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It is claimed that the extraction of average features from rapidly-presented ensembles is holistic, with attention 

distributed across the whole set. We investigated whether observers’ extraction of mean hue is holistic or could 

reflect sub-sampling. Analysis of selections for the mean hue revealed a distribution which peaked at the expected 

mean hue. However, an ideal observer simulation suggested that a sub-sampling mechanism incorporating just two 

items from each ensemble would suffice to reproduce the precision of most observers. The results imply that hue 

may not be averaged as holistically and efficiently as other attributes. 

OCIS codes: (330.0330) Vision, color and visual optics; (330.5020) Perception psychology; (330.5510) Psychophysics 
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1. INTRODUCTION 

Ensemble perception describes the extraction of summary statistics 

from a set of items varying in some stimulus dimension, typically in the 

absence of representation of the individual items and with very short 

stimulus presentation time [1]. For example, observers can extract the 

mean size from a set of circles of different sizes seen for 500ms, but are 

relatively poor at identifying individual members of the set [2]. 

Sensitivity to summary statistics has been demonstrated in a variety of 

perceptual domains, including size [e.g., 2, 3-5], orientation [e.g., 6, 7], 

facial expression [e.g., 8, 9, 10], facial identity [e.g., 10, 11, 12], and color 

[e.g., 13, 14, 15]. Much of this research has focused on whether the 

mean value of an ensemble has a special perceptual salience. The 

encoding of a mean in spite of a lack of individual item representation 

has led to suggestions that the ensemble perception mechanism could 

operate outside of the limits of focused attention, instead using 

distributed attention to process sets holistically [see 16, 17]. However 

this mechanism is subject to debate, with various researchers pointing 

out that a mechanism combining focused attention with sub-sampling might be adequate to explain observers’ performance on perceptual 
averaging tasks, without the need to postulate a new holistic 

processing mechanism [18-21]. 

 Summary statistics of color are likely to be of relevance to the 

visual system. For example, the color variance in surrounds is known 

to modulate the appearance of individual colors [22, 23], and priming 

by the variance of color present in a rapidly-presented ensemble has 

also been reported [24]. The mean color of a scene may also play a role 

in the estimation of the illuminant, necessary for color constancy [“gray world hypothesis”, 25], and in color memory [26]. We have previously 
shown that, when observers are presented with an ensemble of two 

different hues for a short time (500ms), they tend to have a bias in their 

memory of which hues were present in the ensemble towards the 

mean hue even if that mean hue was not present [14]. We have also 

shown that observers can reliably identify the unseen mean hue of an 

ensemble when that hue is paired with a similar distractor hue [13]. 

Both of these studies found an effect of the range of hues in the 

ensemble where the mean bias and mean identification accuracy were 

both reduced when the range of ensemble hues was increased [see 

also 15]. We further found that there is no impact of increasing the 

number of elements in an ensemble – observers were able to identify 

the mean equally reliably whether required to average 4, 8 or 16 

patches of color [13]. The robustness of mean identification ability to 

changes in number of elements has also been demonstrated for 

ensemble perception of size [e.g., 2, 18, 27-29] and faces [12, 30], and is 

suggestive of an efficient mechanism where processing occurs in 

parallel, across the whole display and all items [17].  

 Although we have shown that mean identification is above chance 

on a two-alternative forced-choice (2AFC) task [13], no study has 

directly investigated the precision of mean representation following 

rapidly-presented ensembles. Kuriki [31] has shown that adjustments 

to mosaics with many tiny elements were not reflective of the 

colorimetric mean, being biased towards the most saturated element. 

However this was under continuous viewing conditions [see also 32], 

rather than the rapid-exposure of the ensemble perception paradigm.  
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We know that number of elements has no effect on the identification of 

the mean color given a 2AFC [13] and Ariely [2, 33] reasoned that a 

sub-sampling mechanism with a fixed sample size, should extract the 

mean with precision proportional to the set size. However, ideal-

observer simulations have suggested that the performance of actual 

observers in a number of experiments showing rapid extraction of 

mean size [2, 3, 27, 34] could be explained by a limited sub-sampling 

mechanism with a sample size as small as just one or two items from 

each set [18, 19]. Similarly, Marchant and de Fockert [18] showed that 

their finding that mean size estimates are affected by set size, for 

irregular sets (ensembles in which all elements have a unique size) but 

not regular sets (where some elements are the same size), can be 

predicted by a limited sub-sampling model. Other simulations [e.g., 8, 

35] have attempted to better characterize the process of mean 

estimation by including internal noise into simulations – i.e. the “judgment error” [33] present in all psychophysical measurements. 
Simulations of sub-sampling which incorporate or estimate internal 

noise as part of the model tend to perform less well compared to real 

observer data and suggest that larger sub-samples (around seven 

items), would in fact be required to simulate the averaging 

performance of human observers [35]. Likewise, experimental 

evidence also suggests that observers still outperform subsampling 

expectations even when explicitly instructed to use such strategies in 

ensemble perception tasks [36], and when ensembles contain a 

manageable range of stimuli [29]. Such simulations have therefore 

shown that a sub-sampling mechanism or strategy cannot account for 

the level of performance observed on ensemble perception tasks in 

these domains (faces and size). 

 The present study investigated whether adjustments to the mean 

hue for rapidly-presented ensembles are equivalent to adjustments to 

a single hue. We assess whether settings converge at the expected 

value (the exact hue shown for single hues, or the mean hue for 

heterogeneous ensembles), as indicated by the position of the peak in 

the distribution of settings relative to the expected mean/actual color.  

We analyze the average amount of error in these settings to indicate 

how variable these settings are across trials. This measure of variability tells us how precise settings are.  Although an observer’s settings of the 
mean hue may converge at the expected hue, there might also be large 

variability in their settings indicating that hue averaging is not precise.  

If the precision of settings around the expected hue is similar when 

setting to the average of a set of hues or setting to a single hue, it will be 

a strong indicator that the mean hue is encoded as strongly as 

individual hues, suggesting that the ensemble is represented by a 

single average hue. These measurements of precision were also used 

to address the question of whether the observed hue averaging 

precision could be the result of a limited sub-sampling mechanism or 

whether the performance could support the proposal of an efficient 

holistic mechanism, integrating attention from the whole ensemble 

and circumventing the limited capacity of visual working memory [16, 

37-39]. Measurements of internal noise (based on adjustments to 

single hues) were incorporated into a simulation estimating the 

precision of mean adjustments based on a random sub-sample of n 

elements. By comparing the simulation results to the precision of real 

observers in the ensemble adjustment task it was possible to estimate 

the sample size required to explain their performance by sub-

sampling. 

2. METHOD 

A. Participants 

Fifteen observers (three males) of average age 20.5 years (SD = 2.97) 

took part in the experiment. All reported normal or corrected-to-

normal visual acuity and were assessed as having normal color vision 

using the Ishihara plates [40] and City University test [41]. All spoke 

English as their first language. Participants received either payment at 

a rate of £7.50 per hour or course credit. The research protocol was 

approved by the University of Sussex Sciences and Technology Cross-

Schools Ethics Committee.  

B. Stimuli 

All colors were taken from a set of 48 hues specified from a circle on an 

equiluminant plane in Derrington-Krauskopf-Lennie (DKL) space [42, 

43]. In order to ensure that the colors were approximately equally 

discriminable, and thus provide uniform perceptual differences 

between the hues presented in ensembles, the hue discrimination 

threshold data from Witzel and Gegenfurtner [44] were used to space 

the selected hues by 1 just-noticeable difference (JND) (see figure 1). 

Throughout the experiment the background was a uniform grey (xyY 

(1931): 0.310, 0.337, 30.039), as used by Witzel and Gegenfurtner. 

C. Apparatus 

A 22-inch Mitsubishi DiamondPlus 2070SB Diamondtron CRT 

monitor, set to a resolution of 1600 x 1200 pixels, 24-bit color 

resolution, and a refresh rate of 100 Hz was used. A Cambridge 

Research Systems ColorCal colorimeter was used to measure the 

monitor gamut and primary outputs, gamma correction applied, and 

look-up tables generated to automatically estimate the RGB primary 

values required to render each desired stimulus color. The experiment 

took place in a blacked-out room with the monitor the only source of 

light. A cardboard viewing tunnel lined with black felt obscured peripheral objects from the participants’ view and a chin rest was used 
to maintain a viewing distance of approximately 57cm. Participants 

gave their responses using the keyboard. 

D. Design 

Ensembles consisted of sixteen colored circles (elements) each 

allocated to a cell in an invisible 4-by-4 grid centered on the screen. 

Elements subtended 1.75° visual angle and were spatially jittered by 

up to 0.25° visual angle horizontally and vertically from the center 

point of the cell to remove the appearance of a regular structure in the 

ensemble. Ensembles contained either elements all of one hue 

(homogeneous trials) or four hues, i.e. four elements of each hue, 

arranged randomly (heterogeneous trials). Hues presented together in 

heterogeneous trials were separated by 2 JNDs. 

 The task used a method of adjustment, in which participants first 

saw an ensemble and then attempted to match the average color of the 

ensemble in a subsequent display. The adjustment display was an 

ensemble of 16 elements arranged in a 4-by-4 grid (un-jittered), and all 

elements of the adjustment display were the same color. Trials began 

with the presentation of a black fixation point in the center of the 

display for 1000ms, immediately followed by the presentation of a ‘study’ ensemble for 500ms. An inter-stimulus interval lasting 1000ms 

was indicated by a white fixation point and then replaced by the 

adjustment ensemble. The initial color of the elements of the 

adjustment ensemble was selected at random from a range +/-7 JNDs 

from the actual mean of the ensemble. By pressing the left and right 

arrow keys participants were able to adjust the color of the elements in 

the ensemble, around the hue circle in 1 JND steps. The space bar was 

used to confirm the selection for that trial. 

 Participants took part in five blocks of trials. Each block presented 

trials from a list comprising 48 heterogeneous ensembles (i.e. 

ensembles with a mean corresponding to one of the 48 hues in the 

stimulus set) and all 48 homogeneous ensembles, in a random order. 

E. Procedure 

Participants read instructions on the screen prior to the task. The time 

spent reading instructions and completing practice trials ensured 

adaptation to the white point. The instructions stated that participants should pay attention to the initial ensemble and then “adjust the dots until they match the average color of the first set” (for heterogeneous 
ensembles) or “match the color exactly” (for homogeneous 
ensembles). It is possible that the concept of a perceptual average of 



color is less intuitive than the average of stimuli such as size or facial 

expressions which have clearly observable features that vary on 

quantifiable dimensions rather than being simple patches of light. 

Therefore, in order to help explain the concept of the ‘average’ 
participants were given practice trials where they were asked to 

average achromatic stimuli varying in lightness.  It was felt that training 

using ensembles that vary in lightness was appropriate for helping 

participants understand the concept of an average hue as both types of 

stimuli are simple patches of light. Participants completed 10 lightness 

practice trials using ensembles of achromatic stimuli, varying in 

lightness relative to the background (8 – 48 cd/m2, in 4 cd/m2 steps). 

The practice included feedback to indicate if the participant’s selection was “correct” (at the mean lightness, also the mid-point of the range 

shown in the ensemble), “close” (within one step of the correct response) or “incorrect”. Participants were required to be “correct” or “close” on each of the last three practice trials in order to proceed to the 
main task, otherwise the practice was repeated. The task appeared to 

effectively explain the concept of a perceptual average as the majority 

of participants proceeded to the color task after one run of 10 practice 

trials, apart from one who required 20 trials in total. No feedback on 

performance was given during the color task. At the end of the color 

task participants were asked about the strategy that they used on the 

task. No participant reported adopting a conscious strategy other than 

looking at the set of colors and deciding on the average and none 

reported difficulty in understanding the concept of an average color.   

 

 

 

Fig. 1.  Upper panel – an approximate rendering of the 48 hues, and the 

background, as used in the experiment, arranged in a continuous hue 

circle. Adjacent hues are separated by 1 JND. The solid black line 

towards the top left indicates the selection of hues for ensembles – 

each ensemble had four different hues, drawn from a 6-JND span with 

2-JNDs between each exemplar. This arrangement moved at random 

around the hue circle on each trial to present ensembles with different 

mean hues, but with the spacing of the element colors yoked in the way 

shown. The dotted line inside represents the adjustment phase at 

which participants could select any hue from the circle, moving in 

single JND steps in the positive (clockwise) or negative 

(counterclockwise) direction. These responses are coded according to 

their JND-distance from the ensemble mean, which was assumed to fall 

at the middle of the distribution of ensemble colors. Lower panel – the 

order and timing of events in a single trial of the ensemble task. JND = 

Just-noticeable difference; ISI = inter-stimulus interval; ITI = inter-trial 

interval. 

3. RESULTS 

A. Homogeneous vs Heterogeneous ensembles 

In all cases and conditions the settings peaked at the expected mean, 

indicating that observers were able to average the hues. Observer 

settings were coded by their absolute error from the actual mean of 

ensembles, in terms of 1 JND steps around the hue circle. For 

heterogeneous ensembles this was assumed to be the mid-point of the 

distribution of hues which were present in the ensemble, for 

homogeneous ensembles this was the hue matching those used in the 

ensemble. Mean absolute error (i.e. error in either hue direction from 

the correct mean) was significantly greater for the heterogeneous 

ensembles (M = 2.02, SD = 0.25) than the homogeneous (M = 1.34, SD = 

0.21) (t(14) = 9.44, p < .001).  This can be seen in the data presented in 

figure 2 (selected individuals) and figure 3 (average observer) - the 

distribution of selection errors around the mean is greater (a wider 

normal curve with a greater standard deviation) in the heterogeneous 

condition compared to the homogeneous. 

 

 

Fig. 2. Error distribution histograms for homogeneous and 

heterogeneous conditions for four example observers typical of the 

whole sample. Dashed curves indicate normal distributions with a 

mean and standard deviation (SD) equal to that for each observer and 

condition. N.B. Settings outside the range of +/-9 JNDs are not 

displayed by the histogram, but do contribute to the mean and SD of 

the normal curves. 



 

Fig. 3. Error distribution histograms for homogeneous and 

heterogeneous conditions for the average observer. Bars are based on 

mean frequency of response across observers. Dashed curves indicate 

normal distributions with a mean and standard deviation (SD) equal to 

the mean for each observer and condition. N.B. Settings outside the 

range of +/-9 JNDs are not displayed by the histogram, but do 

contribute to the mean and SD of the normal curves. 

B. Simulation of Limited-Capacity Sampling Strategies In order to evaluate observers’ performance in the heterogeneous 
condition (when they are required to pick a single color to represent a 

multi-color ensemble), relative to the homogeneous condition (where 

they needed simply to match the single color present in the ensemble), 

an ideal observer simulation was carried out. This analysis sought to 

ascertain how many single ensemble elements an observer would 

have to sample in order to achieve performance at the level observed 

in the heterogeneous condition.  

 Two models were used for the simulation (figure 4). Both involved 

a sampling of elements from an ensemble composed exactly as in the 

adjustment experiment, followed by averaging of that sample, and 

finally selection from the available hues. The early noise model [8] 

applied noise to the representation of the colors at the sampling stage, 

such that each sampled element would be represented by a value 

selected from a normal distribution with a mean equal to the true 

element value and a standard deviation (SD) equal to that observed for 

settings in the homogeneous condition. The late noise model [8] 

applied noise after the averaging stage, such that the color 

representing the whole ensemble was subject to noise prior to 

selection. In both models selection involved rounding to the nearest 

integer. Simulations were run for each observer, using their individual 

SD from the homogeneous condition, and performance 10,000 trials. 

 These simulations, like those used in similar studies [e.g., 8, 35, 45], 

assume that the level of internal noise is constant across sample size. It 

is possible that a sub-sampling mechanism would have noise which 

increases with sample size, meaning that the benefit of larger samples 

being more representative is diminished by increased noise [see 16]. 

As there is no readily available estimate of how internal noise might be 

affected by sample size to include in the model, the results should be 

considered with this assumption in mind. 

 The results of the simulation are considered in terms of precision 

of performance, summarized by the standard deviation of error from 

the true mean in the simulated adjustment settings. By comparing 

these to the standard deviation of adjustment settings in the observer 

data it is possible to evaluate, given a limited-capacity sampling 

strategy or mechanism, how many elements an ideal observer would 

need to sample in order to reach or exceed the level of performance 

exhibited by the observers during the mean adjustment task. 

 The simulation revealed that most observers were performing at a 

level equivalent to sampling between one and two elements from each 

ensemble. This was true of both the early and late noise models. Figure 

5 shows the simulated data for four observers with the actual 

performance also plotted for comparison. The simulation data show 

that there are diminishing returns from taking more and more 

samples, and in the case of the late noise simulation, an optimum 

number of samples is reached at around six or seven elements. 

Importantly, however, only one observer (obs. 8) exhibited 

performance near this optimal level. 

 

 

Fig. 4: Schematic representation of the early and late noise simulations. 

In the early noise model noise is added to each sampled element prior 

to averaging. In the late noise model each element is first averaged, 

after which noise is added to the mean representation. Selection of the 

eventual mean hue response requires rounding to the nearest integer. 

Noise is equivalent to the observed standard deviation of settings from each real observer’s responses to homogeneous (i.e. single-hue) 

ensembles. Both panels represent a single exemplar trial where the 

same 4 elements are sampled from an ensemble and noise is based on 

observer 6. Note that the simulation was run for each observer and at 

sample sizes of 1-16 elements, for 10,000 trials each. n = number of samples; μ = mean of normal distribution indicating a noisy 
representation of a hue; σ = standard deviation of normal distribution; x = value assigned to a sampled element prior to averaging; x ̅ = 
calculated value for mean hue. All values given are in terms of JNDs 

from the true mean hue of the ensemble. 



 

Fig. 5: Simulation results and actual data for four observers. The top left 

panel shows observer 5, who performs worse in the ensemble 

condition than would be predicted if they made their settings based on 

sampling just one ensemble element. Observer 6 (top right panel) and 

7 (bottom left panel) perform at a level equivalent to sampling 1-2 

ensemble elements (based on either late or early noise). Observer 8 

(bottom right panel) performs at a level equivalent to sampling two 

elements in the early noise model, or between 5 and 6 in the late noise 

model. 

4. DISCUSSION 

This study had two main aims. The first was to compare the precision 

of settings of the mean hue of a rapidly-presented ensemble of 

different hues to the settings for a single hue.  

 The data show that, on average, observer settings tended to the 

mean color – settings peaked around the expected mean hue, with 

error distributed symmetrically either side indicating no bias or skew 

to the settings. The same pattern was found for the homogeneous 

condition. However the variance of settings was greater in the 

heterogeneous condition than in the homogeneous, indicating a 

difference in precision between these conditions. Settings of a mean 

hue were less precise than for single hue, indicating that reproducing 

the mean hue was subject to more error than reproducing a match for 

a single hue. 

 The second aim of this study was to establish whether a limited 

sub-sampling mechanism could explain the observers’ performance on 
the hue averaging task. If the observer estimates of the average hue 

appear to be based on integrating the colors from more than three or 

four elements then the process would appear to exceed the limits of 

visual working memory [16], thus implying that an efficient, holistic 

mechanism may be responsible for the formation of ensemble 

representations of color. 

 The results of the simulation suggest that a sub-sampling 

mechanism where attention is devoted to encoding and averaging no 

more than two elements would be sufficient to provide estimates of 

the mean with precision equal to, or better than, most observers. In 

other words, the within-subject variance in responses around the 

mean is no better than would be expected from a limited-capacity, sub-

sampling mechanism or strategy involving focused attention. 

Therefore, while the observers are clearly able to pick a mean hue 

following a rapidly-presented ensemble, and those selections converge 

on the true mean across trials, our data do not provide support for the 

proposal of a holistic hue averaging mechanism using distributed 

attention, or a mechanism with a capacity beyond the limits of visual 

short-term memory [16]. 

 Our early noise simulation is most similar to that used by 

Haberman and Whitney [8], using measurements of error in setting a 

homogeneous ensemble as noise applied to each sampled element. We 

also included a late noise simulation, where the internal noise was 

applied after averaging had taken place. In reality, noise is present at 

both of these stages, but the measure of internal noise taken from the 

homogenous condition conflates these two sources of error, meaning 

that it would not be possible to include an accurate estimate of the 

noise at both stages in a single simulation. As can be seen from figure 5, 

with increasing set sizes, the late noise simulations asymptote at a 

higher level of error than the early noise simulations. This is because 

when noise is applied independently to each sampled element it is then 

subject to noise cancellation, where noise in the positive direction for 

one element is cancelled out by noise in the negative direction for 

another. In contrast there is no noise cancellation in the late noise 

model. As the sample size approaches the whole set, the late noise 

simulation predicts that precision will improve to equal that observed 

in the homogeneous condition, while the early noise simulation 

predicts that averaging precision will be higher than for the 

homogeneous ensembles. Therefore, if it was necessary to prefer one 

of the two, the late noise simulation would seem to make more realistic 

predictions than the early noise simulation. This difference 

notwithstanding, the conclusion with regard to observer performance 

is similar for both simulations – observers are sufficiently imprecise in 

their mean hue settings that the difference between simulations is 

trivial. 

 The simulation results should be interpreted with the assumption 

of fixed internal noise borne in mind. It has previously been suggested 

that internal noise (i.e., the precision of representations) may increase 

with larger samples [16]. Noisier representations for larger samples 

would reduce the advantages of taking a more representative sample. 

As a result, a simulation applying variable noise which increases with 

larger samples would return less precise mean estimations than a 

simulation applying a fixed amount of noise to mean representations. 

The magnitude of the difference between these possible models of 

internal noise is impossible to assess without an available estimate of 

how internal noise might change with sub-sample size. Although the 

assumption of fixed internal noise is conservative, in that it may over-

estimate the precision of the null hypothesis of sub-sampling (the 

alternative being holistic averaging), the same assumption is made in 

other ensemble perception studies which do support the suggestion of 

holistic averaging for faces [8] and size [35]. Separating the effects of 

internal noise from sample size is a major theoretical challenge in 

understanding the possible mechanisms behind ensemble perception 

[45]. One way in which future research may address this would be to 

gather data which could enable the estimation of the level of internal 

noise which would be present for different sizes of sub-sample. This 

may be through cueing sub-sampling in an ensemble task, or simply 

gathering individual color estimations for more than one color, in a 

manner similar to the homogeneous condition of this study, but where 

the observer must attempt to retain and reproduce two (three, four, 

etc.) hues. Measured changes in internal noise that occur with 

increased sample size could then be included in further simulations. 

Such work is beyond the scope of the present study, however the 

approach of modelling the application of internal noise more 

realistically would be beneficial not just for understanding ensemble 

perception of color, but also other attributes. 

 In spite of the similarity in simulation assumptions and structure, 

our finding is somewhat at-odds with other simulations which also 

incorporate fixed internal noise, which have found sub-sampling 

models of ensemble perception of faces [8] and size [35] underperform 

on averaging precision relative to real observers with sample sizes 

fewer than seven elements. Notably, Haberman and Whitney [30] 

report that discrimination for the mean emotional expression from an 

ensemble was at least as good as discrimination for individual 

expressions – a trend not evident in our data, where precision for 

homogeneous ensembles (single colors) was better than for 

heterogeneous. 



 It is unlikely that a sub-sample would be taken from an ensemble 

at random, i.e. some elements may contribute disproportionately to the 

mean estimation [weighted-averaging, e.g., 46], or be more likely to be 

selected for a sub-sample. Attention cued to individual items has been 

shown to affect mean size estimates [21], and averaging of size over 

time has been shown to be biased towards looming phases, perhaps 

because these are more salient [47]. Variations in the salience of 

individual hues would not affect the overall central tendency (the peak 

of the distribution of selections) of mean adjustment in this experiment 

as the position of the ensemble elements rotates through every 

possible color in the stimulus circle (in a random order), however it 

could exaggerate deviations from the expected mean if those colors are 

assigned higher weights when averaging. The salience of each hue in 

the present study should be approximately equal in this study (stimuli 

are equated for luminance and equally distant from the white-point in 

DKL space). As DKL space is not scaled to equate saturation there is 

some residual variation in salience of hues around the hue circle. 

However this variation is gradual around the hue circle, meaning that 

local saturation differences (i.e. the difference between neighboring 

hues) is very subtle.  

 It is possible that hue is not as apt to be averaged using holistic 

sampling as size or faces. There are some differences between hue and 

other domains which may be responsible for differences in ensemble 

processing, but also several similarities. Unlike size, hue is a matter of 

qualitative experience, rather than magnitude. Saturation and lightness 

may both be described in terms of magnitude or intensity, so one color can be said to be “more saturated” or “lighter” than another. In 
contrast, hue is a circular dimension, requiring reference to color 

categories to describe relationships. Therefore, given highly distant 

exemplars (e.g., red and green) it may not be easy to imagine what the 

mean should look like. As the angle (e.g., in DKL space) between hues 

to be averaged approaches 180 degrees averaging could become 

increasingly difficult, or impossible, as the elements now represent 

opponent colors with qualitatively different sensations which do not 

blend into a meaningful average. Although the qualitative and circular 

nature of hue perception seems a plausible reason that averaging 

would be harder, these do not necessarily preclude hue from rapid, 

holistic averaging and there remain similarities with other domains. 

For example, hue averaging ability is reduced by increased ranges of 

hue in ensembles [13, 15], but this is also the case for size [29], and the 

stimuli in the present experiment were within the range at which 

mean selection from a 2AFC is reliable [13]. Hue is subject to 

categorization [e.g., 48], however our previous study has demonstrated 

that there is no effect of color categories on mean selection [13]. Face 

perception is also somewhat qualitative (in terms of emotions and 

identity), and is widely understood in terms of norm-based coding 

accounts, which rely on extraction of the mean [for a review see 49]. 

Like norm-based models of face coding, color perception is subject to 

white-point adaptation which supports color constancy [50]. In short, 

there do not appear to be particular features of hue perception which 

can be said to account for the high variance in average hue settings, 

particularly given the evidence for holistic ensemble perception in 

other domains. 

 It should be noted that just because sub-sampling could explain the 

results in this experiment, it does not necessarily imply that holistic 

averaging of hue cannot or does not take place [30]. Evidence from 

other domains suggests that averaging may be most reliable when the 

summary statistics are incidental to the main task. Summary statistics 

can have effects on response times and performance even when 

observers are not instructed to judge the mean or extract the gist at all. 

For example, response times for ensemble classification (“red” or “blue” average) can be reduced when a prime ensemble with the same 
variance is presented beforehand, even when the prime ensemble has 

a different mean color [24]. There are many other examples of tasks in 

which implicit processing of the summary statistics of sets appears to 

influence responses [2, 7, 14, 51-58]. It may be that instructing 

observers to consider and retain an average hue results in the use of a 

sub-sampling strategy, whereas observers may perform better relative 

to sub-sampling when the encoding of mean hue is an implicit part of 

the task. 

 The present study has shown that observers are able to reproduce 

the average hue following a rapidly-presented multi-hue ensemble, 

and their settings tend to the expected mean over many trials. 

However, these settings are distributed noisily around the mean, 

showing imprecision in the representation of mean hue. This 

imprecision is far greater than observed for reproduction of a single 

hue setting for single hues presented in the same way. The ideal 

observer simulation suggests that a sub-sampling mechanism 

integrating just two items from the set would outperform most 

observers on the task. This implies that holistic averaging of the whole 

set may not occur for ensembles of hue and that our percept of color 

gist may be biased towards the particular sub-sampled colors of an 

ensemble. Further research is needed to clarify what factors drive 

certain elements to be included in the sub-sample (e.g., salience, spatial 

position/fixation), and whether holistic ensemble representations of 

hue can be promoted during tasks where color summary statistics are 

not the focus of attention. It would also be informative to encourage 

sub-sampling strategies (e.g., random, spatial, or pre-cued elements) in 

participants as a real-observer analogue to the ideal-observer 

simulation reported here, in order to assess whether the simulation 

could be a realistic model for how the task is done. The present study 

suggests that average hue may not be a summary statistic which is 

automatically and efficiently encoded by observers, and that the 

perception of a rich world of color may be biased by the hue of 

individual elements in a scene. 
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