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Abstract

Experimental protein function annotation does not scale with the fast-growing sequence databases. Only a

tiny fraction (<0.1%) of protein sequences in UniProtKB has experimentally determined functional

annotations. Computational methods may predict protein function in a high-throughput way, but its

accuracy is not very satisfactory. Based upon recent breakthroughs in protein structure prediction and

protein language models, we develop GAT-GO, a graph attention network (GAT) method that may

substantially improve protein function prediction by leveraging predicted inter-residue contact graphs and

protein sequence embedding.

Our experimental results show that GAT-GO greatly outperforms the latest sequence- and structure-based

deep learning methods. On the PDB-mmseqs testset where the train and test proteins share <15%

sequence identity, GAT-GO yields Fmax(maximum F-score) 0.508, 0.416, 0.501, and AUPRC(area under

the precision-recall curve) 0.427, 0.253, 0.411 for the MFO, BPO, CCO ontology domains, respectively,

much better than homology-based method BLAST (Fmax 0.117,0.121,0.207 and AUPRC 0.120, 0.120,

0.163). On the PDB-cdhit testset where the training and test proteins share higher sequence identity,

GAT-GO obtains Fmax 0.637, 0.501, 0.542 for the MFO, BPO, CCO ontology domains, respectively, and
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AUPRC 0.662, 0.384, 0.481, significantly exceeding the just-published graph convolution method

DeepFRI, which has Fmax 0.542, 0.425, 0.424 and AUPRC 0.313, 0.159, 0.193.

1. Introduction

High throughput sequencing technology has yielded an explosive number of sequences, but only a tiny

fraction of them have experimentally determined functional annotations[1]. There is a dire need for

efficient and accurate protein function annotation tools for the community to study the growing sequence

databases[2–4]. Many computational methods have been developed to annotate protein functions based on

primary sequences[5–9], protein family and domain annotations[10–12], protein-protein interaction(PPI)

networks[7, 9, 10], and other hand-crafted features[8, 9, 13]. Critical Assessment of Functional

Annotation(CAFA), a community-driven benchmark effort for automated protein function annotation, has

shown that integrative prediction methods that combine multiple information sources usually outperform

sequence-based methods[2–4]. Sequence-based methods use sequence similarity to transfer functional

information and thus, do not work well on novel sequences that are not similar to any annotated

sequences[2, 4, 14]. Domain and family annotations as well as PPI (Protein-Protein Interaction)

information are useful for function prediction, but they are often missing or incomplete for the vast

majority of unannotated sequences[12, 15].

Proteins acquire their function by folding into certain 3-dimensional structures in vivo [16, 17]. Two

structurally similar proteins may share similar functions even with dissimilar sequences [18–21]. That is,

purely sequence-based approaches may not work well in transferring functions between structural

homologues. To bridge the gap between sequence and function, it is crucial to develop methods that can

directly utilize structural information for function prediction. Methods that leverage protein structure

databases such as Funfam and DeepFRI[15, 22] have shown promising results in structure-based protein

function annotation. While only a very small percentage of proteins have experimental structures, recent
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breakthroughs in protein contact and structure prediction[23–25] allow us to generate accurate structure

information for a large portion of proteins, which can be used for large-scale automated protein function

annotations.

Deep learning such as convolutional neural networks(CNN)[26] and residual neural

networks(ResNet)[27] has been widely adopted by the computational biology community and showed

immense success in some areas such as profiling epigenomic landscapes from DNA sequences[28–31]

and protein folding[23, 24, 32]. Graph convolutional networks(GCNs)[33] are able to learn representation

from arbitrarily structured graph input[34, 35]. Graph attention network(GAT)[36] is a type of graph

neural network (GNN) that performs graph convolution with self-attention[37]. GAT and GNN are used

to model gene expression and study protein structure refinement[38, 39]. Unsupervised protein sequence

models are used to capture inter-residue relationships for protein contact prediction and have become an

integral part of many protein structure prediction methods[23, 24, 32]. Recently, deep protein language

models have been developed[40–42] to encode context and global information of a protein for

downstream tasks such as stability prediction.

To leverage predicted structure information and protein embeddings for function prediction, we have

developed a GAT-based method called GAT-GO. We use RaptorX[43] to predict structure information of

a protein sequence and Facebook’s ESM-1b[40] to generate residue-level and sequence-level embeddings

of a protein sequence. GAT-GO outperforms traditional homology-based algorithms such as BLAST[44]

and previous deep learning methods [6], even when test proteins have low sequence identity with training

proteins. Two recent studies [15, 45] have explored GCN and protein embeddings for protein function

prediction, but they show limited improvement over sequence-only methods. Our method differs from the

GCN method DeepFRI [15] as follows. We use GAT [36] instead of conventional GCN. GAT enhances

model capacity by allowing flexible node feature aggregation through a self-attention mechanism. In

addition, we use topological pooling[46] to enable more efficient downsampling that improves model
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generalizability. Moreover, GAT-GO uses predicted inter-residue contacts for both training and test, while

DeepFRI uses some native contact graphs in training.

Fig.1 Overall architecture of GAT-GO: Input sequences are first processed into 1-dimensional
features(SA/SS/PSSM) and fed into a 1-dimensional CNN feature encoder to produce node-level feature
embeddings. Graph Attention Networks(GAT) combines the inter-residue contact graphs with node-level
feature embeddings to generate a sequence-level feature vector, which is then used by a dense classifier to
predict GO term probability.

2.Results

2.1 GAT-GO: predicting protein function via graph attention networks
As shown in Fig. 1, GAT-GO integrates protein sequence representations and predicted inter-residue

contact graphs using a CNN-based feature encoder and a GAT-based graph encoder. GAT allows

capturing interactions among spatially close residues, which may be missed in sequence-only methods.

GAT-GO consists of three major modules: 1) a convolutional neural network(CNN) that takes sequential

features and residue-level sequence embedding as input to produce per residue feature representation. 2) a

GAT that takes a predicted contact graph and the CNN-generated representation vector as input. Each

GAT layer is followed by an attention-based topological pooling layer[46] to perform topology-aware
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downsampling. To extract protein-level representation, a global pooling layer is used at the end of GAT.

3) a dense classifier that predicts the probability of functional annotations from the representation

generated by GAT jointly with protein-level sequence embedding. By default, GAT-GO uses

RaptorX-predicted contact graphs and protein embeddings generated by ESM-1b.

2.2 GAT-GO improves protein function prediction
We evaluate GAT-GO on the PDB-cdhit dataset and compare it to sequence-only methods including

BLAST and the standard Naive baseline used in the CAFA benchmark[2, 4] and a just-published

structure-based GCN method DeepFRI. Here DeepFRI uses contact graphs extracted from native

structures. We have also implemented a 1D CNN method to represent the state-of-the-art sequence-only

deep learning method DeepGO[6]. We evaluate the performance across all three gene ontology domains

(MFO, BPO, CCO) using both protein-centric metric (Maximum F score) and GO-term-centric𝐹𝑚𝑎𝑥
metric (Area Under Precision-Recall Curve). AUPRC measures the precision-recall tradeoff in a𝐴𝑈𝑃𝑅𝐶
label imbalanced environment. As shown in Table 1, GAT-GO vastly outperforms BLAST, 1D CNN, and

DeepFRI across all three gene ontology domains. GAT-GO has 0.637, 0.510, 0.542 on the MFO,𝐹𝑚𝑎𝑥
BPO, CCO ontology domains, respectively, while BLAST has 0.497, 0.399, 0.390. Despite using𝐹𝑚𝑎𝑥
predicted contacts and being trained on a much small dataset, GAT-GO has AUPRC 0.662, 0.384, 0.481

on the MFO, BPO, CCO ontology domains, respectively, substantially better than DeepFRI that has

AUPRC 0.313, 0.159, 0.193. Here, we evaluate the methods in terms of both the protein-centric 𝐹𝑚𝑎𝑥
metric that measures how methods retrieve relevant function annotations across all tested proteins and the

term-centric metric that assesses the trade-off between the true positive rate and positive𝐴𝑈𝑃𝑅𝐶
predictive value across all GO terms predicted. That is, the higher the value, the more confidence𝐴𝑈𝑃𝑅𝐶
we have in the predicted protein-function pairs. We observed that GAT-GO has a much larger advantage

over the competing methods in terms of , which indicates GAT-GO predicted function annotations𝐴𝑈𝑃𝑅𝐶
are much more reliable than other methods across all predicted GO terms.
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Table 1: and of competing methods on the PDB-cdhit dataset. DeepFRI(Native) indicates the𝐹𝑚𝑎𝑥 𝐴𝑈𝑃𝑅𝐶
native contact map of a test protein is used.𝐹𝑚𝑎𝑥 AUPRC

Model MFO BPO CCO MFO BPO CCO

Naive 0.156 0.244 0.318 0.075 0.131 0.158

BLAST 0.498 0.400 0.398 0.120 0.120 0.163

1D CNN(DeepGO) 0.359 0.295 0.420 0.368 0.210 0.302

DeepFRI(Native) 0.542 0.425 0.424 0.313 0.159 0.193

GAT-GO(Ours) 0.633 0.492 0.547 0.660 0.381 0.479

2.3 GAT-GO’s performance with respect to sequence identity
Past studies often use time-gated temporal datasets to evaluate model generalizability to previously

unannotated sequences [6–8]. However, this temporal evaluation approach may have similar sequences in

the training and test data and thus, inflate the test result. Some recent studies use sequence identity to split

the training and test data [15, 45] and thus, may provide a more accurate view of model generalizability to

novel sequences. This evaluation approach is widely adopted by other fields such as protein structure

prediction[47]. We generate training and test datasets (See Methods 4.1) using five different sequence

identity thresholds(15%, 25%, 35%, 45%, 55%) and compare GAT-GO with BLAST and two

sequence-based methods implemented by ourselves: 1) a 1D CNN method that predicts protein function

from primary sequence only; 2) a 1D ResNet method that predicts protein function from both sequential

features and protein sequence embeddings. Neither 1D CNN nor 1D ResNet uses predicted inter-residue

contact graphs. Here we could not compare GAT-GO with DeepFRI since the latter does not have

pre-trained models for a specific sequence identity threshold. As shown in Fig. 2, the performance of

almost all the test methods increases with respect to sequence identity, but BLAST performs badly at low

sequence identity zones. GAT-GO consistently outperforms the other methods on all three ontology
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domains regardless of sequence identity. When the training and test sequences share ≤15% sequence

identity, GAT-GO has 0.501, 0.406, 0.508 for the MFO, BPO, CCO ontology domains, respectively,𝐹𝑚𝑎𝑥
and AUPRC 0.427, 0.253, 0.411, much better than 1D ResNet ( 0.408, 0.331,0.450 and 0.294,𝐹𝑚𝑎𝑥 𝐴𝑈𝑃𝑅𝐶
0.184, 0.318) and 1D CNN ( 0.154, 0.161, 0.270 and AUPRC 0.048, 0.067, 0.112). The𝐹𝑚𝑎𝑥
sequence-only methods 1D CNN and BLAST do not fare well at low sequence identity due to a lack of

explicitly shared sequence patterns between the training and test sequences. On the other hand, structural

features like predicted inter-residue contact graphs and protein sequence embedding can drastically

improve protein function prediction for novel sequences.

Fig.2: (A)Fmax and (B)AUPRC performance comparison on the PDB-mmseq dataset across different
sequence identity thresholds

2.4 Predicted contacts and sequence embedding improve protein
function prediction
To thoroughly investigate the contributions of individual factors, we evaluate the performance of four

deep models (1D CNN, 1D ResNet, GCN, and GAT) with different feature combinations on the

PDB-cdhit testset. As shown in Table 2, both 1D ResNet and GAT-GO can leverage protein sequence
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embeddings to improve function prediction. For example, compared to 1D ResNet using only primary

sequence, 1D ResNet using both primary sequence and protein-level embeddings may improve by𝐹𝑚𝑎𝑥
0.204, 0.136, 0.109 for the MFO, BPO, CCO ontology domains, respectively. This observation is

consistent with[45] that found protein-level sequence embeddings encode useful information for protein

function prediction and can significantly enhance model performance.

Table 2. and of different methods with different feature combinations on the PDB-cdhit𝐹𝑚𝑎𝑥 𝐴𝑈𝑃𝑅𝐶
dataset.

𝐹𝑚𝑎𝑥 AUPRC

Model Input Features MFO BPO CCO MFO BPO CCO

1D CNN Primary sequence 0.344 0.268 0.423 0.355 0.197 0.290

1D ResNet Primary sequence 0.337 0.284 0.369 0.334 0.188 0.267

Primary sequence &
protein-level embeddings

0.541 0.416 0.478 0.541 0.289 0.386

Sequential features &
pre-trained embeddings1

0.548 0.416 0.500 0.559 0.293 0.393

GCN Predicted contact &
residue-level embeddings

0.459 0.443 0.461 0.408 0.245 0.315

GAT-GO Predicted contact &
residue-level embeddings

0.551 0.472 0.490 0.558 0.289 0.364

Predicted contact &
sequential features &

residue-level embeddings

0.567 0.481 0.495 0.565 0.301 0.380

Predicted contact &
sequential features &

pre-trained embeddings

0.637 0.501 0.542 0.662 0.384 0.481

1. Pre-trained embeddings refer to both residue-level and protein-level pre-trained embeddings(See Methods 4.2)

To investigate the contribution of protein-level embeddings to the performance of GAT-GO, we compare

two GAT models. One uses sequential features and residue-level embeddings as input and the other uses

both protein-level and residue-level embeddings on top of sequential features. Using protein-level

embeddings improves by 0.070, 0.020, 0.052, and by 0.097, 0.083, 0.101 for the MFO, BPO,𝐹𝑚𝑎𝑥 𝐴𝑈𝑃𝑅𝐶
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CCO ontology domains, respectively. To demonstrate the improvement of the GAT-based model

architecture over the GCN-based architecture developed by [15], we compare a GAT model that uses

one-hot encoded primary sequences, residue-level embeddings, and predicted inter-residue contacts with a

GCN model that uses the same set of features. The GAT model yields of 0.551, 0.472, 0.490, and𝐹𝑚𝑎𝑥
of 0.558, 0.289, 0.364 while the GCN model yields of 0.459, 0.443, 0.461, and of𝐴𝑈𝑃𝑅𝐶 𝐹𝑚𝑎𝑥 𝐴𝑈𝑃𝑅𝐶

0.408, 0.245, 0.315 for the MFO, BPO, CCO ontology domains, respectively.

To study how much predicted inter-residue contacts may help, we compare two models. One is a ResNet

model that uses sequential features and both protein-level and residue-level embeddings but not predicted

contact graphs. The other is a GAT model that uses sequential features and both protein-level and

residue-level embedding in addition to predicted contact graphs. The GAT-based structure-aware model

has 0.637, 0.501, 0.542, and AUPRC 0.662, 0.384, 0.481 for the MFO, BPO, CCO ontology𝐹𝑚𝑎𝑥
domains, respectively, while the ResNet model has 0.548, 0.416, 0.500 and AUPRC 0.559, 0.293,𝐹𝑚𝑎𝑥
0.393. See Supplementary Table S2-S3 for more detailed comparisons. This result suggests that predicted

structural information can improve protein function prediction in addition to protein sequence

embeddings.

2.5 Explicit Structural Information Amends Function Interpretation in
Longer Sequences and High-Specificity GO Terms
To better understand how predicted inter-residue contacts enhance protein function prediction, we

compare GAT-GO with ResNet, both using the same set of input features except that ResNet does not use

predicted contact graphs. To measure how GAT-GO improves function prediction accuracy, we calculate

the precision difference of GAT-GO and ResNet on each tested sequence and study its relationship with

sequence length. The precision improvement by GAT-GO is positively correlated with sequence length.

Their spearman’s correlation coefficient is 0.312, 0.259, 0.221 for the MFO, BPO, CCO ontology

domains, respectively, as shown in Fig. 3. This result implies that the longer the sequence, the greater
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impact predicted structural information has on the prediction accuracy. This is because GAT (with

predicted contacts) may capture interactions among residues that are well separated along the primary

sequence. In contrast, sequence-based methods such as 1D ResNet often focus on local sequence patterns

and are not good at capturing interactions of residues that are far away from each other along the primary

sequence. Studies have shown that explicitly modeling long-range residue interactions can greatly

improve performance in various tasks[38] in addition to functional prediction.

Fig.3: Performance improvement of GAT-GO over the ResNet-based sequence method vs. sequence
length. Sequences with increased average precision (red) and decreased average precision(blue) are
plotted against the length of the sequences. Spearman’s correlation coefficients for the MFO, BPO, CCO
ontology domains are 0.312, 0.259, 0.221 with p-value of 1.03e-40, 1.94e-50, 4.17e-68 respectively.
Where the two-sided p-values are calculated under the student’s t distribution with n-2 degree of freedom.

Using predicted structural information may also improve the prediction accuracy of GO terms with high

specificity. We measure the specificity of one GO term using information content (See methods 4.5). A

Go term with high information content (IC) is more specialized and thus, rarer in occurrence. On the other

hand, a GO term of low information content represents a broad function that is more common in

annotations. As shown in Fig.4, GO terms with IC>12 benefit more from the inclusion of inter-residue

contact graphs than those with IC<6.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 17, 2021. ; https://doi.org/10.1101/2021.06.16.448727doi: bioRxiv preprint 

https://paperpile.com/c/M1SA73/jiel
https://doi.org/10.1101/2021.06.16.448727
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig.4: Distribution of AUPRC score on GO-Terms covered by GAT-GO over different specificity levels
(Information Content) for different methods: GAT-GO(red), 1D-ResNet(green), and DeepFRI(purple). The
box representation has the center as the median, upper and lower edges are the interquartile range and
the whiskers are the data range.

3.Discussion
In this study, we have presented GAT-GO, a structure-based deep learning method that integrates

predicted inter-residue contact graphs, protein embedding, and sequential features for protein function

prediction. By integrating predicted contacts and protein embedding through graph attention networks,

our method may accurately and efficiently map protein sequences to function annotation at a large scale,

especially when the test sequences are not similar to the training sequences. The combination of

sequential features, protein embeddings, and inter-residue contact graph leads to one of the major

advantages of GAT-GO which is its capability to jointly predict protein function from both local and

global information. In contrast, sequence-based methods cannot make use of predicted structure

information and thus, are not good at handling a test sequence that is not similar to any training

sequences.

GAT-GO outperforms existing function prediction methods including the recently developed

structure-based method by utilizing high-resolution structure information and high-capacity pre-trained
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protein embeddings. Our experiment shows that both protein embeddings and predicted contact graphs, as

well as the GAT-based model architecture, can significantly improve function prediction. To further

improve structure-based protein function annotation, instead of using predicted contact graphs, we may

use predicted inter-residue distance graphs or 3D structure coordinates as the structure representation.

Other network-based protein features such as protein-protein interaction (PPI) networks may also be used.

4. Methods

4.1 Data Split and Processing
We download the data used by DeepFRI[15] at https://github.com/flatironinstitute/DeepFRI. We denote it

as PDB-cdhit since the train/test split is generated by cd-hit[48] with 40% sequence identity. Each

sequence is annotated with memberships of 2,752 GO terms across three ontology domains. CD-hit[48] is

often used to remove redundancy between training and test proteins, but its greedy clustering method and

local-alignment-based sequence similarity calculation can still lead to redundancy between the training

and test set and thus, inflate the test results[48]. To fix this, we employ another sequence clustering tool

MMseqs to generate a new dataset denoted as PDB-mmseqs. MMSeqs uses a non-greedy clustering

scheme and profile-based alignment method to ensure there is no higher than desired sequence identity

across clusters[49]. To split data by sequence identity, we use MMseqs to cluster all protein sequences

with a given sequence identity threshold, and then select a representative sequence from each cluster to

build a seed sequence pool. Then we split the seed sequence pool uniformly at random with an 8/2 ratio to

form the train and test seed sets. The final train/test sequences are determined by including sequences

from the respective clusters of the train/test seeds. Validation sequences are generated by sampling 10%

of the sequences from the training set uniformly at random. We generate 5 different data splits with 5

different sequence identity thresholds (15%, 25%, 35%, 45%, 55%). That is, in each dataset, no training

and testing protein share higher than the respective sequence identity. See Supplementary Table S1 for

details of the datasets.
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To measure the information content for an individual Go term, we compute the Shannon Information from

its frequency in the training set. See Supplementary Section 5 for more details.

4.2 Input Features
Sequential features. One-hot encoding of the primary protein sequence is the most commonly used input

feature for sequence-based methods. We encode a sequence with 25 different symbols including the 20

common amino acid symbols and 5 compound ambiguous symbols. We also use position specific scoring

matrix (PSSM) as sequence profiles derived from the profile HMM generated by HHblits[50] with

E-value=0.001 and uniclust30 dated in August 2018. We use secondary structure and solvent accessibility

predicted by RaptorX-Property[51] from PSSM. In the article, sequential features are referred to as the

combination of one-hot encoded primary sequence, sequence profile, secondary structure annotations, and

solvent accessibility annotations.

Predicted protein structure information. To obtain inter-residue contact graphs, we predict protein

Cb-Cb distance using RaptorX[23] and define inter-residue contact probability as the probability of the

Cb-Cb distance < 8 Å. To build the contact graph, we add an edge between two residues if and only if

they have >50% predicted contact probability. We have evaluated performance with respect to different

contact probability cutoffs in Supplementary Table S4.

Protein embeddings. To obtain residue-level sequence embeddings, we use ESM-1b[40], a

transformer-based self-supervised protein language model trained on the UniRef UR50/50 database[52].

We generate the protein-level embedding from the residue-level embedding by averaging across all

residue positions.

4.3 Graph Attention Networks
Graph Neural Network (GNN) is a powerful tool for extracting information from arbitrarily structured

graph data[53]. Graph Convolutional Network (GCN) uses spectral convolution on the graph Fourier
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domain to aggregate neighboring representation for feature learning[33]. In this study, we use the

first-order approximation of the spectral convolution:𝐻𝑙+1 =  𝐷 −1/2𝐴𝐷−1/2𝐻𝑙Θ𝑙+1
Where is the degree matrix such that , and is the adjacency matrix of the input contact𝐷 𝐷𝑖𝑖 = 𝑙=1

𝐿∑ 𝐴𝑖𝑙 𝐴
graph with self-loops, i.e., = where is an identity matrix. is the graph representation at𝐴 𝐴 + 𝐼𝐿 𝐼𝐿 𝐿 × 𝐿 𝐻𝑙
layer , and is the trainable weight of the neural network.𝑙 Θ
Graph Attention Networks (GAT) aim to improve the flexibility and capacity of the graph spectral

convolution by employing a self-attention mechanism to parameterize the feature aggregation

process[36]. Compared to GCN which aggregates neighboring features with fixed weights determined by

the degrees of the respective nodes, GAT uses learnable self-attention-based weights. First, GAT

calculates the pairwise importance scores for all node pairs as where is the hidden𝑒𝑖𝑗 = 𝑎(Θℎ𝑖, Θℎ𝑗) ℎ𝑙𝑖
representation for node at layer and is the trainable weight for layer . We use a single-layer𝑖 𝑙 Θ𝑙 𝑙
feedforward neural network as our attention function, i.e., where𝑎(𝑧𝑖, 𝑧𝑗) =  𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑤𝑇[𝑧𝑖||𝑧𝑗]) 𝑤
is the trainable attention weight vector and denotes concatenation. Graph structure information is then||
injected by using the mask attention score on top of the pairwise importance score withα𝑖𝑗∀ 𝑗 ∈ 𝑁𝑖
softmax as , where is the neighborhood of node . The hidden representation of eachα𝑖𝑗 = 𝑒𝑥𝑝(𝑎(𝑒𝑖𝑗))Σ𝑘∈𝑁𝑖𝑒𝑥𝑝(𝑎(𝑒𝑖𝑘)) 𝑁𝑖 𝑖
node is then updated with where is the activation function.ℎ𝑖𝑙+1 = σ(Σ𝑗∈𝑁𝑖α𝑖𝑗Θℎ𝑗𝑙) σ(·) =  𝑅𝑒𝐿𝑈(·)
4.4 GAT-GO network architecture
GAT-GO consists of three major components: 1) a CNN-based sequence feature encoder. It takes three

sequence features as input and encodes them into residue-level feature vectors. The three input features

are the one-hot encoding of primary sequences, sequence profile, and residue-level sequence embedding
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derived from the protein language model. A 512-channel CNN is used to encode each input feature and

then summed to generate the final encoding. 2) A GAT-based graph encoding module comprised of 4

GAT layers with 512, 512, 1024, 1024 hidden layers and 12 attention heads with a 0.5 dropout rate.

Following each GAT layer, there is a topological pooling layer[46] that computes node-level self-attention

scores with graph convolution and the top 50% of the nodes are retained as input to the next GAT layer. A

global mean pooling layer is then used to pool residue-level feature encoding into sequence-level feature

encoding. 3) A dense classifier that predicts protein function from the sequence-level feature and the

sequence-level protein embeddings.

4.5 Evaluation Metrics
We evaluate models by two main metrics, protein-centric and GO-term-centric AUPRC (area under𝐹𝑚𝑎𝑥
the precision-recall curve). is the maximum score across all prediction thresholds in the range of𝐹𝑚𝑎𝑥 𝐹1
[0,1] with a step size of 0.01. The AUPRC is a summarization of the precision-recall curve by calculating

the weighted mean of the precision achieved at each threshold. We use AUPRC to measure the

precision-recall tradeoff in a label imbalanced environment. See Supplementary Section 2 for more

details.

4.6 Competing Methods
DeepFRI. It is a recently published GCN-based method that uses autoregressive protein embeddings and

contact graphs derived from 3-dimensional structures[15]. We obtain DeepFRI’s predictions following the

instruction at https://github.com/flatironinstitute/DeepFRI using experimentally solved structures

downloaded from https://www.rcsb.org/. In contrast, our GAT-GO is a GAT-based method with

multi-level topological pooling that uses transformer-based residue- and protein-level embeddings.

GAT-GO is trained on inter-residue contact graphs predicted by RaptorX[43] and thus, does not rely on

experimentally solved structures. For the purpose of comparing the DeepFRI architecture with different
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feature combinations, we also implemented a 3-layer GCN model as described in [15] that we could train

& test on our custom input features.

BLAST. Following the protocol used in the CAFA benchmark[4], we obtain the BLAST score for each

sequence by first running blastp against the corresponding training database. For each hit, we transfer the

corresponding GO terms with the sequence identity as the predicted probability. When multiple hits

contain the same GO term, the maximum sequence identity is retained.

CNN and ResNet. We have implemented a 1D CNN model with 16 parallel one-layer convolution

operations where each convolution has kernel sizes of [8,16,...,128] and 512 filters. This CNN is very

similar to the state-of-the-art sequence-only deep learning method DeepGOplus[6]. We have also

implemented a ResNet model with 21 convolution layers that predict protein function from both primary

amino acid sequences and sequential features. See supplementary for more details.

4.7 Model Training
We train our models with binary cross-entropy as the loss metric and the AdamW optimizer[54] with a

learning rate of 1e-4 for 30 epochs. We implemented all models in the Pytorch and Pytorch geometric

library[55, 56]. A validation set is used to employ an early stopping scheme with patience of 10 epochs.

All models are trained with an NVIDIA 2080Ti GPU on a Linux machine.
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