Prediction Challenge” (https://www.synapse.org/#!

Synapse:syn6131484) aimed at assessing the performance

of tools for predicting cell type-specific TF binding in

human using a minimal set of experimental data in a fair

and unbiased manner. The challenge setting has advan-

tages over typical benchmark studies, because approaches

are typically applied to the challenge data by their authors,

ground truth is known only by the challenge organizers,

and participants are typically required to provide code and

documentation for their method such that predictions can

be reproduced.

Participants in the ENCODE-DREAM challenge were

allowed to use binding motifs from any source, genomic

sequence, gene annotations, in silico DNA shape pre-

dictions, and cell type-specific DNase-seq and RNA-seq

data. In addition, TF ChIP-seq data and ChIP-seq-derived

labels (“bound,” “unbound,” “ambiguous”) were provided

for training cell types and training chromosomes. Predic-

tions had then to be made for combinations of TF and cell

type not present in the training data on held-out chromo-

somes. Predictions were evaluated against labels derived

from TF ChIP-seq data for that specific TF and test cell

type.

Here, we present our approach for predicting cell

type-specific TF binding regions earning a shared first

rank among 40 international teams, including develop-

ers of several established methods (cf. Additional file 1:

Tables S2 and S3). For our approach, the AUC-PR on

unseen test data of a new cell type varies between 0.25

and 0.81 with a median 0.41. From a practical perspec-

tive, this means that even state-of-the-art computational

approaches are currently not on a level of accuracy that

would allow for replacing wet-lab experiments like ChIP-

seq.

The approach presented in this paper combines sev-

eral novel ideas. First, we consider motifs from databases,

but also motifs learned by de novo motif discovery from

ChIP-seq and DNase-seq data using sparse local inhomo-

geneous mixture (Slim) models [29], which may capture

short- to mid-range intra-motif dependencies. Second,

we process DNase-seq data following the binning idea

of previous approaches but defining novel statistics com-

puted from the data in those bins, and derive several

sequence-based, annotation-based, and RNA-seq-based

features. Third, we apply a supervised machine learning

approach that employs a discriminative learning princi-

ple, which is related to logistic regression but allows for

explicit model assumptions with regard to different fea-

tures. Fourth, discriminative learning is combined with an

iterative training approach for refining sets of represen-

tative negative examples. Finally, we combine the predic-

tions of classifiers trained in different of these iterations

and on different training cell types in an ensemble-like

approach.

As this novel approach has already been benchmarked

against a large number of competing approaches as part of

the ENCODE-DREAM challenge (https://www.synapse.

org/#!Synapse:syn6131484/wiki/405275), we focus on the

analysis for the contributions of different aspects of this

approach on the final prediction performance in this

paper. Specifically, we evaluate the contribution of dif-

ferent features, we compare the performance achieved

by standard training with that achieved by the iterative

training procedure, andwe assess the performance of indi-

vidual classifiers compared with their ensemble predic-

tion. Based on these analyses, we define and benchmark

a simplified variant of the proposed approach. Finally, we

provide a large collection of predicted, cell type-specific

tracks of binding regions for 31 TFs in 22 primary cell

types and tissues to make predictions by this approach

readily accessible.

Results
During the ENCODE-DREAM challenge, a large number

of approaches created by 40 international teams have been

benchmarked on 13 cell type-specific ChIP-seq assays for

12 different TFs in human (Additional file 1: Figure S1).

A set of 109 data sets for the same (and additional)

TFs in other cell types was provided for training. Train-

ing data comprised cell type-specific DNase-seq data,

cell type-specific RNA-seq data, genomic sequence and

annotations, and in silico DNA shape predictions. In addi-

tion, cell type-specific and TF-specific ChIP-seq data and

derived labels were provided for training chromosomes,

while predictions were evaluated only on the remaining,

held-out chromosomes chr1, chr8, and chr21 that were

not provided with any of the ChIP-seq training data. For

200-bp regions shifted by 50 bp, genome-wide predictions

of the probability that a specific region overlaps a ChIP-

seq peak were requested from the participating teams.

Predictions were evaluated by (i) the area under the ROC

https://www.synapse.org/#!Synapse:syn6131484
https://www.synapse.org/#!Synapse:syn6131484
https://www.synapse.org/#!Synapse:syn6131484/wiki/405275
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curve (AUC-ROC), (ii) the area under the precision-recall

curve (AUC-PR), (iii) recall at 10% FDR, and (iv) recall

at 50% FDR on each of the 13 test data sets. These were

aggregated per data set based on the average, normalized

rank earned for each of these measures in 10 bootstrap

samples of the held-out chromosomes, and a final rank-

ing was obtained as the average of these rank statistics

(cf. https://www.synapse.org/#!Synapse:syn6131484/wiki/

405275).

As a result of this ranking, the approach presented in

this paper (team “J-Team”) earned a shared first rank

together with the approach created by team “Yuanfang

Guan.”

In the following, we investigate the influence of different

aspects of the proposed approach on the final predic-

tion performance. First, we inspect the impact of different

sets of related features (DNase-seq data, motif scores,

RNA-seq data, sequence-based and annotation-based fea-

tures) on prediction performance. Second, we study the

importance of the iterative training approach as opposed

to a training on initial training data. Third, we compare

the performance of the predictions gained by classifiers

trained on training data for individual cell types with the

performance of the aggregated prediction obtained by

averaging over these cell types. Finally, we apply the pro-

posed method for predicting cell type-specific TF binding

for 31 TFs in 22 additional primary cell types yielding a

total of 682 prediction tracks.

Impact of feature sets on prediction performance

We use the prediction performance obtained by the pro-

posed approachusingall setsof features (“Features” section),

the iterative training procedure (“Iterative training”

section), and the aggregation over all training cell types

(“Prediction schema” section) as a baseline for all fur-

ther comparisons (Fig. 1; “all features”). Throughout

this manuscript, we consider AUC-PR as the primary

performance measure, since AUC-PR is more informative

about classification performance for heavily imbalanced

classification problems [30, 31], and recall at the different

FDR levels is rather unstable since it corresponds to single

points on the precision-recall curve. AUC-PR values are

computed using the R-package PRROC [32], which has

also been used in the ENCODE-DREAM challenge.

We find that prediction performance as measured by

AUC-PR varies greatly among the different transcrip-

tion factors (Fig. 1) with a median AUC-PR value of

0.4098. The best prediction performance is achieved for

CTCF, which has a long and information-rich bind-

ing motif, in two different cell types (IPSC and PC-

3). Above-average performance is also obtained for

FOXA1 and HNF4A in liver cells. For most other

TFs, we find AUC-PR values around 0.4, whereas we

observe a rather low prediction accuracy for NANOG

and REST.

To analyze the contribution of selected features on the

final prediction performance, we systematically exclude

sets of related features from the input data in training

and prediction. As a baseline, we measure AUC-PR for

the classifier using all feature sets. In addition, we mea-

sure AUC-PR when excluding each individual feature set,

where the difference of these two AUC-PR values quanti-

fies the improvement gained by including the feature set

(Fig. 2a).

Fig. 1 Across cell type performance. For each of the 13 combinations of TF and cell type within the test data, we compute the prediction

performance (AUC-PR) on the held-out chromosomes of classifiers (i) using all features considered, (ii) using only motif-based features, (iii) using

only DNase-seq-based features, and (iv) using only motif-based and DNase-seq-based features. Median performance of classifiers using all features

is indicated by a dashed line

https://www.synapse.org/#!Synapse:syn6131484/wiki/405275
https://www.synapse.org/#!Synapse:syn6131484/wiki/405275
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Fig. 2 Importance of feature sets. aWe test the importance of related sets of features by excluding one set of features from the training data,

measuring the performance (AUC-PR) of the resulting classifier, and subtracting this AUC-PR value from the corresponding value achieved by the

classifier using all features. Hence, if � AUC-PR is above zero, the left-out set of features improved the final prediction performance, whereas �

AUC-PR values below zero indicate a negative effect on prediction performance. We collect the � AUC-PR values for all 13 test data sets and

visualize these as violin plots. b Assessment of different groups of DNase-seq-based features. In this case, we compare the performance including

one specific group of DNase-seq-based features (cf. Additional file 1: Text S2)) with the performance without any DNase-seq-based features (cf.

violin “DNase-seq” in panel a). We find that all DNase-seq-based features contribute positively to prediction performance

We observe the greatest impact for the set of features

derived from DNase-seq data. The improvement in AUC-

PR gained by including DNase-seq data varies between

0.087 for E2F1 and 0.440 for HNF4A with a median of

0.252.

Features based on motif scores (including de novo dis-

covered motifs and those from databases) also contribute

substantially to the final prediction performance. Here, we

observe large improvements for some TFs, namely 0.231

for CTCF in IPSC cells, 0.175 for CTCF in PC-3 cells,

and 0.167 for FOXA1. By contrast, we observe a decrease

in prediction performance in the case of JUND (− 0.080)

when including motif-based features. For the remaining

TFs, we find improvements of AUC-PR between 0.008

and 0.079. We further consider two subsets of motifs,

namely all motifs obtained by de novo motif discovery on

the challenge data and all Slim/LSlim models capturing

intra-motif dependencies. For motifs from de novo motif

discovery, we find an improvement for 9 of the 13 data

sets , and for Slim/LSlim model, we find an improvement

for 10 of the 13 data sets. However, the absolute improve-

ments (median of 0.011 and 0.006, respectively) are rather

small, possibly because (i) motifs obtained by de novo

motif discovery might be redundant to those found in

databases and (ii) intra-motif dependencies and hetero-

geneities captured by Slim/LSlim models [29] might be

partly covered by variations in the motifs from different

sources.

Notably, RNA-seq-based features (median 0.001),

annotation-based features (0.000), and sequence-based
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features (0.001) have almost no influence on prediction

performance.

As the set of DNase-seq-based features is rather diverse,

including features derived from fold-enrichment tracks,

peak lists, or variation among cell types, we aim at fur-

ther dissecting the influence of related groups of those

features. To this end, we further test how prediction

performance is affected by removing specific groups of

DNase-seq features (cf. Additional file 1: Text S2) from

the complete feature set (Additional file 1: Figure S2).

Notably, we find that none of these feature groups alone

have a large impact on prediction performance, although

gradual differences may be observed as the inclusion of

fold-enrichment-based and peak-based features have a

largely positive contribution, whereas the influence of the

other feature groups is rather ambiguous. This might be

explained by wide redundancies and correlations that still

exist between those different groups, which allows for

large compensation for the loss of a single feature group.

Hence, we additionally test a scenario, where leaving

out all DNase-seq-based features (i.e., the data behind the

violin plot “DNase-seq” of Fig. 2a) is considered the base-

line case, and only one of the specific groups is added to

this reduced feature set (Fig. 2b). First of all, we observe

that all feature groups contribute positively to the total

prediction performance. The largest contribution may be

observed for the “fold-enrichment” group, but also related

groups like “long range” basically averaging over broader

windows of the fold-enrichment track, and “peak-based”

using peaks that have originally been called based on

DNase-seq coverage. We find the lowest contribution for

the “variation” group, which measures the variation and

conservation, respectively, of the DNase-seq signal among

the cell types. As the contribution of each individual group

of features is positive, we still consider the complete set of

DNase-seq-based features in the following.

Having established that DNase-seq-based and motif-

based features have a large impact on prediction perfor-

mance, we also tested the prediction performance of the

proposed approach using only features based on DNase-

seq data and TF motifs, respectively. All other features,

i.e., RNA-seq-based features, annotation-based features,

and features based on raw sequence, are excluded.We find

(Fig. 1) that classifiers using exclusively motif-based fea-

tures already yield a reasonable prediction performance

for some TFs (CTCF and, to some extent, E2F1 and

GABPA), whereas we observe AUC-PR values below 0.12

for the remaining of TFs. This may be explained by the

large number of false positive predictions typically gen-

erated by approaches using exclusively motif information,

which may only be avoided in case of long, specific motifs

as it is the case for CTCF.

Classifiers using only DNase-seq-based features yield

a remarkable performance for many of the TFs studied

(Fig. 1), which is lower than for the motif-based classifier

only for the two CTCF datasets. For some datasets (espe-

cially JUND but also EGR1, MAX), we even observe that a

classifier based on DNase-seq data alone outperforms the

classifier utilizing all features.

In the case of JUND, the increase in performance when

neglecting all non-DNase features can likely be attributed

to a strong adaptation of classifier parameters to either

cell type-specific binding motifs or cell type-specific co-

binding with other TFs, because JUND is the only dataset

with an improved performance when excluding motif-

based features as discussed above. For all three TFs, we do

find an improvement of prediction performance if classi-

fier parameters are trained on the training chromosomes

of the test cell type ( “within cell type” case; Additional

file 1: Figure S3).

Since DNase-seq-based and motif-based features

appear to be the primary feature sets affecting prediction

performance, we finally study prediction performance of

a classifier using only these two feature sets. We observe

that prediction performance using only DNase-seq-based

and motif-based features is largely identical to that of the

classifier using all features (Fig. 1), where we observe the

largest loss in AUC-PR for TAF1 (0.017) and the largest

gain in AUC-PR for NANOG (0.007). We notice a similar

behavior for the within cell type case (Additional file 1:

Figure S3). As the left-out feature sets include all RNA-

seq-based features, this also has the consequence that one

cell type-specific assay (namely DNase-seq) is sufficient

for predicting TF binding, which broadens the scope of

cell types with readily available experimental data that the

proposed approach may be applied to.

Iterative training improves prediction performance

As a second key aspect of the proposed approach, we

investigate the impact of the iterative training procedure

on the final prediction performance. To this end, we

compare for each TF the AUC-PR values obtained by aver-

aging over the predictions all five classifiers resulting from

the iterative training procedure for all training cell types

with the AUC-PR values obtained by only averaging over

the initially trained classifiers for all training cell types,

i.e., classifiers trained only on the initial training data

(“Initial training data” section).

For 11 of the 13 test data sets, we observe an improve-

ment of prediction performance by the iterative training

procedure (Fig. 3). The largest improvements are achieved

for E2F1 (0.114), FOXA2 (0.085), NANOG (0.08), FOXA1

(0.063), and MAX (0.061). Among these are TFs for that

we observed a good performance using only DNase-

seq-based features (E2F1, MAX) and TFs for which the

combination with motif-based features was beneficial

(FOXA1, FOXA2, NANOG), which indicates that the

additional negative regions added in iterations 2 to 5
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Fig. 3 Relevance of the iterative training procedure. For each of the 13 test data sets, we compare the performance (AUC-PR) achieved by the (set

of) classifier(s) trained on the initial negative regions (abscissa) with the performance achieved by averaging over all classifiers from the iterative

training procedure (ordinate)

do not induce a bias towards either of these two fea-

ture types. For four of these five TFs, only one (FOXA2,

NANOG, FOXA1) or two (E2F1) training cell types were

provided, and the variation between the different classi-

fiers from iterative training may help to avoid overfitting.

By contrast, we find a decrease in performance for JUND

(0.041) and also TAF1 (0.01), which might be caused by

a stronger emphasis on cell type-specific binding regions

in subsequent iterations of the iterative training proce-

dure. This hypothesis is also supported by the observation

that the iterative training procedure always leads to an

increase in prediction performance if classifier parameters

are trained on the training chromosomes of the test cell

type (Additional file 1: Figure S4).

Averaging predictions improves over random selection of

cell types

For 9 of the 12 TFs considered, data for more than one

training cell type is provided with the challenge data.

Hence, one central questionmight be the choice of the cell

type used for training and, subsequently, for making pre-

dictions for the test cell type. However, the only cell type-

specific experimental data available formaking that choice

are DNase-seq and RNA-seq data, whereas similarity of

cell types might depend on the TF considered. Indeed,

similarity measures derived from DNase-seq data (e.g.,

Jaccard coefficients of overlapping DNase-seq peaks, cor-

relation of profiles) or from RNA-seq data (e.g., correla-

tion of TPM values) showed to be non-informative with

regard to the similarity of TF binding regions in prelimi-

nary studies on the training cell types.

Hence, we consider the choice of the training cell

type a latent variable, and average over the predic-

tions generated by the respective classifiers (see the

“Prediction schema” section). As labels of the test cell

types have been made available after the challenge, we

may now evaluate the impact of this choice on prediction

performance and also test the prediction performance of

classifiers trained on individual cell types (Fig. 4).

For all test data sets with multiple training cell types

available, we find that the averaged prediction yields

AUC-PR values above the median of the AUC-PR values

achieved for individual training cell types. This improve-

ment is especially pronounced for REST, GABPA, and

MAX.

To further investigate if averaging over classifiers for

individual cell types favors conserved binding regions

(i.e., regions labeled as “bound” in the majority of cell

types) over cell type-specific binding regions, we also

assess prediction performance on such regions separately
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Fig. 4 Performance of ensemble classifiers. For each of the 13 test data sets, we compare the performance (AUC-PR) of the individual classifiers

trained on single cell types (open circles) to that of the ensemble classifier averaging over all classifiers trained on all training cell types (filled, orange

circles). As a reference, we also plot the median of the individual classifiers as a red bar

(Additional file 1: Figure S5). Specifically, we consider a

bound region conserved if it is also labeled as “bound” in

at least three of four training cell types, and we consider a

bound region as cell type-specific if this region is labeled

as “bound” in at most one of four training cell types. The

first thing we notice from Additional file 1: Figure S5 is

that the absolute AUC-PR values are substantially lower

for cell type-specific regions than for conserved regions.

One explanation could be a difference in the class (im-)

balance due to the selected subsets of regions. However,

this general trend remains when considering AUC-ROC

(Additional file 1: Figure S6). Second, we find that the vari-

ation between classifiers learned from different training

cell types is in most cases larger for the cell type-specific

regions than for the conserved regions. The behavior

with regard to absolute performance is similar for the

individual classifiers, their median performance, and the

performance of averaging over classifiers for individual

cell types.We notice that the AUC-PR gained by averaging

is always better than the median performance for individ-

ual cell types for conserved regions, but the same holds

true when considering cell type-specific regions for seven

of the nine data sets with more than one training cell type.

Hence, we may argue that averaging over the cell type-

specific classifiers generally yields more accurate predic-

tions than would be achieved by an uninformed choice of

one specific training cell type.

However, we also notice for almost all test data sets

with multiple training cell types (the only exception being

CTCF for the PC-3 cell type) that the best prediction

performance achieved for one of the individual training

cell types would have gained, in some cases considerable,

improvements over the proposed averaging procedure.

Notably, the variance of AUC-PR between the different

training cell types is especially pronounced for JUND,

which supports the previous hypothesis that some fea-

tures, for instance binding motifs or co-binding of TFs,

are highly cell type-specific for JUND. In general, deriving

informative measures of TF-specific cell type similarity

based on cell type-specific assays and preliminary binding

site predictions, would likely lead to a further boost of the

performance of computational approaches for predicting

cell type-specific TF binding.

Creating a collection of cell type-specific TF binding tracks

Having established that a single type of experimental

assay, namely DNase-seq, is sufficient for predicting cell

type-specific TF binding with state-of-the-art accuracy,

we may now use the classifiers obtained on the training

cell types and TFs for predictions on further cell types.

For this purpose, we use the classifiers considering only

DNase-seq-based and motif-based features, but neither

RNA-seq-based features, annotation-based features, nor

features based on raw sequence, which showed to achieve

a prediction performance comparable to the full model

before (cf. Fig. 1, section “Impact of feature sets of predic-

tion performance”). To this end, we download DNase-seq

data for a collection of primary cell types and tissues

(see “Data” section), process these in the same manner

as the original challenge data, and, subsequently, extract

DNase-seq-dependent features (“Features” section). We

then applied the trained classifiers for all 31 TFs consid-

ered in the challenge to these 22 DNase-seq feature sets to

yield a total of 682 prediction tracks.



Keilwagen et al. Genome Biology            (2019) 20:9 Page 8 of 17

For the selected cell types (Additional file 1: Table S5),

only few cell type and TF-specific ChIP-seq data are

available (Additional file 1: Table S6). On the one hand,

this means that the predicted TF binding tracks provide

valuable, novel information for the collection of 31 TFs

studied. On the other hand, this provides the opportu-

nity to perform benchmarking and sanity checks with

regard to the predictions for the subset of these TFs and

cell types with corresponding ChIP-seq data available. For

benchmarking, we additionally obtain the “relaxed” and

(where available) “conservative” peak files from ENCODE

and derive the associated labels (“bound,” “unbound,”

“ambiguous”) according to the procedure proposed for the

ENCODE-DREAM challenge.

For CTCF with ChIP-seq peaks available for multiple

cell types, we generally find a prediction performance that

is comparable to the performance observed on the chal-

lenge data (cf. Additional file 1: Table S4). For these cell

types, AUC-PR values (Additional file 1: Table S7) range

between 0.7720 and 0.8197 if conservative and relaxed

peaks are available and if the donors match between the

DNase-seq andChIP-seq experiments, while performance

is slightly lower for non-matching donors (0.7322) and

in case of missing conservative peaks (0.7270). For JUN,

MAX, and MYC, only relaxed peaks are available from

ENCODE due to missing replicates. Here, we find AUC-

PR values of 0.6310 for JUN, which is substantially larger

than for the challenge data; 0.4004 for MAX, which is

slightly lower than for the challenge data; and 0.1989 for

MYC, which has not been among the test TFs in the chal-

lenge but obtained substantially better performance in the

leaderboard round.

The 682 genome-wide prediction tracks are still rather

large (approx. 880MB per track) and, hence, demand

for substantial storage space that might not be avail-

able to the typical user, while the majority of regions

are likely not bound by the TF of interest. Hence, we

further condense these predictions into predicted peak

lists in narrowPeak format by joining contiguous stretches

with high binding probability and applying a threshold

of 0.6 (relaxed) and 0.8 (conservative) on the maximum

probability observed in a predicted “peak.” We provide

these peak files for download at https://www.synapse.

org/#!Synapse:syn11526239 (doi:10.7303/syn11526239).

To get an impression of the quality of the predicted

peaks, we further compute Jaccard coefficients based on

peak overlaps (computed using the GenomicRanges R-

package [33]) between the predicted peak files and those

from the corresponding, available ChIP-seq peaks (Addi-

tional file 1: Table S9, S11), and find those to be widely

concordant to the previous assessment based on the

derived labels.

Finally, the data for CTCF allow for comparing the

overlap between predicted peak lists and experimentally

determined peak lists to the overlaps observed for (i)

technical replicates (Additional file 1: Table S12) and

(ii) biological replicates (Additional file 1: Table S10).

We find that the overlaps between predictions and IDR-

thresholded peaks are lower than those between IDR-

thresholded peaks and/or technical replicates. For CTCF,

three independent experiments for “foreskin fibroblast”

tissue are available, and we use two independent DNase-

seq samples for that tissue for our prediction. Comparing

the Jaccard coefficients in those two situations (cf. Addi-

tional file 1: Tables S9, S10), we find that Jaccard coef-

ficients between predictions and IDR-thresholded peaks

vary between 0.568 and 0.693, while we observe Jaccard

coefficients between 0.658 and 0.72 for biological repli-

cates. Based on these limited data, we might conclude

that computational predictions are less consistent than

biological replicates only by a small margin, at least for

CTCF.

Based on the predicted peak lists, we may also compare

the predicted binding characteristics of the different TFs

across cell types. First, we inspect the number of predicted

peaks per TF and cell type (Additional file 1: Figure S7).

We find a distinct group of highly abundant TFs (CTCF,

GATA3, SPI1, CEBPB, FOXA1, FOXA2, MAX), which

typically also show large numbers of peaks in the training

data. Among these, we find patterns of cell type speci-

ficity from the ubiquitously abundant CTCF to largerly

varying abundance for GATA3. The remainder of TFs

obtains substantially lower numbers of predicted peaks

with similar patterns, e.g, for ATF7/ARID3A/NANOG or

EP300/TEAD4/JUND, where the latter group has been

reported to co-bind in distal enhancers [34]. Next, we

study the stability of peak predictions, i.e., the Jaccard

coefficients of peaks predicted for each of the TFs in dif-

ferent cell types (Additional file 1: Figure S8). Again, we

find substantial variation among the TFs with GABPA,

CTCF, and REST having median Jaccard coefficients

above 0.7. Notably, CTCF has been one of the TFs with

the largest number of predicted peaks (median 37 455),

whereas we observed an order of magnitude less predicted

peaks for REST (median 3 364) and GABPA (median

5 430). At the other end of the scale, we find indirectly

binding TFs like EP300, or TFs that are highly specific

to cell types under-represented in our data like NANOG

(stem cells) and HNF4A (liver, kidney, intestines). Finally,

we investigate co-binding of TFs by computing the aver-

age Jaccard coefficient across cell types for each pair of

TFs (Additional file 1: Figure S9). Here, we observe dis-

tinct groups of co-occurring TFs like CTCF/ZNF143 or

FOXA1/FOXA2, which are known to interact in vivo

[35–37]. In addition, we find a larger cluster of TFs with

substantial overlaps between their predicted peaks com-

prising YY1, MAX, CREB1, MYC, E2F6, E2F1, and TAF1.

As TAF1 (TATA-box binding protein associated factor 1)

https://www.synapse.org/#!Synapse:syn11526239
https://www.synapse.org/#!Synapse:syn11526239
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is associated with transcriptional initiation at the TATA

box, one explanation might be that binding sites of these

TFs are enriched at core promoters. Indeed, binding to

proximal promoters has been reported for MYC/MAX

[38], CREB1 [39], YY1 [40], and E2F factors [41].

Streamlined Catchitt implementation yields competitive

performance

We finally compare Catchitt, the simplified implementa-

tion of the iterative training approach combining chro-

matin accessibility and motif scores, to the challenge

implementation using DNase-seq-based and motif-based

features for the within cell type case. To this end, we

select five combinations of cell type and transcription fac-

tor spanning the range of performance values observed

in the challenge. Specifically, we consider NANOG and

TAF1, which obtained the lowest AUC-PR values (cf.

Additional file 1: Figure S3) for the challenge implemen-

tation; CTCF in IPSC cells, which obtained the largest

AUC-PR value; and FOXA1 and HNF4A, which obtained

medium AUC-PR values but profited substantially from

iterative training (cf. Additional file 1: Figure S4).We sum-

marize the results of this comparison in Additional file 1:

Table S13. Despite approximately tenfold reduction in the

number of motifs considered and further simplifications

(“Catchitt: a streamlined open-source implementation”

section), Catchitt still yields competitive AUC-PR values.

Ranking the Catchitt results within the original challenge

results, we find that performance achieved by Catchitt

scores is only two ranks lower than the challenge imple-

mentation using DNase-seq-based and motif-based fea-

tures. As before, we find a substantial improvement of

prediction performance due to the iterative training pro-

cedure.

Discussion
Predicting in vivo binding sites of a TF of interest in

silico is still one of the central challenges in regulatory

genomics. A variety of tools and approaches for this pur-

pose have been created over the last years and, among

these, the approach presented here is not exceptional in

many of its aspects. Specifically, it works on hand-crafted

features derived from genomic and experimental data, it

considers TF binding motifs and chromatin accessibility

as its major sources of information, and it uses supervised

learning related to logistic regression. Yet, this approach

gained the best performance in the ENCODE-DREAM

challenge. Notably, the second approach gaining the first

rank in the challenge is based on a similar rationale and

uses a set of DNase-seq-based and motif-based features

in a logistic regression, where parameters are learned iter-

atively from systematically chosen sub-sets of the train-

ing cell types and chromosomes (cf. https://www.synapse.

org/#!Synapse:syn7104742/wiki/407367).

In this paper, we focus on the impact of further, novel

aspects of the proposed approach on prediction perfor-

mance.

With regard to the features considered, we find that

motif-based and DNase-seq-based features are pivotal for

yielding a reasonable prediction performance for most

TFs, while other sequence-based, annotation-based, or

RNA-seq-based features have only marginal influence on

the prediction result. In the case of RNA-seq-based fea-

tures, however, more sophisticated features than those

employed in our approach might have a positive influence

on prediction accuracy. In addition, DNA shape might

also be informative about true TF binding sites, although

in silico shape predictions provided in ENCODE-DREAM

are determined based on k-mers, and their influence

might also be captured by higher-order Markov mod-

els or Slim/LSlim models [29] employed in the approach

presented here.

Previous studies have shown that additional features

like sequence conservation [22, 25], histone marks

[13, 15, 19], or ChIP-seq data of co-factors [22] might

also help to predict in vivo TF binding. However, these

were not allowed to be used in the ENCODE-DREAM

challenge and further experimental assays were unavail-

able for the training cell types. Hence, we decided to also

exclude such features from the studies presented in this

paper.

Two aspects of the presented approach, namely the iter-

ative training procedure and aggregation of predictions

across training cell types, contribute substantially to the

final prediction performance. Both ideas might also be of

relevance in related fields. Specifically, the iterative train-

ing procedure provides a general schema applicable to

imbalanced classification problems, especially when these

require sampling of negative examples. In an abstract

sense, the aggregation across training cell types corre-

sponds to favoring model averaging over model selection

if good selection criteria are hard to find or might yield

highly varying results.

Despite its state-of-the-art performance proven in the

ENCODE-DREAM challenge, the approach presented

here has important limitations. First, the large number

of motifs (including those from de novo motif discovery)

and DNase-seq-based features leads to high demands

with regard to disk space but also runtime (cf. Additional

file 1: Table S14), which are likely beyond reach for wet-

lab biologists. Disk requirements could be reduced by

computing features from (smaller) raw files on demand.

However, this would in turn increase running time con-

siderably. Hence, we chose to implement a simplified

version of the approach presented here in an open-source

software available at http://jstacs.de/index.php/Catchitt,

which only uses a combination of chromatin accessi-

bility features and motif-based features. In preliminary

https://www.synapse.org/#!Synapse:syn7104742/wiki/407367
https://www.synapse.org/#!Synapse:syn7104742/wiki/407367
http://jstacs.de/index.php/Catchitt
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benchmarks (Additional file 1: Table S13), this implemen-

tation still achieved competitive performance.

Second, the approach proposed here, like any of the

other supervised approaches [14–16, 21, 22, 24–26, 28],

requires labeled training data for at least one cell type

and the TF of interest to make predictions for this TF in

another cell type.While the latter limitation is partly over-

come by unsupervised approaches [13, 18–20, 23], this

typically comes at the cost of reduced prediction accuracy

[21, 25].

We also provide a large collection of 682 predicted

peak files for 31 TFs using 22 DNase-seq data sets

for primary cell types and tissues. Benchmarks based

on the limited number of available ChIP-seq data indi-

cate that prediction performance on these cell types is

comparable to that achieved in the ENCODE-DREAM

challenge, where absolute values of AUC-PR measur-

ing prediction accuracy vary greatly between differ-

ent TFs. For the wide majority of these combinations

of TF and cell type, no experimental data about cell

type-specific TF binding is available so far, which ren-

ders these predictions a valuable resource for questions

related to regulatory genomics in these primary cell

types and tissues. Preliminary studies raise our confi-

dence that the predicted peak files may indeed help

to solve biological questions related to these cell types

and TFs.

Methods

Data

We use the following types of input data sets as provided

by the challenge organizers (https://www.synapse.org/#!

Synapse:syn6131484/wiki/402033):

• The raw sequence of the human genome (hg19) and

gene annotations according to the gencode v19

annotation (http://www.gencodegenes.org/releases/

19.html) [42]
• Cell type-specific DNase-seq “fold-enrichment

coverage” tracks, which represent DNase-seq signal

relative to a pseudo control, smoothed in a 150-bp

window
• Cell type-specific DNase-seq peak files in

“conservative” (IDR threshold of 10% in pseudo

replicates) and “relaxed” (no IDR threshold) flavors
• Cell type-specific TPM values from RNA-seq

experiments in two bio-replicates for all gencode v19

genes as estimated by RSEM [43]
• Cell type-specific and TF-specific ChIP-seq peak files

in “conservative” (IDR threshold of 10% in pseudo

replicates) and “relaxed” (no IDR threshold) flavors
• Cell type-specific and TF-specific label files

classifying genome-wide 200-bp regions every 50 bp

into B = “bound,” A = “ambiguous,” and U =

“unbound” according to the respective conservative

and relaxed ChIP-seq peak files; an overview of the

combinations of TF and cell type in the training data,

the leaderboard data, and the test data used for

evaluation in the final challenge round is given in

Additional file 1: Figure S1

In addition, we download sequence motifs represented as

PWMs from the following collections:

• TF-specific motifs from the databases HOCOMOCO

[44] and DBcorrDB [45]
• Motifs related to epigenetic markers from the

epigram pipeline [46]

Details about the motifs considered are given in the

“Features” section and Additional file 1: Text S2.

For predicting cell type-specific binding of TFs in

additional cell types beyond those considered in the chal-

lenge, we download DNase-seq data (FastQ format) from

the ENCODE project (http://www.encodeproject.org).

Specifically, we select all DNase-seq experiments that (i)

are flagged as “released,” (ii) have FastQ files available, (iii)

are not from immortalized cell lines, (iv) have no entry in

one of the “Audit error” categories, and (v) are not in the

“insufficient replicate concordance” category of “Audit

not compliant.” A list of the corresponding experiments

is obtained from the ENCODE project, and experiments

are filtered for the existence of at least two replicates,

yielding 23 experiments in total. One of these experi-

ments had to be excluded later, because a different DNase

protocol with much shorter reads had been used. For the

remaining 22 experiments (Additional file 1: Table S5),

all FastQ files are downloaded from ENCODE and pro-

cessed using ATAC-Seq/DNase-Seq Pipeline (https://

github.com/kundajelab/atac_dnase_pipelines, latest git

commit: c1d07d38a02af2f0319a69707eee047ab6112ecc

(Tue Mar 21 20:31:25 2017)). The data sets are ana-

lyzed using the following parameters: -species

hg19 -type dnase-seq -subsample

50M -se. For further analyses, the relaxed

(./out/peak/idr/pseudo_reps/rep1/*.filt.

narrowPeak.gz) and conservative peaks

(./out/peak/macs2/overlap/*pval0.1*.filt

.narrowPeak.gz) as well as the DNase coverage

(./out/signal/macs2/rep1/*.fc.signal.

bigwig) are used.

In addition, we download ChIP-seq peak files

(Additional file 1: Table S6) matching these cell types

and one of the TFs considered. Based on the “relaxed”

(i.e., “optimal idr thresholded peaks”) and “conservative”

(i.e., “conservative idr thresholded peaks”) peak files,

we derive labels for 200-bp windows every 50 bp as

proposed for the challenge. Specifically, we label each

200-bp region overlapping a conservative peak by at

https://www.synapse.org/#!Synapse:syn6131484/wiki/402033
https://www.synapse.org/#!Synapse:syn6131484/wiki/402033
http://www.gencodegenes.org/releases/19.html
http://www.gencodegenes.org/releases/19.html
http://www.encodeproject.org
https://github.com/kundajelab/atac_dnase_pipelines
https://github.com/kundajelab/atac_dnase_pipelines
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least 100 bp as “bound.” Of the remaining regions, all

regions that overlap a relaxed peak by at least 1 bp

are labeled “ambiguous,” while all other regions are

labeled “unbound.” For a subset of TFs, no conservative

peaks are available due to the lack of replicates. In such

cases, we also use the relaxed peaks to assign “bound”

labels.

Binning the genome

As the final prediction is requested for overlapping 200-

bp regions with an offset of 50 bp, we decide to compute

features with a matching resolution of 50 bp. To this end,

the genome is divided into non-overlapping bins of 50 bp.

Features are then either computed directly with that reso-

lution (where possible, e.g., distance to the closest TSS) or

first computed with base-pair resolution and afterwards

summarized as aggregate values (minimum, maximum,

median, or similar statistics) for each 50-bp bin. An odd

number of several, adjacent bins, i.e., the respective fea-

ture values (see below), is then considered as input of the

classifier composed of statistical models for the training

process as well as for making predictions. Conceptually,

the classifier uses the information from those bins to com-

pute a posteriori probabilities Pi that center bin i (i.e., the

central bin of those adjacent bins considered, cf. Fig. 5)

contains a peak summit. The number of adjacent bins con-

sidered is determined from the median across cell types

of the median peak widths of a given TF in the individual

training cell types.

Features

The set of features considered may be roughly classi-

fied by the source of information: DNase-seq data, motif

profiles, raw sequence, RNA-seq data. Here, we give a

brief overview of these features, while we provide a com-

plete list of definitions of all features in Additional file 1:

Text S2.

The most informative features with regard to the

challenge task are likely motif-based and chromatin

accessibility-based features. For obtaining a broad set of

binding motifs for each TF at hand, we combine motifs

from databases with motifs obtained by de novomotif dis-

covery from the challenge data. We retrieve PWMmodels

of the TF at hand from the databases HOCOMOCO [44]

and DBcorrDB [45]. We perform de novo motif discov-

ery with Dimont [47] learning PWM and LSlim(3) models

[29] on the “conservative” and “relaxed” ChIP-seq peak

files, and also based on the peak files obtained from

DNase-seq experiments. In addition, we obtain motifs

from the epigram pipeline [46], which are related to DNA

methylation and histone marks of active promoters and

enhancers. For a specific combination of cell type and TF,

we also consider motifs of a set of “peer” motifs, which

are determined from the literature (Factorbook, [48])

and by comparing the overlaps between the respective

peak lists.

All of these motifs are then used in a sliding window

approach to obtain base-pair resolution score profiles,

which are summarized by aggregate statistics repre-

senting the binding affinity to the strongest binding

site (i.e., the maximum log-probability in a bin accord-

ing to the motif model) as well as general affinity to

broader regions (i.e, the logarithm of the average prob-

ability in a bin). The set of motifs may comprise mod-

els of general binding affinity of the TF at hand but

may also capture cell type-specific differences in the

binding regions, which could be caused by interaction

with other TFs including competition for similar binding

sites.

DNase-seq-based features are computed from the “fold-

enrichment coverage” tracks and DNase-seq peak files

provided with the challenge data. These features quan-

tify short and long range chromatin accessibility, stability

of the DNase signal in the region of interest and across

Fig. 5 Schema for computing probabilities for regions overlapping with predicted peaks. We consider 200-bp regions and five bins in this example.

Center bins are indicated by thick lines. Putative peaks are annotated with the probability Pi of being a true peak. All peaks marked in red overlap the

region of interest (dotted blue lines) by at least 100 bp and are considered for the prediction. The prediction Si for the 200-bp region is then

computed as the probability that this region overlaps with at least one of the peaks
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different cell types, and overlaps with DNase-seq peak

regions.

The set of sequence-based features comprises the raw

sequence (i.e., in 1-bp resolution) around the center

bin and several measures computed from this sequence,

for instance G/C-content, the frequency of CG di-

nucleotides, or the length of homo-polymer tracts. Based

on the gencode v19 genome annotation, we additionally

define features based on overlapping annotation elements

like CDS, UTRs, or TSS annotations and based on the

distance to the closest TSS annotation in either strand

orientation. All of these features are neither cell type-

specific nor TF-specific. However, they may represent

general features of genomic regions bound by TFs (like

CpG islands, GC-rich promoters, or preference for non-

coding regions), which might be helpful to rule out false

positive predictions based on TF-specific features like

motif scores. In addition, the model parameters refer-

ring to those features may be adapted in a TF-specific

and cell type-specific manner, which may yield auxiliary

information for cell type-specific prediction of TF binding

as well.

Finally, RNA-seq data are represented by the TPM value

of the gene closest to the bin of interest as well asmeasures

of stability within biological replicates and across different

cell types.

DNase-seq and RNA-seq-based features are cell type-

specific but not TF-specific by design. However, model

parameters may adapt to situations where one TF prefer-

entially binds to open chromatin, whereas another TFmay

also bind in nucleosomal regions.

Feature values are computed using a combination of

Perl scripts and Java classes implemented using the Java

library Jstacs [49]. Genome-wide feature values with bin-

level resolution are pre-computed and stored in a sparse,

compressed text format.

Model and basic learning principle

Wemodel the joint distribution of these different features

by a simple product of independent densities or dis-

crete distributions (Additional file 1: Text S3). Specifically,

we model numeric features (e.g., DNase-based statistics,

motif scores, RNA-seq-based features) by Gaussian den-

sities, discrete, annotation-based features by independent

binomial distributions, and raw sequence by a homoge-

neous Markov model of order 3. All distributions are

in the exponential family and parameterized using their

natural parameterization [50, 51], which allows for uncon-

strained numerical optimization.

As learning principle, we use a weighted variant [52] of

the discriminative maximum conditional likelihood prin-

ciple ([53], Additional file 1: Text S3), which is closely

related to logistic regression but allows for making explicit

assumptions about the distribution of the underlying data.

Prediction schema

In the challenge, final predictions have been requested for

200-bp windows shifted by 50 bp along the genome, while

the proposed classifier predicts a posteriori probabilities

that the current center bin contains a peak summit. To

yield the predictions requested, we use these original pre-

diction values (cf. “Binning the genome” section) to com-

pute the probability that the 200-bp window overlaps at

least one predicted peak by at least 100 bp (Fig. 5). Assume

that we already computed the a posterior probabilities Pi
that center bin i contains the summit of a ChIP-seq peak

according to the trained model. Further assume that for

the current TF, a peak typically spans five bins in total,

which corresponds to the center bin and two bins before

and two bins after the center bin in our model (cf. regions

marked by lines in Fig. 5). Putative peaks overlapping the

current 200-bp window starting at bin i are those with

center bins at i − 1 to i + 4. Hence, the probability Si
that this window overlaps a peak may be computed as

the complementary probability of the event that this win-

dow overlaps no predicted peaks, which in turn is just the

product of the complementary a posteriori probabilities

Pℓ of these bins.

Initial training data

For training the model parameters by the discrimina-

tive maximum condition likelihood principle, we need

labeled input data comprising a set of positive (bound)

regions and a set of negative (unbound) regions. In gen-

eral, a training region is represented by a vector of

all feature values described in the “Features” section

in an odd number of consecutive bins (see the

“Binning the genome” section). In case of positive regions,

these are centered at the bin containing the peak summit.

We include all such regions around the peak summits of

the “conservative peaks” for the current TF and cell type

as positive regions.

Since we face a highly imbalanced classification problem

with rather few ChIP-seq peaks compared with the large

number of bins not covered by a peak, and since the inclu-

sion of all such negative regions into the training set would

lead to an inacceptable runtime, we decided to derive rep-

resentative negative regions by three different sampling

strategies. All sampling steps are performed stratified by

chromosome.

First, we sample on each training chromosome 10 times

as many negative regions (spanning an odd number of

consecutive bins) as we find positive regions on that chro-

mosome. Center bins are sampled uniformly over all bins

not covered by a “relaxed” peak for the same cell type

and TF.

Second, we over-sample negative regions with large

DNase-seq median values similar to those of positive

examples to yield a representative set of negative regions.
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This is especially important as these will be regions that

are hard to classify using DNase-seq based features but are

only lowly represented by the uniform sampling schema.

The over-sampling is adjusted for by down-weighting

the drawn negative examples to the corresponding fre-

quency among all negative regions (see Additional file 1:

Text S4).

Third, we sample negative regions from regions that

are ChIP-seq positive for one of the other cell types

(if more than one training cell type exists for that

TF), but do not overlap a “relaxed peak” in the cur-

rent cell type. These negative regions are weighted such

that the sum of their weights matches the rate of such

regions among all putative negative regions. This sam-

pling schema is intended to foster learning cell type-

specific properties as opposed to general properties of

the binding regions of the current TF. In this case, we

sample four times as many negative regions as we have

positives.

Together, these three sampling schemas yield an ini-

tial set of negative regions, which serve as input of the

discriminative maximum conditional likelihood principle

in addition to the positive regions. However, in prelimi-

nary tests during the leaderboard round of the challenge,

we observed that even this non-trivial sampling schema

is not fully satisfactory. As testing (a large number of)

other sampling schemas seemed futile, we designed an

iterative training schema (Fig. 6) that is loosely related

to boosting [54] and successively complements the initial

set of negative training regions with further, informative

examples.

Iterative training

The iterative training procedure is illustrated in Fig. 6.

Initially, we train a classifier on the negative regions

obtained from the sampling schemas explained above and

all positive regions. We then use this classifier to obtain

a posteriori probabilities Pi for each bin i on training

chromosomes. To limit the runtime required for this pre-

diction step, we restrict the prediction to chromosomes

chr10 to chr14. These probabilities are then used as input

of the prediction schema (“Prediction schema” section) to

yield predictions for the 200-bp regions labeled based on

the ChIP-seq training peaks. Given these labels, we may

distinguish prediction values of positive regions (label B

= “bound”) and negative regions (label U = “unbound”),

while regions labeled as A = “ambiguous” are ignored. To

select additional negative regions that are likely false pos-

itive predictions, we first collect the prediction scores of

all positive regions (labeled as B) and determine the corre-

sponding 1% percentile. We then select from the negative

regions (labeled as U) all those with a prediction score

larger than this 1% percentile, which are subsequently

added to the set of negative regions with a weight of 1 per

region selected.

In the next iteration, we train a second classifier, again

using all positive regions but with negative regions com-

plemented by these additional negative regions. Predic-

tion is then performed using both classifiers, where the

predictions of the individual two classifiers (or all pre-

viously trained classifiers in subsequent iterations) are

averaged per region. Again, regions labeled U with large

prediction scores are identified and added to the set of

Fig. 6 Iterative training procedure. Starting from an initial set of negative regions and the complete set of positive regions, a first classifier is trained

and applied to the training data, and putative false positive (i.e., “unbound” regions with large prediction scores) are identified. In each of the

subsequent iterations, such regions are added to the set of negative regions, which are in turn used for training refined classifiers. The result of this

iterative training procedure is a set of five classifiers trained in five cycles of the iterative training procedure
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negative regions, which then serve as input of the follow-

ing iteration. After five rounds of training yielding five

classifiers, the iterative training procedure is terminated.

Final prediction

The iterative training procedure is executed for allK train-

ing cell types with ChIP-seq data for the TF of interest,

which yields a total of 5 ·K classifiers. For the final predic-

tion, the prediction schema (“Prediction schema” section)

is applied to all chromosomes and each classifier. These

predictions are finally averaged per 200-bp region to yield

the final prediction result.

Catchitt: a streamlined open-source implementation

Since the original challenge submission, we have re-

implemented the basic approach with the aim of mak-

ing it more accessible for both, users and developers.

Specifically, our objectives were to implement a tool

that (i) is consolidated into a single runnable JAR file

to limit system requirements to a current Java instal-

lation only, (ii) has an extensible code base eliminating

much of the experimental code of the challenge imple-

mentation, (iii) is applicable to data from individual cell

types to reduce data interdependencies, and (iv) may be

executed on a standard compute server in acceptable

runtime.

To achieve these aims, some parts of the methods

have been simplified and streamlined. First, we con-

sider only the most important chromatin accessibility

and motif-based features, which reduces runtime and

memory consumption. Second, we implement an acceler-

atedmotif scanningmodule that computes whole-genome

score profiles even for the complex LSlim models within

a few hours. Third, we skip steps that jointly evalu-

ate data and/or feature files from multiple cell types.

Specifically, we skip quantile normalization of chromatin

accessibility features (although normalization could be

performed externally, still), and we omit the sampling

step depending on ChIP-seq data for other cell types for

determining initial negative regions. We call this imple-

mentation “Catchitt” comprising five modules for (i) com-

puting chromatin accessiblity features from DNase-seq

or ATAC-seq data, (ii) computing motif-based features,

(iii) deriving labels from ChIP-seq peak lists, (iv) per-

forming iterative training given feature files and labels,

and (v) predicting binding probabilities for genomic

regions.

Implementation

The models and basic conditional likelihood training

including numerical optimization are implemented by

core classes of the Java library Jstacs [49]. The itera-

tive training procedure and prediction schema have been

implemented specifically for the challenge and have been

further refined in the Catchitt implementation. Further

details about the implementation are given in Additional

file 1: Text S5.

Deriving peak lists

For the additional primary cell types and tissues beyond

those considered in the challenge, we further process

final predictions to yield peak lists in narrowPeak format,

which are smaller and easier to handle than the genome-

wide probability tracks with 50-bp resolution. To this end,

we join contiguous stretches of regions with predicted

binding probability above a pre-defined threshold t into

a common peak region. For each region, we record the

maximum probability p and discard bordering regions

with a probability below 0.8 · p. The resulting regions are

then annotated according to the narrowPeak format with

a “peak summit” at the center of the region yielding p, a

“score” of −100 · log10(1 − p), and a “signal value” equal

to p. We generate “relaxed” peak predictions using t = 0.6

and “conservative” peak prediction using t = 0.8.

Additional file

Additional file 1: Supplementary Tables and Figures. Figures S1 to S9.

Tables S1 to S14. Text S1—Tools for predicting in vivo binding regions. Text

S2—Features. Text S3—Model and learning principle. Text S4—Sampling

of DNase-matched negative regions. Text S5—Implementation notes.

(PDF 436 kb)

Acknowledgements

We would like to express our gratitude to the ENCODE-DREAM organizers,

who composed an excellent challenge with clear rules and meaningful

performance measures. We would also like to thank Ivan Kulakovskiy, Andrey

Lando, and Vsevolod Makeev (team autosome.ru), Wolfgang Kopp (team

BlueWhale), Daniel Quang, and Simon van Heeringen for openly sharing their

ideas and thoughts during the challenge. We thank Thomas Berner for

technical assistance.

Funding

Not applicable.

Availability of data andmaterials

The original challenge implementation and the Catchitt implementation have

been developed using the open-source Java library Jstacs [49]. The complete

code accompanying the challenge submission is, in accordance with the

challenge guidelines, available under DOI 10.7303/syn8009967 [55] including

a brief method writeup. Source code of the Jstacs library, including the Java

classes implementing the challenge method and Catchitt, are available from

github https://github.com/Jstacs/Jstacs under GPL3.0. Source code at the

time of manuscript submission has been deposited at zenodo under DOI

10.5281/zenodo.1479824 [56].

Binaries of the Catchitt implementation are available as a runnable JAR file at

http://jstacs.de/index.php/Catchitt.

ENCODE data is publicly available under the following experiment IDs:

ENCSR000ENA [57], ENCSR000ENB [58], ENCSR000ENH [59], ENCSR000ENJ [60],

ENCSR000ENN [61], ENCSR000ENQ [62], ENCSR000ENT [63], ENCSR000EOE

[64], ENCSR000ENZ [65], ENCSR000EOB [66], ENCSR000EOQ [67],

ENCSR000EOR [68], ENCSR000EPP [69], ENCSR000EPR [70], ENCSR000EQC [71],

ENCSR000EMB [72], ENCSR000EMJ [73], ENCSR621ENC [74], ENCSR474GZQ

[75], ENCSR503HIB [76], ENCSR627NIF [77], ENCSR657DFR [78], ENCSR000DSU

[79], ENCSR000DTI [80], ENCSR000DTR [81], ENCSR000DPM [82],

ENCSR000DVQ [83], ENCSR000DWQ [84], ENCSR000DLW [85], ENCSR000DWY

https://doi.org/10.1186/s13059-018-1614-y
https://github.com/Jstacs/Jstacs
http://jstacs.de/index.php/Catchitt


Keilwagen et al. Genome Biology            (2019) 20:9 Page 15 of 17

[86], ENCSR000DUH [87], ENCSR000DQI [88], ENCSR000EFA [89], ENCSR000EEZ

[90], and ENCSR000DLU [91].

Challenge data are available from Synapse under DOI 10.7303/syn6131484

[92], requiring registration.

Predictedpeaksareavailable from Synapse under DOI 10.7303/syn11526239 [93].

Authors’ contributions

All authors developed the features. JK and JG developed the prototype used

in the challenge and performed the analysis. JG implemented Catchitt. All

authors designed the analyses and discussed the results. JK and JG wrote the

manuscript. SP commented on the manuscript. All authors approved the final

manuscript.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.

Author details
1 Institute for Biosafety in Plant Biotechnology, Julius Kühn-Institut (JKI) -

Federal Research Centre for Cultivated Plants, Erwin-Baur-Straße 27, 06484

Quedlinburg, Germany. 2 Institute of Computer Science, Martin Luther

University Halle–Wittenberg, Von-Seckendorff-Platz 1, 06120 Halle (Saale),

Germany.

Received: 25 July 2018 Accepted: 18 December 2018

References

1. Staden R. Computer methods to locate signals in nucleic acid sequences.

Nucleic Acids Res. 1984;12:505–19.

2. Berg OG, von Hippel PH. Selection of DNA binding sites by regulatory

proteins: statistical-mechanical theory and application to operators and

promoters. J Mol Biol. 1987;193(4):723–43.

3. Stormo GD, Fields DS. Specificity, free energy and information content in

protein–DNA interactions. Trends Biochem Sci. 1998;23(3):109–13.

4. Bulyk ML. Computational prediction of transcription-factor binding site

locations. Genome Biol. 2003;5(1):201.

5. Wu J, Smith LT, Plass C, Huang TH-M. ChIP-chip comes of age for

genome-wide functional analysis. Cancer Res. 2006;66(14):6899–902.

6. Johnson DS, Mortazavi A, Myers RM, Wold B. Genome-wide mapping of

in vivo protein-DNA interactions. Science. 2007;316(5830):1497–502.

7. Ernst J, Kellis M. Large-scale imputation of epigenomic datasets for

systematic annotation of diverse human tissues. Nat Biotechnol.

2015;33(4):364–76. https://doi.org/10.1038/nbt.3157.

8. Durham TJ, Libbrecht MW, Howbert JJ, Bilmes J, Noble WS. PREDICTD

parallel epigenomics data imputation with cloud-based tensor

decomposition. Nat Commun. 2018;9(1):1402.

9. Hesselberth JR, Chen X, Zhang Z, Sabo PJ, Sandstrom R, Reynolds AP,

Thurman RE, Neph S, Kuehn MS, Noble WS, Fields S,

Stamatoyannopoulos JA. Global mapping of protein-DNA interactions in

vivo by digital genomic footprinting. Nat Meth. 2009;6(4):283–9.

10. Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ.

Transposition of native chromatin for fast and sensitive epigenomic

profiling of open chromatin, DNA-binding proteins and nucleosome

position. Nat Meth. 2013;10(12):1213–8.

11. Galas DJ, Schmitz A. DNAase footprinting a simple method for the

detection of protein-DNA binding specificity. Nucleic Acids Res. 1978;5(9):

3157–70.

12. Chen X, Hoffman MM, Bilmes JA, Hesselberth JR, Noble WS. A dynamic

Bayesian network for identifying protein-binding footprints from single

molecule-based sequencing data. Bioinformatics. 2010;26(12):334–42.

13. Pique-Regi R, Degner JF, Pai AA, Gaffney DJ, Gilad Y, Pritchard JK.

Accurate inference of transcription factor binding from DNA sequence

and chromatin accessibility data. Genome Res. 2011;21(3):447–55.

14. Natarajan A, Yardimci GG, Sheffield NC, Crawford GE, Ohler U.

Predicting cell-type–specific gene expression from regions of open

chromatin. Genome Res. 2012;22(9):1711–22.

15. Arvey A, Agius P, Noble WS, Leslie C. Sequence and chromatin

determinants of cell-type–specific transcription factor binding. Genome

Res. 2012;22(9):1723–34.

16. Luo K, Hartemink AJ. Using DNase digestion data to accurately identify

transcription factor binding sites. In: Pacific Symposium on

Biocomputing. Singapore: World Scientific; 2012. p. 80–91.

17. Piper J, Elze MC, Cauchy P, Cockerill PN, Bonifer C, Ott S. Wellington: a

novel method for the accurate identification of digital genomic footprints

from DNase-seq data. Nucleic Acids Res. 2013;41(21):201.

18. Sherwood RI, Hashimoto T, O’Donnell CW, Lewis S, Barkal AA, van Hoff JP,

Karun V, Jaakkola T, Gifford DK. Discovery of directional and

nondirectional pioneer transcription factors by modeling DNase profile

magnitude and shape. Nat Biotech. 2014;32(2):171–8.

19. Gusmao EG, Dieterich C, Zenke M, Costa IG. Detection of active

transcription factor binding sites with the combination of DNase

hypersensitivity and histone modifications. Bioinformatics. 2014;30(22):

3143–51.

20. Raj A, Shim H, Gilad Y, Pritchard JK, Stephens M. msCentipede: Modeling

heterogeneity across genomic sites and replicates improves accuracy in

the inference of transcription factor binding. PLoS ONE. 2015;10(9):

1–15.

21. Kähärä J, Lähdesmäki H. BinDNase: a discriminatory approach for

transcription factor binding prediction using DNase I hypersensitivity

data. Bioinformatics. 2015;31(17):2852–9.

22. Kumar S, Bucher P. Predicting transcription factor site occupancy using

DNA sequence intrinsic and cell-type specific chromatin features. BMC

Bioinforma. 2016;17(1):4.

23. Jankowski A, Tiuryn J, Prabhakar S. Romulus: robust multi-state

identification of transcription factor binding sites from DNase-seq data.

Bioinformatics. 2016;32(16):2419–26.

24. Quang D, Xie X. FactorNet: a deep learning framework for predicting cell

type specific transcription factor binding from nucleotide-resolution

sequential data. bioRxiv. 2017. https://doi.org/10.1101/151274.

25. Liu S, Zibetti C, Wan J, Wang G, Blackshaw S, Qian J. Assessing the

model transferability for prediction of transcription factor binding sites

based on chromatin accessibility. BMC Bioinforma. 2017;18(1):355.

26. Qin Q, Feng J. Imputation for transcription factor binding predictions

based on deep learning. PLoS Comput Biol. 2017;13(2):1–20.

27. Schmidt F, Gasparoni N, Gasparoni G, Gianmoena K, Cadenas C,

Polansky JK, Ebert P, Nordström K, Barann M, Sinha A, Fröhler S,

Xiong J, Dehghani Amirabad A, Behjati Ardakani F, Hutter B, Zipprich G,

Felder B, Eils J, Brors B, Chen W, Hengstler JG, Hamann A, Lengauer T,

Rosenstiel P, Walter J, Schulz MH. Combining transcription factor

binding affinities with open-chromatin data for accurate gene expression

prediction. Nucleic Acids Res. 2017;45(1):54–66.

28. Chen X, Yu B, Carriero N, Silva C, Bonneau R. Mocap: large-scale

inference of transcription factor binding sites from chromatin

accessibility. Nucleic Acids Res. 2017;45(8):4315–29.

29. Keilwagen J, Grau J. Varying levels of complexity in transcription factor

binding motifs. Nucleic Acids Res. 2015;43(18):e119. https://doi.org/10.

1093/nar/gkv577.

30. Keilwagen J, Grosse I, Grau J. Area under precision-recall curves for

weighted and unweighted data. PLoS ONE. 2014;9(3):92209.

31. Saito T, Rehmsmeier M. The precision-recall plot is more informative than

the ROC plot when evaluating binary classifiers on imbalanced datasets.

PLoS ONE. 2015;10(3):1–21.

32. Grau J, Grosse I, Keilwagen J. PRROC: computing and visualizing

precision-recall and receiver operating characteristic curves in R.

Bioinformatics. 2015;31(15):2595–7.

33. Lawrence M, Huber W, Pagès H, Aboyoun P, Carlson M, Gentleman R,

Morgan M, Carey V. Software for computing and annotating genomic

ranges. PLoS Comput Biol. 2013;9. https://doi.org/10.1371/journal.pcbi.

1003118.

34. Xie D, Boyle AP, Wu L, Zhai J, Kawli T, Snyder M. Dynamic trans-acting

factor colocalization in human cells. Cell. 2013;155(3):713–24.

https://doi.org/10.1038/nbt.3157
https://doi.org/10.1101/151274
https://doi.org/10.1093/nar/gkv577
https://doi.org/10.1093/nar/gkv577
https://doi.org/10.1371/journal.pcbi.1003118
https://doi.org/10.1371/journal.pcbi.1003118


Keilwagen et al. Genome Biology            (2019) 20:9 Page 16 of 17

35. Bailey SD, Zhang X, Desai K, Aid M, Corradin O, Cowper-Sal·lari R,

Akhtar-Zaidi B, Scacheri PC, Haibe-Kains B, Lupien M. ZNF143 provides

sequence specificity to secure chromatin interactions at gene promoters.

Nat Commun. 2015;2:6186.

36. Ye BY, Shen WL, Wang D, Li P, Zhang Z, Shi ML, Zhang Y, Zhang FX,

Zhao ZH. ZNF143 is involved in CTCF-mediated chromatin interactions by

cooperation with cohesin and other partners. Mol Biol. 2016;50(3):

431–7.

37. Motallebipour M, Ameur A, Reddy Bysani MS, Patra K, Wallerman O,

Mangion J, Barker MA, McKernan KJ, Komorowski J, Wadelius C.

Differential binding and co-binding pattern of FOXA1 and FOXA3 and

their relation to H3K4me3 in HepG2 cells revealed by ChIP-seq. Genome

Biol. 2009;10(11):129.

38. Guo J, Li T, Schipper J, Nilson KA, Fordjour FK, Cooper JJ, Gordân R,

Price DH. Sequence specificity incompletely defines the genome-wide

occupancy of Myc. Genome Biol. 2014;15(10):482.

39. Zhang X, Odom DT, Koo SH, Conkright MD, Canettieri G, Best J, Chen

H, Jenner R, Herbolsheimer E, Jacobsen E, Kadam S, Ecker JR, Emerson

B, Hogenesch JB, Unterman T, Young RA, Montminy M. Genome-wide

analysis of cAMP-response element binding protein occupancy,

phosphorylation, and target gene activation in human tissues. Proc Natl

Acad Sci USA. 2005;102(12):4459–64.

40. Li H, Liu H, Wang Z, Liu X, Guo L, Huang L, Gao L, McNutt MA, Li G.

The role of transcription factors Sp1 and YY1 in proximal promoter region

in initiation of transcription of the mu opioid receptor gene in human

lymphocytes. J Cell Biochem. 2008;104(1):237–50.

41. Rabinovich A, Jin VX, Rabinovich R, Xu X, Farnham PJ. E2f in vivo

binding specificity: comparison of consensus versus nonconsensus

binding sites. Genome Res. 2008;18(11):1763–77.

42. Harrow J, Frankish A, Gonzalez JM, Tapanari E, Diekhans M, Kokocinski

F, Aken BL, Barrell D, Zadissa A, Searle S, Barnes I, Bignell A, Boychenko

V, Hunt T, Kay M, Mukherjee G, Rajan J, Despacio-Reyes G, Saunders G,

Steward C, Harte R, Lin M, Howald C, Tanzer A, Derrien T, Chrast J,

Walters N, Balasubramanian S, Pei B, Tress M, Rodriguez JM, Ezkurdia I,

van Baren J, Brent M, Haussler D, Kellis M, Valencia A, Reymond A,

Gerstein M, Guigó R, Hubbard TJ. GENCODE: The reference human

genome annotation for the ENCODE project. Genome Res. 2012;22(9):

1760–74.

43. Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-seq

data with or without a reference genome. BMC Bioinforma. 2011;12(1):

323.

44. Kulakovskiy IV, Vorontsov IE, Yevshin IS, Soboleva AV, Kasianov AS,

Ashoor H, Ba-alawi W, Bajic VB, Medvedeva YA, Kolpakov FA, Makeev

VJ. HOCOMOCO: expansion and enhancement of the collection of

transcription factor binding sites models. Nucleic Acids Res. 2016;44(D1):

116–25.

45. Grau J, Grosse I, Posch S, Keilwagen J. Motif clustering with implications

for transcription factor interactions. In: German Conference on

Bioinformatics. PeerJ Prepr, vol. 3; 2015. p. 1601.

46. Whitaker JW, Chen Z, Wang W. Predicting the human epigenome from

DNA motifs. Nat Meth. 2015;12(3):265–72.

47. Grau J, Posch S, Grosse I, Keilwagen J. A general approach for

discriminative de novo motif discovery from high-throughput data.

Nucleic Acids Res. 2013;41(21):197.

48. Wang J, Zhuang J, Iyer S, Lin X, Whitfield TW, Greven MC, Pierce BG,

Dong X, Kundaje A, Cheng Y, Rando OJ, Birney E, Myers RM, Noble WS,

Snyder M, Weng Z. Sequence features and chromatin structure around

the genomic regions bound by 119 human transcription factors. Genome

Res. 2012;22(9):1798–812.

49. Grau J, Keilwagen J, Gohr A, Haldemann B, Posch S, Grosse I. Jstacs: A

Java framework for statistical analysis and classification of biological

sequences. J Mach Learn Res. 2012;13(Jun):1967–71.

50. Bishop CM. Pattern recognition and machine learning, 1st edn.

Information Science and Statistics. New York: Springer; 2006.

51. Keilwagen J, Grau J, Posch S, Grosse I. Apples and oranges: avoiding

different priors in Bayesian DNA sequence analysis. BMC Bioinforma.

2010;11(1):149.

52. Grau J. Discriminative Bayesian principles for predicting sequence signals

of gene regulation. Halle: PhD thesis, Martin Luther University

Halle–Wittenberg; 2010.

53. Roos T, Wettig H, Grünwald P, Myllymäki P, Tirri H. On discriminative

Bayesian network classifiers and logistic regression. Mach Learn.

2005;59(3):267–96.

54. Freund Y, Schapire RE. Experiments with a new boosting algorithm. In:

Proceedings of the 13th International Conference on Machine Learning.

San Francisco: Morgan Kaufmann; 1996. p. 148–56.

55. Grau J, Posch S, Keilwagen J. Final Submission J-Team. Synapse. https://

doi.org/10.7303/syn8009967. https://www.synapse.org/#!Synapse:

syn8009967/wiki/412123. Accessed 5 Dec 2018.

56. Grau J, Keilwagen J. Jstacs release for the ENCODE-DREAM Paper.

Zenodo. https://doi.org/10.5281/zenodo.1479824. https://zenodo.org/

record/1479824. Accessed 5 Dec 2018.

57. Stamatoyannopoulos J. DNase-seq of Homo sapiens astrocyte of the

hippocampus. ENCODE. Accession: ENCSR000ENA. http://www.

encodeproject.org/experiments/ENCSR000ENA. Accessed 2 Mar 2017.

58. Stamatoyannopoulos J. DNase-seq of Homo sapiens astrocyte of the

spinal cord. ENCODE. Accession: ENCSR000ENB. http://www.

encodeproject.org/experiments/ENCSR000ENB. Accessed 2 Mar 2017.

59. Stamatoyannopoulos J. DNase-seq of Homo sapiens cardiac fibroblast.

ENCODE. Accession: ENCSR000ENH. http://www.encodeproject.org/

experiments/ENCSR000ENH. Accessed 2 Mar 2017.

60. Stamatoyannopoulos J. DNase-seq of Homo sapiens cardiac muscle cell.

ENCODE. Accession: ENCSR000ENJ. http://www.encodeproject.org/

experiments/ENCSR000ENJ. Accessed 2 Mar 2017.

61. Stamatoyannopoulos J. DNase-seq of Homo sapiens epithelial cell of

esophagus. ENCODE. Accession: ENCSR000ENN. http://www.

encodeproject.org/experiments/ENCSR000ENN. Accessed 2 Mar 2017.

62. Stamatoyannopoulos J. DNase-seq of Homo sapiens foreskin fibroblast

male newborn. ENCODE. Accession: ENCSR000ENQ. http://www.

encodeproject.org/experiments/ENCSR000ENQ. Accessed 2 Mar 2017.

63. Stamatoyannopoulos J. DNase-seq of Homo sapiens iris pigment

epithelial cell. ENCODE. Accession: ENCSR000ENT. http://www.

encodeproject.org/experiments/ENCSR000ENT. Accessed 2 Mar 2017.

64. Stamatoyannopoulos J. DNase-seq of Homo sapiens lung microvascular

endothelial cell female. ENCODE. Accession: ENCSR000EOE. http://www.

encodeproject.org/experiments/ENCSR000EOE. Accessed 2 Mar 2017.

65. Stamatoyannopoulos J. DNase-seq of Homo sapiens dermis blood vessel

endothelial cell male newborn. ENCODE. Accession: ENCSR000ENZ.

http://www.encodeproject.org/experiments/ENCSR000ENZ. Accessed 2

Mar 2017.

66. Stamatoyannopoulos J. DNase-seq of Homo sapiens dermis

microvascular lymphatic vessel endothelial cell male. ENCODE. Accession:

ENCSR000EOB. http://www.encodeproject.org/experiments/

ENCSR000EOB. Accessed 2 Mar 2017.

67. Stamatoyannopoulos J. DNase-seq of Homo sapiens endothelial cell of

umbilical vein newborn. ENCODE. Accession: ENCSR000EOQ. http://www.

encodeproject.org/experiments/ENCSR000EOQ. Accessed 2 Mar 2017.

68. Stamatoyannopoulos J. DNase-seq of Homo sapiens fibroblast of villous

mesenchyme. ENCODE. Accession: ENCSR000EOR. http://www.

encodeproject.org/experiments/ENCSR000EOR. Accessed 2 Mar 2017.

69. Stamatoyannopoulos J. DNase-seq of Homo sapiens foreskin fibroblast

male newborn. ENCODE. Accession: ENCSR000EPP. http://www.

encodeproject.org/experiments/ENCSR000EPP. Accessed 2 Mar 2017.

70. Stamatoyannopoulos J. DNase-seq of Homo sapiens fibroblast of lung

male adult (45 years). ENCODE. Accession: ENCSR000EPR. http://www.

encodeproject.org/experiments/ENCSR000EPR. Accessed 2 Mar 2017.

71. Stamatoyannopoulos J. DNase-seq of Homo sapiens T-helper 1 cell.

ENCODE. Accession: ENCSR000EQC. http://www.encodeproject.org/

experiments/ENCSR000EQC. Accessed 2 Mar 2017.

72. Stamatoyannopoulos J. DNase-seq of Homo sapiens AG10803. ENCODE.

Accession: ENCSR000EMB. http://www.encodeproject.org/experiments/

ENCSR000EMB. Accessed 2 Mar 2017.

73. Stamatoyannopoulos J. DNase-seq of Homo sapiens B cell female adult

(43 years). ENCODE. Accession: ENCSR000EMJ. http://www.

encodeproject.org/experiments/ENCSR000EMJ. Accessed 2 Mar 2017.

74. Stamatoyannopoulos J. DNase-seq of Homo sapiens retina embryo (74

days) and embryo (85 days). ENCODE. Accession: ENCSR621ENC. http://

www.encodeproject.org/experiments/ENCSR621ENC. Accessed 2 Mar

2017.

75. Stamatoyannopoulos J. DNase-seq of Homo sapiens retina embryo

(125 days) and male embryo (103 days). ENCODE. Accession:

https://doi.org/10.7303/syn8009967
https://doi.org/10.7303/syn8009967
https://www.synapse.org/#!Synapse:syn8009967/wiki/412123
https://www.synapse.org/#!Synapse:syn8009967/wiki/412123
https://doi.org/10.5281/zenodo.1479824
https://zenodo.org/record/1479824
https://zenodo.org/record/1479824
http://www.encodeproject.org/experiments/ENCSR000ENA
http://www.encodeproject.org/experiments/ENCSR000ENA
http://www.encodeproject.org/experiments/ENCSR000ENB
http://www.encodeproject.org/experiments/ENCSR000ENB
http://www.encodeproject.org/experiments/ENCSR000ENH
http://www.encodeproject.org/experiments/ENCSR000ENH
http://www.encodeproject.org/experiments/ENCSR000ENJ
http://www.encodeproject.org/experiments/ENCSR000ENJ
http://www.encodeproject.org/experiments/ENCSR000ENN
http://www.encodeproject.org/experiments/ENCSR000ENN
http://www.encodeproject.org/experiments/ENCSR000ENQ
http://www.encodeproject.org/experiments/ENCSR000ENQ
http://www.encodeproject.org/experiments/ENCSR000ENT
http://www.encodeproject.org/experiments/ENCSR000ENT
http://www.encodeproject.org/experiments/ENCSR000EOE
http://www.encodeproject.org/experiments/ENCSR000EOE
http://www.encodeproject.org/experiments/ENCSR000ENZ
http://www.encodeproject.org/experiments/ENCSR000EOB
http://www.encodeproject.org/experiments/ENCSR000EOB
http://www.encodeproject.org/experiments/ENCSR000EOQ
http://www.encodeproject.org/experiments/ENCSR000EOQ
http://www.encodeproject.org/experiments/ENCSR000EOR
http://www.encodeproject.org/experiments/ENCSR000EOR
http://www.encodeproject.org/experiments/ENCSR000EPP
http://www.encodeproject.org/experiments/ENCSR000EPP
http://www.encodeproject.org/experiments/ENCSR000EPR
http://www.encodeproject.org/experiments/ENCSR000EPR
http://www.encodeproject.org/experiments/ENCSR000EQC
http://www.encodeproject.org/experiments/ENCSR000EQC
http://www.encodeproject.org/experiments/ENCSR000EMB
http://www.encodeproject.org/experiments/ENCSR000EMB
http://www.encodeproject.org/experiments/ENCSR000EMJ
http://www.encodeproject.org/experiments/ENCSR000EMJ
http://www.encodeproject.org/experiments/ENCSR621ENC
http://www.encodeproject.org/experiments/ENCSR621ENC


Keilwagen et al. Genome Biology            (2019) 20:9 Page 17 of 17

ENCSR474GZQ. http://www.encodeproject.org/experiments/

ENCSR474GZQ. Accessed 2 Mar 2017.

76. Stamatoyannopoulos J. DNase-seq of Homo sapiens cerebellar cortex

male adult (78 years) and male adult (84 years). ENCODE. Accession:

ENCSR503HIB. http://www.encodeproject.org/experiments/

ENCSR503HIB. Accessed 2 Mar 2017.

77. Stamatoyannopoulos J. DNase-seq of Homo sapiens lung male embryo

(54 days) and male embryo (58 days). ENCODE. Accession: ENCSR627NIF.

http://www.encodeproject.org/experiments/ENCSR627NIF. Accessed 2

Mar 2017.

78. Stamatoyannopoulos J. DNase-seq of Homo sapiens thyroid gland female

adult (51 year). ENCODE. Accession: ENCSR657DFR. http://www.

encodeproject.org/experiments/ENCSR657DFR. Accessed 2 Mar 2017.

79. Stamatoyannopoulos J. CTCF ChIP-seq on human HA-sp. ENCODE.

Accession: ENCSR000DSU. http://www.encodeproject.org/experiments/

ENCSR000DSU. Accessed 6 Nov 2018.

80. Stamatoyannopoulos J. CTCF ChIP-seq on human HCM. ENCODE.

Accession: ENCSR000DTI. http://www.encodeproject.org/experiments/

ENCSR000DTI. Accessed 6 Nov 2018.

81. Stamatoyannopoulos J. CTCF ChIP-seq on human HEEpiC. ENCODE.

Accession: ENCSR000DTR. http://www.encodeproject.org/experiments/

ENCSR000DTR. Accessed 6 Nov 2018.

82. Stamatoyannopoulos J. CTCF ChIP-seq on human AG04450. ENCODE.

Accession: ENCSR000DPM. http://www.encodeproject.org/experiments/

ENCSR000DPM. Accessed 13 Sept 2017.

83. Stamatoyannopoulos J. CTCF ChIP-seq on human HVMF. ENCODE.

Accession: ENCSR000DVQ. http://www.encodeproject.org/experiments/

ENCSR000DVQ. Accessed 13 Sept 2017.

84. Stamatoyannopoulos J. CTCF ChIP-seq on human NHDF-neo. ENCODE.

Accession: ENCSR000DWQ. http://www.encodeproject.org/experiments/

ENCSR000DWQ. Accessed 24 Oct 2018.

85. Iyer V. CTCF ChIP-seq on human HUVEC. ENCODE. Accession:

ENCSR000DLW. http://www.encodeproject.org/experiments/

ENCSR000DLW. Accessed 13 Sept 2017.

86. Stamatoyannopoulos J. CTCF ChIP-seq on human NHLF. ENCODE.

Accession: ENCSR000DWY. http://www.encodeproject.org/experiments/

ENCSR000DWY. Accessed 6 Nov 2018.

87. Stamatoyannopoulos J. CTCF ChIP-seq on human HFF. ENCODE.

Accession: ENCSR000DUH. http://www.encodeproject.org/experiments/

ENCSR000DUH. Accessed 24 Oct 2018.

88. Stamatoyannopoulos J. CTCF ChIP-seq on human foreskin fibroblast cell.

ENCODE. Accession: ENCSR000DQI. http://www.encodeproject.org/

experiments/ENCSR000DQI. Accessed 6 Nov 2018.

89. Snyder M. JUN ChIP-seq on human HUVEC. ENCODE. Accession:

ENCSR000EFA. http://www.encodeproject.org/experiments/

ENCSR000EFA. Accessed 13 Sept 2017.

90. Snyder M. MAX ChIP-seq on human HUVEC produced by the Snyder lab.

ENCODE. Accession: ENCSR000EEZ. http://www.encodeproject.org/

experiments/ENCSR000EEZ. Accessed 13 Sept 2017.

91. Iyer V. MYC ChIP-seq on human HUVEC. ENCODE. Accession:

ENCSR000DLU. http://www.encodeproject.org/experiments/

ENCSR000DLU. Accessed 13 Sept 2017.

92. Kundaje A, Boley N, Kuffner R, Heiser L, Costello J, Stolovitzky G,

Norman T, Hoff B, Friend S. ENCODE-DREAM in vivo Transcription Factor

Binding Site Prediction Challenge. Synapse. https://doi.org/10.7303/

syn6131484. https://www.synapse.org/#!Synapse:syn6131484/wiki/

402026. Accessed 5 Dec 2018.

93. Keilwagen J, Posch S, Grau J. Binding predictions in new cell types.

Synapse. https://doi.org/10.7303/syn11526239. https://www.synapse.

org/#!Synapse:syn11526239/wiki/497341. Accessed 5 Dec 2018.

http://www.encodeproject.org/experiments/ENCSR474GZQ
http://www.encodeproject.org/experiments/ENCSR474GZQ
http://www.encodeproject.org/experiments/ENCSR503HIB
http://www.encodeproject.org/experiments/ENCSR503HIB
http://www.encodeproject.org/experiments/ENCSR627NIF
http://www.encodeproject.org/experiments/ENCSR657DFR
http://www.encodeproject.org/experiments/ENCSR657DFR
http://www.encodeproject.org/experiments/ENCSR000DSU
http://www.encodeproject.org/experiments/ENCSR000DSU
http://www.encodeproject.org/experiments/ENCSR000DTI
http://www.encodeproject.org/experiments/ENCSR000DTI
http://www.encodeproject.org/experiments/ENCSR000DTR
http://www.encodeproject.org/experiments/ENCSR000DTR
http://www.encodeproject.org/experiments/ENCSR000DPM
http://www.encodeproject.org/experiments/ENCSR000DPM
http://www.encodeproject.org/experiments/ENCSR000DVQ
http://www.encodeproject.org/experiments/ENCSR000DVQ
http://www.encodeproject.org/experiments/ENCSR000DWQ
http://www.encodeproject.org/experiments/ENCSR000DWQ
http://www.encodeproject.org/experiments/ENCSR000DLW
http://www.encodeproject.org/experiments/ENCSR000DLW
http://www.encodeproject.org/experiments/ENCSR000DWY
http://www.encodeproject.org/experiments/ENCSR000DWY
http://www.encodeproject.org/experiments/ENCSR000DUH
http://www.encodeproject.org/experiments/ENCSR000DUH
http://www.encodeproject.org/experiments/ENCSR000DQI
http://www.encodeproject.org/experiments/ENCSR000DQI
http://www.encodeproject.org/experiments/ENCSR000EFA
http://www.encodeproject.org/experiments/ENCSR000EFA
http://www.encodeproject.org/experiments/ENCSR000EEZ
http://www.encodeproject.org/experiments/ENCSR000EEZ
http://www.encodeproject.org/experiments/ENCSR000DLU
http://www.encodeproject.org/experiments/ENCSR000DLU
https://doi.org/10.7303/syn6131484
https://doi.org/10.7303/syn6131484
https://www.synapse.org/#!Synapse:syn6131484/wiki/402026
https://www.synapse.org/#!Synapse:syn6131484/wiki/402026
https://doi.org/10.7303/syn11526239
https://www.synapse.org/#!Synapse:syn11526239/wiki/497341
https://www.synapse.org/#!Synapse:syn11526239/wiki/497341

	Abstract
	Keywords

	Introduction
	Results
	Impact of feature sets on prediction performance
	Iterative training improves prediction performance
	Averaging predictions improves over random selection of cell types
	Creating a collection of cell type-specific TF binding tracks
	Streamlined Catchitt implementation yields competitive performance

	Discussion
	Methods
	Data
	Binning the genome
	Features
	Model and basic learning principle
	Prediction schema
	Initial training data
	Iterative training
	Final prediction
	Catchitt: a streamlined open-source implementation
	Implementation
	Deriving peak lists

	Additional file
	Additional file 1

	Acknowledgements
	Funding
	Availability of data and materials
	Authors' contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher's Note
	Author details
	References

