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Abstract7

Metal ions are essential cofactors for many proteins. In fact, currently, about half of the structurally8

characterized proteins contain a metal ion. Metal ions play a crucial role for many applications9

such as enzyme design or design of protein-protein interactions because they are biologically10

abundant, tether to the protein using strong interactions, and have favorable catalytic properties11

e.g. as Lewis acid. Computational design of metalloproteins is however hampered by the complex12

electronic structure of many biologically relevant metals such as zinc that can often not be accurately13

described using a classical force field. In this work, we develop two tools - Metal3D (based on 3D14

convolutional neural networks) and Metal1D (solely based on geometric criteria) to improve the15

identification and localization of zinc and other metal ions in experimental and computationally16

predicted protein structures. Comparison with other currently available tools shows that Metal3D is17

themost accuratemetal ion location predictor to date outperforming geometric predictors including18

Metal1D by a wide margin using a single structure as input. Metal3D outputs a confidence metric19

for each predicted site and works on proteins with few homologes in the protein data bank. The20

predicted metal ion locations for Metal3D are within 0.70 ± 0.64 Å of the experimental locations21

with half of the sites below 0.5 Å. Metal3D predicts a global metal density that can be used for22

annotation of structures predicted using e.g. AlphaFold2 and a per residue metal density that can23

be used in protein design workflows for the location of suitable metal binding sites and rotamer24

sampling to create novel metalloproteins. Metal3D is available as easy to use webapp, notebook or25

commandline interface.26

Introduction27

Metalloproteins are ubiquitous in nature and are present in all major enzyme families.1,2The metals28

predominantly found in biological systems are the first and second row alkali and earth alkali metals29

and the first row transition metals such as zinc and copper. Zinc is the most common transition30

metal (present in ~10% of deposited structures) and can fulfill both a structural (e.g. in zinc finger31

proteins) or a catalytic role in up to trinuclear active sites. Zn2+ is an excellent Lewis acid and is most32

often found in tetrahedral, pentavalent, or octahedral coordination. About 10 % of all reactions33

catalyzed by enzymes use zinc as cofactor3.34

Metalloproteins are well studied because metal cofactors are essential for the function of many35

proteins and loss of this function is an important cause of diseases.4 Industrial applications for36

metalloproteins capitalize on the favorable catalytic properties of the metal ion where the protein37

environment dictates (stereo)-selectivity.5–7 To crystallize proteins, metal salts are also often added38

to the crystallization buffer as they can help in the formation of protein crystals overcoming the39

enthalpic cost of association of protein surfaces. Metal ion binding sites can be used to engineer40

protein-protein interactions (PPI)10–12 and the hypothesis has been put forward that one origin of41

macromolecular complexity is the superficial binding of metal ions in early single domain proteins.1242

While simple metal ion binding sites can be rapidly engineered because initial coordination on43

a protein surface can for example be achieved by creating an i, i+4 di-histidine site on an alpha-44
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helix13 or by placing cysteines in spatial proximity,14 the engineering of complex metal ion binding45

sites e.g. in the protein interior is considerably more difficult2,11 as such sites are often supported46

by a network of hydrogen bonds. A complication for computational design of metalloproteins47

is the unavailability of good (non-bonded) force fields for zinc and other transition metals that48

accurately reproduce (e.g. tetrahedral) coordination with the correct coordination distances which49

renders design using e.g. Rosetta very difficult.2,15 In fact, the latest parametrization of the Rosetta50

energy function (ref2015)16 did not refit the parameters for the metal ions which originally are from51

CHARMM27 with empirically derived Lazaridis-Karplus solvation terms. To adequately treat metal52

sites in proteins quantum mechanical treatments such as in hybrid quantum mechanics/molecular53

mechanics (QM/MM) simulations17,18 is needed whose computational cost is prohibitive for regular54

protein design tasks. QM/MM simulations can however be used to verify coordination chemistry55

for select candidate proteins.19 On the other hand, neural network potentials have been developed56

for zinc however those require the experimental zinc location as input.2057

Many tools exist to predict whether a protein contains metals (e.g. ZincFinder21), which residues58

in the protein bind a metal (e.g. IonCom,22 MIB23) and where the metal is bound (AlphaFill,2459

FindsiteMetal,25 BioMetAll,26MIB23 ). The input for these predictors is based on sequence and/or60

structure information. Sequence-based predictors use pattern recognition to identify the amino61

acids which might bind a metal.27 Structure-based methods use homology to known structures62

(MIB, Findsite-metal, AlphaFill) or distance features (BioMetAll) to infer the location of metals. Some63

tools like Findsite-metal or ZincFinder employ machine learning based approaches such as support64

vector machines.65

Structure based deep learning approaches have been used in the field of protein research for66

a variety of applications such as protein structure prediction,28 prediction of identity of masked67

residues30–32, functional site prediction,33,34 for ranking of docking poses,35,36 prediction of the68

location of ligands,36–40 and prediction of effects of mutations for stability and disease.4 Current69

state of the art predictors for metal location are MIB,23,42 which combines structural and sequence70

information in the “Fragment TransformationMethod” to search for homologous sites in its database,71

and BioMetAll,26 a geometrical predictor based on backbone preorganization. Both methods have72

significant drawbacks: MIB excludes metal sites with less than 2 coordination partners from its73

analysis and is limited by the availability of templates in its database. BioMetAll does not use74

templates but provides many possible locations for putative binding sites on a regular grid. The75

individual probes in BioMetAll do not have a confidence metric therefore only allowing to rank sites76

by the number of probes found, which results in a large uncertainty in the position. Both tools77

suffer from many false positives. In this work, we present two metal ion location predictors that78

do not suffer from these drawbacks. The deep learning based Metal3D predictor operates on a79

voxelized representation of the protein environment and predicts a per residue metal density that80

can be averaged to get a smooth metal probability density over the whole protein. The distance81

based predictor Metal1D predicts the location of metals using distances mined from the protein82

data bank (PDB) directly predicting coordinates of the putative metal binding site. These tools83

pave the way to perform in silico design of metal ion binding sites without relying on predefined84

geometrical rules or expensive quantum mechanical calculations.85

Results86

A dataset of experimental high resolution crystal structures (2085 structures/252324 voxelized87

environments) containing zinc sites was used for training of the geometric predictor Metal1D and88

the deep learning predictor Metal3D (Figure 1). For training, we used the crystal environment89

including crystal contacts. For predictions, the biological assembly was used.90

Metal3D91

Metal3D takes a protein structure and a set of residues as input, voxelizes the environment around92

each of the residues and predicts the per residue metal density. The predicted per residue densities93
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Figure 1. Workflow of Metal3D and Metal1D A Training of Metal3D and Metal1D is based on experimental

Zn2+ sites. Metal1D extracts coordination environments from LINK records, Metal3D is a fully convolutional

3DCNN trained to predict the metal density from voxelized protein environments. B In inference mode Metal3D

predicts the location of a metal ion by computing per residue metal densities and then averaging them to

obtain a global metal density for the input proteins. The ions can then be placed using the weighted average of

voxels above a cutoff. For Metal1D all residues in the protein are scanned for compatibility with the probability

map. Metals are placed at the geometric center of residues with high scores according to the probability map. A

final ranking of sites is obtained using the probability map.
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(within a 16 x 16 x 16 Å 3 volume) can then be averaged to yield a zinc density for the whole protein.94

At high probability cutoffs the predicted metal densities are spherical (Figure 2 E), at low probability95

cutoffs the predicted densities are non-regular (Figure 2 A).96

Figure 2. Metal3D probability density Probability evolution in HCA2 (PDB 2CBA) for different probability

cutoffs A) p=0.1 B) p=0.2 C) p=0.3 D) p=0.4 E) p=0.75.

We evaluated the quality of the metal densities generated by the model with the discretized97

Jaccard similarity (Figure S1) for all environments in the test set. We noticed that at the edges of98

the residue-centered output densities often spurious density is predicted wherefore we evaluated99

the similarity of the test set metal density and the predicted metal probability density taking into100

account a smaller box with zeroed outer edges. Figure S1 shows that the similarity of the boxes101

does not depend much on the probability cutoff chosen with higher cutoffs yielding slightly higher102

discretized Jaccard similarity values (0.02 - 0.04 difference between p=0.5 and p=0.9). Reducing the103

size of the analyzed boxes (i.e trimming of the edges) increases the Jaccard similarity from ≈ 0.64 to104

0.88 showing that the metal density in the center of the box is more accurate than the density at105

the edges.106

Metal3D is available as self-contained notebook on Google Colab and on Huggingface Spaces.107

Metal1D108

The statistical analysis for the geometric predictor uses the LINK records present in deposited109

PDB structures. A probability map for all zinc coordination motifs was extracted from all training110

structures (Figure 1 A). The mean coordination distance in the training set was found to be 2.2 ± 0.2111

Å, and the default search radius for the predictions was therefore set to 5.5 Å (Table S1). In total112

208 different environments with more than 5 different proteins (at 30 % sequence identity) were113

identified. Metal1D is available as self-contained notebook on Google Colab114

Comparison of Metal1D, Metal3D, MIB and BioMetAll115

Existing metal ion predictors can be subdivided into two categories: binding site predictors and116

binding location predictors. The former identify only the residues binding the ion, the latter predict117
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the coordinates of the metal ion itself. Both Metal1D and Metal3D can predict the coordinates of118

putative binding sites. We therefore assessed their performance by comparing to recent binding119

location predictors with available code/webserver: BioMetAll26 and MIB.23 The main tuning pa-120

rameter of MIB is the template similarity t, with higher values requiring higher similarity of the121

templates available for the search in structurally homologous metalloproteins. BioMetAll on the122

other hand was calibrated on available protein structures and places probes on a regular grid at all123

sites where the criteria for metal binding are fulfilled. The main adjustable parameter for BioMetAll124

is the cluster cutoff c, which indicates how many probes in reference to the largest cluster a specific125

cluster has. We used the recommended cutoff of 0.5 requiring all chosen clusters to have at least126

50% of the probes of the most populous cluster and used the cluster center to compute distances.127

We first investigated the potential of all tools to detect the location of a zinc ion binding site in a128

binary fashion (zinc site or no zinc site). We defined a correctly identified binding site (true positive,129

TP) as a prediction within 5 Å of an experimental zinc site. In case a tool predicted no metal within130

the 5 Å radius, we counted this site as false negative (FN). False positive (FP) predictions, i.e sites131

where a metal was placed spuriously, were clustered in a 5 Å radius and counted once per cluster.132

All tools were assessed against the held out test biological assemblies for Metal3D and Metal1D.133

When the performance of MIB (t=1.25) and BioMetAll is compared against Metal3D with probability134

cutoff p=0.75 we find that Metal3D identifies more sites (85) than MIB (78) or BioMetAll (75) with a135

much lower number of false positives (Figure 3). MIB predicts 180 false positive sites, BioMetAll136

134 sites whereas Metal3D only predicts 9 false positive sites at the p=0.75 cutoff. Metal1D (t=0.5)137

offers similar detection capabilities (78 sites detected) with a lower number of false positives (47)138

compared to MIB and BioMetAll. We removed 56 sites from the list of zinc sites in the test set (189139

total) that had less than 2 unique protein ligands within 2.8 Å of the experimental zinc location.140

The amount of correct predictions in this reduced set is almost unchanged for all tools (Figure 3)141

indicating that most tools correctly predict sites if they have 2 or more protein ligands. For Metal3D142

at p=0.75 and p=0.9 as well as MIB with t=1.9 all sites that are correctly predicted to contain a metal143

are sites with more than 2 protein ligands. The number of false negatives is reduced for all tools by144

about 50 sites indicating that most tools do not predict these crystallographic artifacts that might145

depend on additional coordinating residues from an adjacent molecule in the crystal. Of all tools,146

Metal3D has the least false positives (1 FP at p=0.9) and the highest number of detected sites (110147

at p=0.25). The single false positive at p=0.9 does not contain a zinc ion but is a calcium binding site148

with three aspartates and one backbone carbonyl ligand (Figure S8).149

Figure 3. Identification of metal sites Comparison of Metal1D, Metal3D, BioMetAll and MIB on the test set

held out from training of Metal1D and Metal3D. Predicted sites are counted as true positives (TP) if they are

within 5 Å of a true metal location and as false negatives (FN) otherwise. False positive (FP) probes are clustered

and counted once per cluster. *For MIB we used 2 structures less because the server did not accept these

structures.
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After assessment of how many sites the tools predict, another crucial metric is the spatial150

precision of the predictions. For the correctly identified sites (TP) we measured the mean absolute151

distance (MAD) between experimental and predicted position (Figure 4). The MAD for Metal3D at152

p=0.9 is 0.70 ± 0.64 Å and 0.74 ± 0.66 Å at p=0.25 indicating that low confidence predictions are still153

accurately placed inside the protein. The median MAD of predictions for Metal3D at p=0.9 is 0.52 Å154

indicating that for half of the predictions the model predicts at or better than the grid resolution of155

0.5 Å.156

BioMetAll is not very precise with a MAD for correctly identified sites of 2.80 ± 1.30 Å. BioMetAll157

predicts many possible locations per cluster with some of them much closer to the experimental158

metal binding site than the cluster center. However, it does not provide any ranking of the probes159

within a cluster and therefore the cluster center was used for the distance calculation. Metal1D160

(MAD 2.06 ± 1.33 Å) which identifies more sites than BioMetAll is also more precise than BioMetAll.161

MIB t=1.9 detects sites with high precision (MAD 0.77 ± 1.09 Å) but it relies on the existence of162

homologous sites to align the found sites.163

Selectivity for other metals164

Both Metal3D and Metal1D were exclusively trained on zinc and we assessed their performance on165

sodium (Na+, PDB code NA), potassium (K+, PDB code K), calcium (Ca2+, PDB code CA), magnesium166

(Mg2+, PDB code MG), and various transition metals (Fe2+, Fe3+, Co2+, Cu2+, Cu+, Mn2+ with corre-167

sponding PDB codes FE2, FE, CO, CU, CU1, MN, respectively) from 25 randomly drawn structures168

from the clustered PDB at 30% identity. Only sites with at least 3 unique protein ligands were used169

for the analysis to exclude crystallographic artifacts and use only highly defined sites which should170

exhibit most selectivity towards a specific metal. Figure 4 B shows that recall for Metal3D is high171

for all transition metals, meaning that the model correctly finds most sites even though it was only172

trained on zinc. For the alkali and earth alkali metals recall is much lower as the model only finds173

some sites. The mean probability for found zinc structures (ZN p=0.95 ± 0.10) in the test set is higher174

than for the other transition metals (Figure S6) and significantly higher than the probability for alkali175

metals (NA p=0.61 ± 0.10, K p=0.79 ± 0.16) while the probability for the earth alkali metals is slightly176

higher with MG (p=0.77 ± 0.16) similar to CA (p=0.73 ± 0.16). The MAD for each found metal site is177

again lowest for zinc (0.56 ± 0.59 Å). The MAD for the found sodium (n=2) and potassium (n=5) sites178

are as low as for the other transition metals. The only metal with significantly higher MAD (1.45 ±179

0.93 Å) is CU1 (Figure S5).180

The only two structures where a sodium is detected by Metal3D (2OKQ44, 6KFN45) have at least181

2 side chain coordinating ligand atoms and only one backbone (2OKQ) or no backbone ligand182

atom (6KFN). Canonical sodium binding sites e.g. such as in PDB 4I0W46 with two coordinating183

backbone carbonyl oxygen atoms and one asparagine side chain have probabilities around 5 %184

and are basically indistinguishable from background noise of the model. For Metal1D overall recall185

is lower with similar differences in the detection of main group metals versus transition metals186

(Figures S3 and S4).187

Applications188

After having evaluated the accuracy of Metal3D on held out test structures we also investigated189

possible uses in downstream applications such as protein function annotation and protein design.190

Alpha Fold191

AlphaFold2 often predicts side chains inmetal ion binding sites in the holo conformation.28 Tools like192

AlphaFill24use structural homology to transplant metals from similar PDB structures to the predicted193

structure. Metal3D does not require explicit homology based on sequence or structural alignment194

like AlphaFill so it is potentially suited to annotate the dark proteome that is now accessible from the195

AlphaFold database with metal binding sites. Metal3D identifies both the catalytic site (1) and the196

zinc finger (2) for the example (PDB 3RZV47 , Figure 5 A) used in ref24 with high probability (p=0.99)197

6 of 29

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 22, 2022. ; https://doi.org/10.1101/2022.08.22.504853doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.22.504853
http://creativecommons.org/licenses/by/4.0/


Figure 4. Precision of predicted sites and selectivity for Zn2+ AMean absolute deviation (MAD) of predicted

zinc ion locations using Metal1D, Metal3D, BioMetAll and MIB on the test set used to train Metal1D and Metal3D

for all correctly identified (TP) sites. n is the number of sites predicted by the tool. *For MIB we used 2

structures less because the server did not accept these structures. For each tool the whisker plot indicates the

median (white dot) and the first quartiles (black box). B Recall for the zinc test set and 25 randomly drawn

structures for other transition, alkali and earth-alkali metal ions for Metal3D using p=0.5 as cutoff.

7 of 29

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 22, 2022. ; https://doi.org/10.1101/2022.08.22.504853doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.22.504853
http://creativecommons.org/licenses/by/4.0/


even though one of the sites in the AlphaFold model is slightly disordered with one of the binding198

residues in the solvent facing conformation (D309). The distances between predicted and modeled199

metal locations for Metal3D are 0.22 Å and 0.37 Å, for AlphaFill they are 0.21 Å and 0.41 Å.200

AlphaFill uses a 25% sequence identity cutoff which can be problematic for certain proteins with201

no structurally characterized homologues. For human palmitoyltransferase ZDHHC23 (Uniprot202

Q8IYP9) a high confidence AlphaFold2 prediction exists but AlphaFill cannot place the zinc ions203

because the sequence identity is 24% to the closest PDB structure (PDB 6BMS48), i.e below the 25%204

cutoff. For the identical site in another human palmitoyltransferase ZDHHC15 (Uniprot Q96MV8)205

AlphaFill is able to place the metal because of higher sequence identity to 6BMS (64%) (Figure 5 B).206

For ZDHHC23 Metal3D is able to place the metal with high confidence (MAD 0.75 Å for site 1 and207

0.48 Å for site 2, p>0.99 ) based on the single input structure alone.208

Figure 5. Annotation of AlphaFold2 structures A Predicted metal binding sites (a and b) from Metal3D,

respectively AlphaFill compared to the experimentally found zinc positions for Uniprot O95630. Metal3D places

the metal with high accuracy even if sidechains are not perfectly predicted by AlphaFold for site 1 B

Palmitoyltransferase ZDHHC23 (Uniprot Q8IYP9) and ZDHHC15 (Uniprot Q96MV8). AlphaFill can only place the

metal for ZDHHC15 because sequence identity for ZDHHC23 is only 24 %. Probability isosurfaces from Metal3D

for both structures at p=0.6, colored in gray.

Metalloprotein engineering209

Human carbonic anhydrase II (HCA2) is a well studied metalloenzyme with a rich amount of mu-210

tational data available. For the crystal structure of the wildtype enzyme (PDB 2CBA49), Metal3D211

recapitulates the location of the active site metal with a RMSD to the true metal location of 0.21212

Å with a probability of p=0.99. At lower probability cutoffs (p<0.4) the probability map indicates213

further putative metal ion binding sites with interactions mediated by surface residues (e.g. H36,214

D110, p=0.22) (Figure 2).215

To investigate the capabilities for protein engineering we used mutational data for first and216

second shell mutants of the active site residues in HCA2 with corresponding K𝑑 values from a217

colorimetric assay.50 For most mutants no crystal structures are available so we used the structure218

builder in the EVOLVE package to choose the most favorable rotamer for each single point mutation219

based on the EVOLVE-ddg energy function with explicit zinc present (modeled using a dummy atom220

approach51). The analysis was run for every single mutant and the resulting probability maps from221

Metal3D were analyzed. For the analysis we used the maximum predicted probability as a surrogate222

to estimate relative changes in K𝑑. For mutants that decrease zinc binding drastically we observe a223

drop in the maximum probability predicted by Metal3D (Figure 6).The lowest probability mutants224

are H119N and H119Q with p=0.23 and 0.38. The mutant with the largest loss in zinc affinity H94A225

has a zinc binding probability of p=0.6. Conservative changes to the primary coordination motif226

(e.g. H → C) reduce the predicted probability by 10 - 30 %. For second shell mutants the influence of227

the mutations is less drastic with only minor changes in the predicted probabilities.228
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Figure 6. Protein design application Experimentally measured K𝑑 values
52–56 for 1st and 2nd shell active site

mutants of HCA2 and predicted max probability for zinc using Metal3D.
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Discussion229

Metal3D predicts the probability distribution of zinc ions in protein crystal structures based on a230

neuronal network model trained on natural protein environments. The model performs a segmen-231

tation task to determine if a specific point in the input space contains a zinc ion or not. Metal3D232

predicts zinc ion sites with high accuracy making use of high resolution crystal structures (<2.5 Å).233

The use of high resolution structures is necessary because at resolutions greater than the average234

zinc ligand coordination distance (2.2 Å) the uncertainty of the zinc location noticeably increases43235

which would likely hamper the accuracy of the site prediction.236

In contrast to currently available tools, for Metal3D, it is not necessary to filter the training237

examples for certain coordination requirements (i.e only sites with at least 2 protein ligands).238

The model thus sees the whole diversity of zinc ion sites present in the PDB. Such a model is239

advantageous since metalloprotein design workflows require models to score the full continuum of240

zinc sites starting from a suboptimal binding site only populated at high metal concentration to a241

highly organized zinc site in an enzyme with nanomolar metal affinity. The predicted probability can242

be used as a confidence metric or as an optimization target where mutations are made to increase243

probability of zinc binding.244

Site quality245

The fraction of artifactual zinc binding sites in the PDB is estimated to be about 1/343 similar to our246

test set used with 70% (133) well coordinated zinc sites with at least 2 distinct protein ligands. To247

reduce the amount of artifactual sites in the training set we presented the model with as many248

complete sites as possible by using crystal symmetry to add adjacent coordinating protein chains.249

The frequency of artifacts in the training set is therefore much lower than 30 %. The sites which still250

remain incomplete or that are wrongly modeled and not excluded through the resolution cutoffs251

and filtering procedures likely present only a small fraction of the training set and their signal is252

drowned out by the numerical superiority of the correctly modeled sites. If the model is used on253

artifactual sites or partially disordered ones it can still predict the metal location with high spatial254

accuracy but often indicates a lower confidence for the prediction (Figures 2 and 5).255

Metal ion locators that rely on homology such as MIB perform worse on partial binding sites256

because reducing the quality of the available templates by including 1- or 2-coordinate sites would257

yield many false positives (similar to including less homologous structures for the template search).258

The deep learning based Metal3D can likely circumvent this because it does not require any engi-259

neered features to predict the location of the metal and learns directly from a full representation of260

the environment surrounding the binding site. This allows looking at low confidence sites in the261

context of a given environment.262

Influence of non-protein ligands263

Exogenous ligands play an important role for metals in biology as all empty coordination sites264

of metals are filled with water molecules in case there is no other exogenous ligand with higher265

affinity present (e.g. a thiol). Like other predictors, both Metal1D andMetal3D do not consider water266

molecules or other ligands in the input as the quality of ligand molecules in the PDB varies.40,57 In267

addition, other potential sources of input such as AlphaFold do not provide explicit waters wherefore268

models should not rely on water as an input source. It is also not possible to use in silico water269

predictions because common water placement algorithms to place deep waters40,58,59 either rely270

on metal ions being present in the input or ignore them completely. Moreover, in protein design271

algorithms, water is usually only implicitly modeled (e.g. in Rosetta).272

For Metal3D, the input channel that encodes the total heavy atom density also encodes an273

implicit water density where all empty space can be interpreted as the solvent. For Metal1D, the274

contribution of water molecules is considered in an implicit way when the score is assigned to a275

site by considering coordinations including water compatible with the one observed (e.g. a HIS3Wat276

site is equivalent to a His3 site for the scoring).277
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Choice of architecture278

This work is the first to report a modern deep learning based model destined for identification279

of metal ligands in proteins. Similar approaches have been used in the more general field of280

protein-ligand docking where a variety of architectures and representations have been used. 3D281

CNN based approaches such as LigVoxel38 and DeepSite37 commonly use a resolution of 1 Å and282

similar input features as our model to predict the ligand density. However, predicting the density of283

a multi-atomic ligand is more complex than predicting the density of mononuclear metal ions. We284

therefore did not deem it necessary to include a conditioning on how many metal ions are present285

in the box and rather chose to reflect this in the training data where the model needs to learn that286

only about half of the environments it sees contain one or more metals. This choice is validated by287

the fact that the output probability densities at sufficiently high probability cutoffs are spherical288

with their radius approximately matching the van der Waals radius of zinc.289

Mesh convolutional neural networks trained on a protein surface representation36 also have290

been used to predict the location and identity of protein ligands but this approach can only label291

the regions of the surface that bind the metal ion and is conceptually not able to return the exact292

location of the metal. Some metal ion binding sites are also heavily buried inside proteins as they293

mediate structural stability rendering them inaccessible to a surface based approach. The most294

recent approaches such as EquiBind39 use equivariant neural networks such as En-Transformer60295

to predict binding keypoints (defined as 1/2 distance between the C𝛼 of the binding residue and a296

ligand atom). Explicit side chains are still too expensive for such models and these models assume297

a fixed known stoichiometry of the protein and ligand. Metal3D can also deal with proteins that298

do not bind a metal and does not assume that the amount of ions is known. The lack of explicit299

side chain information renders equivariant models unsuitable for the design of complex metal ion300

binding sites supported by an intricate network of hydrogen bonds that need to be positioned with301

sub-angstrom accuracy. Our model in contrast is less data- and compute-efficient than approaches302

representing the protein as graph due to the need to voxelize the input and provide different303

rotations of the input environment in training but the overall processing time for our model is still304

low taking typically 25 seconds for a 250 residue protein on a multicore GPU workstation (20 CPUs,305

GTX2070). Sequence based models61,62 can only use coevolution signals to infer residues in spatial306

proximity that can bind a metal. This might be difficult when it comes to ranking similar amino307

acids such as aspartate and glutamate or even ranking different rotamers where sub-angstrom308

level precision is needed to identify the mutant with the highest affinity for zinc.309

Selectivity310

In terms of selectivity both of our methods have a clear preference for transition metals over main311

group metals after having been trained exclusively on zinc binding sites. The only sites that Metal3D312

identifies for sodium in the test set are the ones that have side chain ligands. Many sodium and313

potassium sites are using backbone carbonyl coordination exclusively, which is not common for314

zinc and those sites are therefore not detected. Both of our methods could be rapidly adapted315

to predict not only location but also the identity of the metal. In the framework of Metal3D even316

a semantic metal prediction would be possible where the same model predicts different output317

channels for each metal it was trained on. To achieve perfect selectivity using such a model will318

be difficult because sometimes non-native metals are used for crystallization experiments. In this319

work we chose to work exclusively with zinc because it is the most redox stable transition metal320

and because many training examples are available.321

Application for protein design322

Protein design using 3DCNNs trained on residue identity has been successfully demonstrated and323

we anticipate that our model could be seamlessly integrated into such a workflow32 to enable fully324

deep learning based design of metalloproteins. We are currently also investigating the combination325

of Metal3D combined with a classic energy-based genetic algorithm-based optimization to make326
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design of metalloproteins19 easier without having to explicitly model the metal to compute the327

stability of the protein. As the model computes a probability density per residue it can be readily328

integrated into established software like Rosetta relying on rotamer sampling.329

The HCA2 application demonstrates the utility of Metal3D for protein engineering (Figure 2).330

The thermodynamics of metal ion binding to proteins are complicated63 and there are currently331

no high-throughput based experimental approaches that could generate a dataset large enough332

to train a model directly on predicting K𝑑. The data we use were obtained from a colorimetric333

assay with very high affinity of zinc in the picomolar range.52–56 More recent studies using ITC63334

instead of the colorimetric assay indicate lower K𝑑 values in the nanomolar range for wild type HCA2.335

We can therefore only use the colorimetric data to estimate how well the model can recapitulate336

relative changes in the K𝑑 for different mutations in the first and second shell of a prototypical337

metalloprotein.338

Metal3D allows moving away from using rational approaches such as the i, i + 4 di His motifs339

used for the assembly and stabilization of metalloproteins to a fully automated approach where340

potential metal binding configurations can be scored computationally.64–66341

Metal1D vs. Metal3D342

Metal1D is inferior to Metal3D for the prediction of metal ion binding sites because it produces343

more false positives while at the same time detecting fewer metal sites. Also the positioning of344

sites is somewhat imprecise. This demonstrates the inherent limitation of using solely distance345

based features for prediction of metal location. BioMetAll which is the tool most similar to Metal1D346

also suffers from many false positive predictions. In contrast, Metal1D is more data-efficient than347

Metal3D and provides predictions faster.348

Conclusion349

We present two metal ion location predictors: Metal3D based on 3D convolutional neural networks350

and Metal1D based on distances and amino acid propensity maps. Metal3D is the first tool with351

sub-angstrom level precision to predict the location of metal ions in proteins that does not rely on352

searching for structurally homologous proteins in a database. We therefore anticipate different353

applications such as protein-function annotation of structures predicted using AlphaFold2,67 inte-354

gration in protein design software and detection of cryptic metal binding sites that can be used355

to engineer PPIs. Such cryptic metal ion binding sites in common drug targets could also be used356

to engineer novel metallodrugs. Many of these applications will allow us to explore the still vastly357

untapped potential of proteins as large multi-dentate metal ligands with programmable surfaces.358

Materials and Methods359

Dataset360

The input PDB files for training were obtained from the RCSB68 protein databank (downloaded 5th361

March 2021). We use a clustering of the structures at 30% sequence identity using mmseqs269 to362

largely remove sequence and structural redundancy in the input dataset. For each cluster, we check363

whether a zinc is contained in one of the structures, whether the resolution of these structures is364

better than 2.5 Å, if the experimental method is x-ray crystallography and whether the structure365

does not contain nucleic acids. If there are multiple structures fulfilling these criteria, the highest366

resolution structure is used. All structures larger than 3000 residues are discarded. We always use367

the first biological assembly to sample the training environments. The structures were stripped368

of all exogenous ligands except for zinc . If there are multiple models with e.g. alternative residue369

conformations for a given structure, the first one is used. For each biological assembly we used370

the symmetry of the asymmetric unit to generate a protein structure that contains all neighboring371

copies of the protein in the crystal such that metal sites at crystal contacts are fully coordinated.372

The train/val/test split was performed based on sequence identity using easy-search in mm-373

seqs2. All proteins that had no (partial) sequence overlap with any other protein in the dataset374
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were put into the test/val set (85 proteins) which we further split into a test set of 59 structures and375

a validation set of 26 structures. The training set contained 2085 structures. (Supplemental Data 1).376

For the analysis, we always used the biological assembly and not the symmetry augmented377

structure. For the specificity analysis with respect to other transition metals, clusters from the PDB378

were randomly sampled to extract 25 biological assemblies per metal.379

By default all zinc sites in the test and validation set were used for the analysis. Since some of380

the sites might be affected by the crystallization conditions, we also created a subset of all sites381

that contained at least 2 amino acid ligands to largely exclude crystallization artifacts. To analyze382

metal ion selectivity, we selected sites with at least 3 unique protein ligands to only use biologically383

significant sites with a high degree of metal preorganization as such sites should exhibit more384

selectivity for specific metals compared to sites with only 2 unique protein-ligands.385

Metal 1D386

Metal1D uses a probability map derived from LINK records in protein structures (Figure 1). The387

LINK section of a PDB file specifies the connectivity between zinc (or any other ligand) and the388

amino acids of the protein, and each LINK record specifies one linkage. This is an extension of the389

approach by Barber-Zucker et al.,70 in which LINK records were used to investigate the propensity390

of transition metals to bind different amino acids.391

Using the training set we generated a probabilitymap for the propensity of different coordination392

environments to bind a zinc (e.g CCCC, CCHH etc.). For each zinc ion the coordination is extracted393

from theLINK records excluding records involving only single amino acids (weak binding sites).394

Also, LINK records containing water molecules are excluded because of the difficulties in placing395

water molecules a posteriori in 3D structures when metal ions are present and because data quality396

of modelled water molecules varies. The probability map contains the counts of coordination397

environments found.398

Making a prediction using Metal1D consists of two steps (Figure 1): Identification of possible399

metal coordinating residues in the structure via the scoring of each amino acid, and scoring of the400

likelihood of coordination for putative sites predicted by placing a metal between the identified401

coordinating residues.402

The protein structure is analyzed using the BioPandas python library.71 To identify coordinating403

residues, a per residue score is assigned by performing a geometrical search from a reference404

point, defined as the coordinate of the most probable metal binding atom, within a search radius405

considered as roughly twice the typical distance between the metal ion and the binding atom of406

amino acids in proteins (2.2 ± 0.2 Å as determined from LINK records). The search radius used was407

5.5 Å in order to be able to take into account also deviations from the ideal coordination. In the case408

of amino acids which present more than one putative coordinating atom, such as e.g. histidine, the409

mid-point between the donor atoms is used as reference point and the search radius is enlarged410

accordingly. The atoms used as reference points for each amino acid and the increase in the search411

radius are reported in Supplemental Table S1 . The score is assigned to each amino acid considering412

all the other reference points of other amino acids within the search radius, and summing the413

probabilities in the probability map for coordinations compatible with the one observed. In the ideal414

case, a score of 1 corresponds to an amino acid surrounded by all possible coordinating amino acids415

observed in the probability map. In practice, scores result between 0 and < 1. Once all amino acids416

in the chain are scored, the metal location predictions are made grouping the highest-scored amino417

acids in clusters (defined as the ones within the chosen threshold with respect to the highest-scored418

one) based on distance. This is done using scipy.spatial.distance_matrix and grouping419

together highest-scored amino acids closer than twice the search radius. For each cluster, a site420

prediction is made as a weighted average between the coordinates of the reference point of each421

amino acid, using as weighting factor the amino acid score. For isolated amino acids with a high422

score (e.g. a single histidine) the same score is assigned to the closest reference point from another423

amino acid, to be able to compute the position of the metal as before. Possible artifacts resulting424
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from this fictitious score are resolved in the final step of the prediction.425

After themetal has been placed the likelihood of the putative sites can be assessed by performing426

a geometrical search centered on the predicted metal coordinates (within 60% of the search radius,427

i.e 3.3 Å) and a final score is now assigned to the site. The final score is assigned in the same way428

as the amino acid scores based on the probability map, and has the advantage of being able to sort429

the predicted metal sites based on their frequency in the training set. A cutoff parameter is used to430

exclude sites with a probability lower than a certain threshold with respect to the highest-scored one.431

This final scoring also mitigates the errors which can be introduced by calculating the coordinates432

of the site simply as a weighted average excluding or assigning a low probability to the site ending433

in unfavorable positions in space.434

Metal 3D435

Voxelization436

We used the moleculekit python library38,72 to voxelize the input structures into 3D grids. 8 different437

input channels are used: aromatic, hydrophobic, positive ionizable, negative ionizable, hbond438

donor, hbond acceptor, occupancy, and metal ion binding site chain (Supplemental Table S2). The439

channels are assigned using AutoDockVina atom names and a boolean mask. For each atom440

matching one of the categories a pair correlation function centered on the atom is used to assign441

the voxel value.38 For the target tensor only the zinc ions were used for the voxelization. The target442

tensor was discretized setting any voxel above 0.05 to 1 (true location of zinc), all other to 0 (no443

zinc). We used a box size of 16 Å centered on the C𝛼 atom of a residue, rotating each environment444

randomly for training before voxelization. The voxel grid used a 0.5 Å resolution for the input445

and target tensors. Any alternative side chain conformations modeled were discarded keeping446

only the highest occupancy. For the voxelization only heavy atoms were used. For all structures447

selected for the respective sets we partitioned the residues of the protein into residues within 12 Å448

of a zinc ion and those further away (based on the distance to the C𝛼 atom). A single zinc site will449

therefore be present many times in the dataset but each time translated and rotated in the box. A450

balanced set of examples was used sampling equal numbers of residues that are close to a zinc and451

residues randomly drawn from the non-zinc binding residues. The sampling of residues is based on452

the biological assembly of the protein, the voxelization is based on the full 3D structure including453

neighboring asymmetric units in the crystal structure. The environments are precomputed and454

stored using lxf compression in HDF5 files for concurrent access during training. In total, 252324455

environments were voxelized for the training set, 6550 for the test set, 3067 for the validation set.456

The voxelization was implemented using ray.73457

Model training458

We used PyTorch 1.1074 to train the model. All layers of the network are convolutional layers with459

filter size 1.5 Å except for the fifth layer where a 8 Å filter is used to capture long range interactions.460

We use zero padding to keep the size of the boxes constant. Models were trained on a workstation461

with NVIDIA GTX3090 GPU and 32 CPU cores. Binary Cross Entropy75 loss is used to train the model.462

The rectified linear unit (ReLU) non-linearity is used except for the last layer which uses a sigmoid463

function that yields the probability for zinc per voxel. A dropout layer (p = 0.1) was used between464

the 5th and 6th layers. The network was trained using AdaDelta employing a stepped learning rate465

(lr=0.5, 𝛾=0.9), a batch size of 150, and 12 epochs to train.466

Hyperparameter tuning467

We used the ray[tune] library73 to perform a hyperparameter search choosing 20 different combi-468

nations between the following parameters with the best combination of parameters in bold.469

• filtersize: 3,4 (in units of 0.5 Å)470

• dropout : 0.1, 0.2, 0.4, 0.5471

• learning rate : 0.5, 1.0, 2.0472
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• gamma: 0.5, 0.7, 0.8, 0.9473

• largest dimension 80, 100, 120474

Grid Averaging475

The model takes as input a (8,32,32,32) tensor and outputs a (1,32,32,32) tensor containing476

the probability density for zinc centered on the C𝛼 atom of the input residue. Predictions for a477

complete protein were obtained by voxelizing select residues of the protein (default all cysteines,478

histidines, aspartates, glutamates) and averaging the boxes using a global grid (Figure 1 B). 98 %479

of the metal sites in the training data have at least one of those residues closeby wherefore this480

significant decrease in computational cost seems appropriate for most uses. The global grid is481

obtained by computing the bounding box of all points and using a regular spaced (0.5 Å) grid. For482

each grid point in the global grid the predicted probability maps within 0.25 Å of the grid point are483

averaged. The search is sped up using the KD-Tree implementation in scipy.76484

Metal ion placement The global probability density is used to perform clustering of voxels485

above a certain probability threshold (default p=0.15, cutoff 7 Å) using AgglomerativeClustering486

implemented in scikit-learn.77 For each cluster the weighted average of the voxels in the cluster is487

computed using the probabilities for each point as the weight. This results in one metal placed per488

cluster.489

Visualization We make available a command line program and interactive notebook allowing490

the user to visualize the results. The averaged probability map is stored as a cube file. The most491

likely metal coordinates for use in subsequent processing are stored in a pdb file. The command492

line program uses VMD78 to visualize the input protein and the predicted density, for the jupyter493

notebook 3Dmol.js/py3Dmol79 is used.494

Evaluation495

Comparison In order to standardize the evaluation between different tools, we always used496

the same test set used for the training of Metal1D and Metal3D. In order to compute standard497

metrics such as precision and recall, we chose to assess the performance of all assessed tools498

(Metal1D, Metal3D, BioMetAll, MIB) in a binary fashion. Any prediction within 5 Å of an experimental499

metal site is counted as true positive (TP). Multiple predictions by the same tool for the same site500

are counted as 1 TP. Any experimental site that has no predicted metal within 5 Å is counted as501

false negative (FN). A false positive (FP) prediction is a prediction that is not within 5 Å of a zinc502

site and also not within 5 Å of any other false positive prediction. If two or more false positive503

predictions are within 5 Å, they are counted as a single false positive prediction for the same site.504

In practice we first evaluate the true positive and false negative predictions and remove those from505

the set of predicted positions. The remaining predictions are all false positives and are clustered506

using AgglomerativeClustering with a radius of 5 Å. The number of false positives is determined507

from the number of clusters. Using the binary metric we assessed how good the models are at508

discovering sites and how much these predictions can be trusted.509

In order to assess the quality of the predictions, we additionally compute for all the true positive510

predictions the mean of the Euclidean distance between the true and predicted site (mean absolute511

deviation MAD). For Metal1D, MIB, and BioMetAll, MAD was computed for all predictions above the512

threshold within 5 Å of a true zinc site where ∑predicted sites ≥ ∑ TP. This was done as some513

tools predict the same site for different residue combinations and we wanted to assess the general514

performance for all predicted sites above a certain cutoff and not just for the best predicted site515

above the cutoff. For Metal3D the weighted average of all voxels above the cutoff was used.516

Precision was calculated as517

Precision = # correct metal sites

# correct metal sites + # false positive clustered
= TP

TP + FP
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Recall was calculated as518

Recall = # correct metal sites

# correct metal sites + # not found metal sites
= TP

TP + FN

Model assessment Metal3D To evaluate the trained models we monitored loss and how519

accurately the model predicts the metal density of the test set. We used a discretized version of520

the Jaccard index setting each voxel either as 0 (no metal) or 1 (zinc present). We tested multiple521

different decision boundaries (0.5, 0.6, 0.75, 0.9) and also compared a slightly smaller centered box522

to remove any spurious density at the box edges, where the model has only incomplete information523

to make predictions.524

The Jaccard index is computed as525

𝐽 =
# |𝑉𝑝 ∩ 𝑉𝑒𝑥𝑝|
# |𝑉𝑝 ∪ 𝑉𝑒𝑥𝑝|

,

where 𝑉 𝑝 is the array of voxels with predicted probability above the decision boundary and 𝑉𝑒𝑥𝑝 is526

the array of voxels with the true metal locations also discretized at the same probability threshold.527

HCA2 mutants The data for human carbonic anhydrase 2 (HCA2) mutants was extracted528

from refs52–56 and the crystal structure 2CBA49,80 was used. The zinc was modeled using the zinc529

cationic dummy model forcefield51 and we verified that energy minimization produced the correct530

coordination environment. The Richardson rotamer library81 was used with the EVOLVE-ddG531

energy function to compute the most stable rotamer for a given mutation with the zinc present.532

The lowest-energy mutant was used for the prediction of the location of metals using Metal3D.533
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Supplement547

Table S1. Atoms used as reference points for each amino acid in Metal1D. In the case of amino acids with more

than one possible ligand atom, the search radius is enlarged, the increase is computed from the midpoint

between all ligating atoms. Typical values computed for structure data files downloaded from the PDB are

reported.

Amino acid Residue name Label(s) Search radius increase (Å)

Alanine ALA O 0

Arginine ARG NH1, NH2 1.2
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Amino acid Residue name Label(s) Search radius increase (Å)

Asparagine ASN OD1 0

Aspartic acid ASP OD1, OD2 1.105

Cysteine CYS SG 0

Glutamic acid GLU OE1, OE2 1.105

Glutamine GLN OE1 0

Glycine GLY O 0

Histidine HIS ND1, ND2 1.08

Isoleucine ILE O 0

Leucine LEU O 0

Lysine LYS NZ 0

Methionine MET SD 0

Phenylalanine PHE O 0

Proline PRO O 0

Serine SER OG 0

Threonine THR OG1 0

Tryptophan TRP O 0

Tyrosine TYR OH 0

Valine VAL OH 0

Table S2. Atom selections used for voxelization of proteins using moleculekit

Channel

name Selected atoms

aromatic HIS TRP TYR PHE sidechain without CB

hydrophobic element C

occupancy all protein heavy atoms

hbond donor (ASN GLN TRP MSE SER THR MET CYS and name ND2 NE2 NE1 SG SE OG OG1)

and name N

hbond

acceptor

(resname ASP GLU HIS SER THR MSE CYS MET and name ND2 NE2 OE1 OE2 OD1

OD2 OG OG1 SE SG) or name O

metalbinding (name ND1 NE2 SG OE1 OE2 OD2) or (protein and name O N)

positive

charge

resname LYS ARG HIS and name NZ NH1 NH2 ND1 NE2 NE

negative

charge

resname ASP GLU and name OD1 OD2 OE1 OE2
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Figure S1. Discretized Jaccard indices using different cutoffs for edge trimming and different probability cutoffs

(p(metal)) showing that Metal3D predictions well reproduce the target environments in the test set.

Figure S2. Precision recall curve for Metal1D and Metal3D with the probability cutoffs (Metal3D) or thresholds

(Metal1D) used in the analysis.
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Figure S3. Recall for zinc testset and a 25 randomly drawn structures for other transition, alkali and earth-alkali

metals for Metal1D
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Figure S4. Distance distribution Metal1D. For each ion the whisker plot indicates the median (white dot) and

the first quartiles (black box).
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Figure S5. MAD for Metal3D for all sites with 3+ unique protein ligands in the test set and for the selected

structures for the other metals. For each ion the whisker plot indicates the median (white dot) and the first

quartiles (black box).
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Figure S6. Probability distribution for Metal3D on sites with 3+ unique protein ligands in the test set and for the

selected structures for the other metals. For each ion the whisker plot indicates the median probability (white

dot) and the first quartiles (black box).
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Figure S7. MAD only 2 residue coordinated zincs. For each tool the whisker plot indicates the median (white

dot) and the first quartiles (black box).

Figure S8. False positive for Metal3D at p=0.9 in PDB 4JJJ. A calcium site is misclassified as zinc site.
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Table S3. MAD and median on zinc test set for all zinc sites (n=189).

tool MAD [Å ] median [Å ]

BioMetAll c=0.5 2.72 ± 1.33 2.86

MIB t=1.25 1.13 ± 1.24 0.60

MIB t=1.9 0.77 ± 1.09 0.44

Metal1D t=0.5 2.07 ± 1.33 2.06

Metal1D t=0.75 2.19 ± 1.26 2.12

Metal3D p=0.25 0.74 ± 0.66 0.61

Metal3D p=0.5 0.73 ± 0.66 0.54

Metal3D p=0.75 0.71 ± 0.64 0.51

Metal3D p=0.9 0.70 ± 0.64 0.52

Table S4. MAD and median on zinc test set for zinc sites with at least 2 protein ligands (n=133).

tool MAD [Å ] median [Å ]

BioMetAll c=0.5 2.68 ± 1.33 2.84

MIB t=1.25 1.09 ± 1.21 0.60

MIB t=1.9 0.77 ± 1.09 0.44

Metal1D t=0.5 1.97 ± 1.29 1.99

Metal1D t=0.75 2.06 ± 1.24 2.09

Metal3D p=0.25 0.69 ± 0.58 0.56

Metal3D p=0.5 0.69 ± 0.59 0.54

Metal3D p=0.75 0.71 ± 0.64 0.51

Metal3D p=0.9 0.70 ± 0.64 0.52
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