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Accurate real space iterative 
reconstruction (RESIRE) algorithm 
for tomography
Minh Pham 1*, Yakun Yuan 2,3, Arjun Rana 2, Stanley Osher 1 & Jianwei Miao 2*

Tomography has made a revolutionary impact on the physical, biological and medical sciences. The 
mathematical foundation of tomography is to reconstruct a three-dimensional (3D) object from a 
set of two-dimensional (2D) projections. As the number of projections that can be measured from a 
sample is usually limited by the tolerable radiation dose and/or the geometric constraint on the tilt 
range, a main challenge in tomography is to achieve the best possible 3D reconstruction from a limited 
number of projections with noise. Over the years, a number of tomographic reconstruction methods 
have been developed including direct inversion, real-space, and Fourier-based iterative algorithms. 
Here, we report the development of a real-space iterative reconstruction (RESIRE) algorithm for 
accurate tomographic reconstruction. RESIRE iterates between the update of a reconstructed 3D 
object and the measured projections using a forward and back projection step. The forward projection 
step is implemented by the Fourier slice theorem or the Radon transform, and the back projection 
step by a linear transformation. Our numerical and experimental results demonstrate that RESIRE 
performs more accurate 3D reconstructions than other existing tomographic algorithms, when there 
are a limited number of projections with noise. Furthermore, RESIRE can be used to reconstruct the 
3D structure of extended objects as demonstrated by the determination of the 3D atomic structure 
of an amorphous Ta thin film. We expect that RESIRE can be widely employed in the tomography 
applications in different fields. Finally, to make the method accessible to the general user community, 
the MATLAB source code of RESIRE and all the simulated and experimental data are available 
at https:// zenodo. org/ record/ 72733 14.

Tomography has had a radical impact on diverse fields ranging from the 3D determination of the individual 
atoms in matter to the diagnosis of disease in  medicine1–4. In the physical sciences, atomic electron tomogra-
phy (AET) has been developed to resolve the atomic structure of crystal defects and amorphous materials in 
unprecedented 3D  detail1,3,5–10. In the biological sciences, cryo-electro nmicroscopy has become a powerful 
tool for 3D structural determination of macromolecules with identical or similar conformations at near-atomic 
 resolution2,11–14. For pleomorphic biological structures, cryo-electron tomography is a method of choice with a 
resolution in the range of 2–5  nm15,16. Tomography has also been combined with coherent diffractive imaging 
 methods17–19 to perform quantitative 3D imaging of thick samples with a resolution of tens of  nanometers20–29. 
In medicine, computed tomography has been routinely used as a diagnostic imaging  procedure4. Although 
the applications of tomography are wide and diverse, a central problem associated with its mathematical and 
experimental implementation is similar, that is, how to accurately reconstruct a 3D structure from noisy and 
incomplete projection  data30. When there are a large number of projections with low noise and no missing data, 
a direct inversion technique, named filtered back-projection (FBP)2,4,30, is accurate and fast. However, for most 
applications, there are usually missing data and high noise due to the radiation damage to the samples and/or the 
geometric constraint on the tilt range. To deal with these issues, real-space iterative algorithms have been devel-
oped such as algebraic reconstruction technique (ART)30,31, simultaneous algebraic reconstruction technique 
(SART)32 and simultaneous iterative reconstruction technique (SIRT)33,34. These algorithms minimize the differ-
ence between measured and calculated projections using least-square optimization, which can be implemented in 
parallel computing with a fast running time. Although ART, SIRT and SART usually outperform FBP, the forward 
and back projection steps in the real-space iterative algorithms are based on mathematical approximations that 
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are not accurate enough to produce high-quality reconstructions. Fourier-based iterative algorithms have been 
developed to overcome this accuracy limitation, such as equal slope tomography (EST), generalized Fourier 
iterative reconstruction (GENFIRE) and  others8,35–39, which rely on the Fourier transform and the inversion as 
the accurate forward and back projection steps, respectively. Numerical simulation and experimental results have 
demonstrated that EST and GENFIRE perform better than FBP, ART, SIRT and SART when there are only a 
limited number of  projections8,35,36,40–43. EST and GENFIRE have also played an essential role in the development 
of AET for the 3D determination of crystal defects at the single-atom  level1,3,5–10,44. Albeit powerful, Fourier-
based iterative algorithms require a large memory to assemble a 3D Fourier array in each reconstruction and are 
also computationally expensive due to the difficulty in implementing parallel  computing9,35,36. Here, we report 
the development of RESIRE for accurate tomographic reconstruction. Compared with real-space iterative algo-
rithms, RESIRE uses the Fourier slice theorem or the Radon transform as the forward projection and a linear 
transformation as the back projection, both of which are accurate. Compared with EST and GENFIRE, RESIRE 
is a real-space iterative algorithm and can be implemented in parallel computing with a fast running time. Our 
numerical simulation and experimental results indicate that RESIRE outperforms all existing algorithms for 
accurate tomographic reconstruction. Furthermore, RESIRE has been used by AET to determine the 3D atomic 
structure of amorphous materials for the first  time45,46.

Methods
Mathematical foundation of RESIRE. The tomographic reconstruction can be formulated as a least-
square optimization problem which minimizes the following sum of squared errors (SSE)

where {bθ }θ and {θ}θ are the projections and their corresponding tilt angles measured from a 3D object O. We 
denote that �θ is a linear projection operator with respect to the tilt angle θ . For simplicity, we represent Eq. (1) 
with a single tilt axis, but RESIRE works as well for multiple tilt axis case with three Euler angles. The error metric 
ε can be decomposed into a sum of εθ which is the error metric for each projection bθ.

The gradient of the error metric ε was computed with respect to the object O using the calculus of variation 
 method47. The following derivation is a discrete version of the continuous problem. For a voxel with a 3D coor-
dinate {u, v,w} , the gradient is calculated by:

where Rθ is the rotation matrix. The first line of Eq. (3) is obtained by the vanilla chain rule and the sec-
ond line is based on an assumption that each voxel of the object is independent from each other, that is, 
∂O{x, y, z}/∂O{u, v,w} = 1 if {x, y, z} = {u, v,w} and 0 otherwise. As the transpose of a rotation matrix is its 
inverse, we derive the following transformation

where Ri,j is the (i, j)th element of the rotation matrix Rθ , and all the voxels O{u, v,w} are on a Cartesian grid 
(integer numbers) but the coordinates {x, y} are not.

Using Eqs. (3)–(4), RESIRE iterates between an updated object and the measured projections with each iteration 
consisting of a forward and back projection step. In the forward projection step, the projections, �θ(O) , are calcu-
lated from the object O of the current iteration using one of the two approaches: the Fourier slice theorem (FST) or 
the Radon transform. The FST approach first pads zeros to the object and then computes its oversampled Fourier 
transform, where padding zeros in real space is equivalent to oversampling in reciprocal space and can improve the 
accuracy of the  approach48. 2D projections can then be calculated by taking the inverse Fourier transform of the 
corresponding 2D slices through the origin of the oversampled 3D Fourier transform. Alternatively, the projections, 
�θ(O) , can be computed from object O via the Radon  transform49,50. Each voxel of the object is divided into equally 
sub-voxels, each of which is independently projected along specific tilt directions to calculate 2D projections with 
sub-pixel precision. The finer the sub-pixel is, the better the precision is, but at the expense of more computational 
power. In the “back projection” step, the measured projections are subtracted from the forward projections to obtain 
the differences �θ(O)− bθ . The gradient of the error metric εθ (O) is computed by applying �T on this difference 
�θ(O)− bθ . Equation (4) shows how to “back-project” a 2D image to 3D domain. The “back-projection” is in fact 
a linear transformation which includes a rotation and a translation, that is, each (u, v) slice of the gradient is a linear 
transformation of the difference. In addition, the (u, v) slices where w  = 0 corresponds to the translation of the 
(u, v) slice where w = 0 . The amount of the shift is the zero order term [R3,1 R3,2]

Tw in Eq. (4).
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Remarks 

1. Regarding performance, the FST requires the oversampling ratio OR to be greater than 3; however, OR larger 
than 4 makes little or no further improvement. To balance the trade-off between performance and efficiency, 
we choose OR = 3 in all our experiments.

2. The “forward projection” using the FST and the Radon transform are slightly different. While the FST pro-
duces smoothed images, the Radon transform constructs sharper figures. Based on specific applications, 
users can choose either the FST or the Radon transform to perform the forward projection step.

3. Although the FST has been commonly used for 3D volume assembly in single particle cryo-EM38,39 via a 
software package named RELION, the limitation is the memory usage and the interpolation in the Fourier 
domain. RELION uses a statistical approach and works well in the case of numerous measurements. But 
when the measurements are limited, such as AET, which only has around 50–120 projections in a range of 
[−70, 70] degrees, tomography reconstruction becomes an ill-posed problem. Real-space constraints and 
regularizers can help to stabilize the reconstruction. Thus, one can further improve the Radon transform-
based RESIRE by iteratively applying sparse and Tikhonov regularizes similar to the optimization techniques, 
such as Alternating Direction Methods of  Multiplier51 (ADMM), Douglas  Rachford52 (DR), Primal-Dual 
Hybrid  Gradient53 (PDHG), and Gradient Projection  Method54 (GPM).

RESIRE convergence. To prove the convergence of RESIRE, we need to find the Lipchitz constant L of the 
gradient that satisfies the inequality

The Lipchitz property by Eq. (5) will guarantee that RESIRE converges with the step size 1/L. When applying 
the inequality to RESIRE, we first assume y is the single tilt axis and reduce the analysis to the 2D case where 
the reconstruction is a 2D array of size Nz × Nx . For simplicity, let us assume that it is a square array with 
Nx = Nz , and the object has a compact support with a circle shape of diameter Nz and the center coinciding 
with the origin of the reconstruction. We then vectorize x by stacking its columns into a vector, i.e. x ∈ R

NzNx×1 . 
Next we decompose the projection operator �θ ∈ R

Nx×NzNx into a product of two operators S ∈ R
Nx×NzNx and 

Pθ ∈ R
NzNx×NzNx , i.e. �θ = SPθ where Pθ is a rotation operator for angle θ , and S is projection operator along 

the z axis:

where 1 ∈ R
Nz×1 is a vector of all ones. As all the elements of Pθ are in range [0, 1] and each row of Pθ is summed 

to 1, the rotation operator Pθ is non-expansive, that is, �PTθ � = �Pθ� ≤ 1 where ‖.‖ is the l2 induced matrix norm. 
Furthermore, the rotation of an object must be an orthogonal operator, i.e. PTθ Pθ = I . Since we approximate the 
rotation by linear interpolation, we have PTθ Pθ � I , implying that I − PTθ Pθ is semi-positive definite. Based on 
the above analysis, we derive the following inequalities

where all the inequalities are obtained by the triangle inequality. STS ∈ R
NzNx×NzNx is a block-diagonal matrix, 

containing Nx identical blocks 1 1T ∈ R
Nz×Nz which is a rank-one matrix with all elements equal to one. Since 1 1T 

has exactly one non-zero eigenvalue � = Nz , it results in �STS� = Nz . Since Pθ is non-expansive and �STS� = Nz , 
we approximate the Lipschitz constant

This inequality is an important result of the step size analysis, showing that ∇εθ is Nz-Lipshitz. Since there are n 
projections contributing to the gradient, the Lipschitz constant increases by a factor of n, that is, the accumulated 
Lipchitz constant becomes L = nNz . The gradient descent step size is determined by t/(nNz) where t ∈ (0, 1] is 
the normalized step size. Although our analysis assumes Nx = Nz , in practice we usually have Nz ≤ Nx . Since 
Eq. (7) shows the upper bound of the Lipchitz constant, the same step size t is still applicable when Nz is not too 
small relative to Nx . Furthermore, we can choose larger t when the object is sparse. Our experimental results show 
that RESIRE converges well with t = 2 . This t value has been chosen for all our experimental results reported in 
this paper. Finally, we derive the iterative equation of RESIRE:

where the superscript k represents the kth iteration. Having shown that ∇ǫ is Lipchitz continuous with constant 
L = nNz , we can conclude that RESIRE with a fixed step size s = t/(nNz) ≤ 1/L after k iterations will yield a 
solution Ok which satisfies:
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where ǫ(O∗) and O∗ are the optimal error value and solution, respectively. In addition, Eq. (9) shows that the 
sequences {Ok}k produced by the iteration in the Eq. (8) will converge to the optimal solution O∗ in the first order 
where the rate of convergence is O( 1k ) . The proof can be found  elsewhere55.

Although the above analysis focuses on the single axis rotation case, RESIRE is generalized to the multiple 
axis rotation reconstructions. For the general case, we use the three Euler angles (φ, θ ,ψ) to describe the ori-
entation of a 3D object, corresponding to the rotations around the z, y, and x-axes, respectively. The composed 
rotation matrix is R{φ,θ ,ψ} = ZφYθXψ where Zφ , Yθ and Xψ are the rotation matrices around the z, y, and x-axes, 
respectively. By replacing Rθ with Rφ,θ ,ψ in Eq. (3), RESIRE can be used for the general rotation case.

RESIRE pseudocode

The pseudocode of the RESIRE algorithm is described below, which can be implemented with parallel comput-
ing with a fast running time.

Figure 1 shows the schematic layout of the RESIRE algorithm. To reconstruct a 3D object from given experi-
mental projections, RESIRE minimizes the L2-norm metric using gradient descent. Each iteration of the algo-
rithm includes four steps: 

1. RESIRE first computes the forward projections �θi (O
k) of an arbitrary initial object using FST or the Radon 

transform, where an empty object is often used.
2. The second step computes the differences Ri(Ok) = �θi (O

k)− bθi between the calculated and experimental 
projections

3. The third step back-projects the difference to 3D real space, yielding the gradient of the object: 
∇εθi (O

k) = �T
θ i
Ri(O

k)

4. Lastly, the initial object is updated using the gradient: Ok+1 = Ok − t
nN

∑n
i=1 ∇εθi (O

k) . Optional real-space 
constraints, such as positivity and support, if applicable, are enforced in RESIRE for better convergence and 
accuracy.

Repeat these four steps until the algorithm converges or the L2-norm error does not change. Typically, RESIRE 
reconstructs high-quality object with sufficiently optimized error metrics after several hundreds of iterations.

Angular refinement. In many tomography experiments, the measured tilt angles are not always accu-
rate due to instrument misalignment, motor slipping, beam-induced motion, vibration, thermal effects, and/
or software error. RESIRE implements the following angular refinement procedure to improve the tilt angle 
accuracy. Using the current tilt angles, an initial 3D object is reconstructed by RESIRE. For each jth meas-
ured projection, a series of 2D projections are calculated from the 3D object by varying the three Euler angles 
φ ∈ [φj − δφ ,φj + δφ] , θ ∈ [θj − δθ , θj + δθ ] , and ψ ∈ [ψj − δψ ,ψj + δψ ] are the current tilt angles. Since our 
angular refinement uses brutal force, we suggest the searching range is ±3◦ within the initial angles for the sake 
of efficiency, i.e. δφ = δθ = δψ = 3◦ . Each calculated 2D projection is then compared with the corresponding 
measured projection via an error metric. The three Euler angles with the smallest R-factor are recorded as the 
new angles for the jth measured projection. After repeating this step for all the measured projections, a new 3D 
object is reconstructed using the new angles. The refinement procedure is repeated until no further improve-
ment can be made. This angular refinement procedure can improve the tilt angle accuracy and the quality of the 
3D reconstruction as demonstrated with numerical simulation and experimental  data36.

(9)ǫ(Ok)− ǫ(O∗) ≤
�O0 − O∗�2

2sk
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When working with other imaging sciences, such as single-particle, one can consider other refinement pro-
cesses, such as the EMC  algorithm56,57. There is a potential to combine RESIRE with such spatial refinements.

Results
RESIRE reconstruction of a simulated biological vesicle. A 64× 64× 64 voxel model of a biological 
vesicle (Fig. 2a–c) is used in this test to demonstrate the performance of RESIRE relative to the other tomo-
graphic reconstruction methods. In the simulation, the tilt axis is the y-axis and the other two Euler angles φ and 
ψ are set to zero. When there is enough measurement and no missing wedge, the performance of all Tomography 
algorithms are all great; hence we omit this test. Instead, we focus on the missing wedge case and large angular 
increment. The missing wedge problem is believed to be more severe than the coarser tilt angles and causes 
trouble to Tomographic reconstructions. A tilt series of 41 projections are calculated from the 3D model with a 
tilt range of ±70◦ and an angular increment of 3.5◦ . Poisson noise is added to each projection to make the simu-
lation data more realistic. Reconstructions are performed using FBP, SIRT GENFIRE and RESIRE. To monitor 
the convergence, an R-factor RF is used as an error metric to quantify the difference between the calculated and 
measured projections.

All the iterative algorithms RESIRE, GENFIRE and SIRT are run with 150 iterations. ASTRA  Toolbox58,59 is 
used to perform the SIRT reconstruction and  IMOD60 is used for FBP. The R-factors are calculated to be 11.7, 
23.9, 12.9 and 9.08% for FBP, SIRT GENFIRE, and RESIRE, respectively. By minimizing the least square through 
iteration, RESIRE and SIRT obtain lower RF than FBP and GENFIRE. FBP has the largest RF because it is a direct 
inversion method. Although its RF is slightly larger, GENFIRE produces a more accurate reconstruction than 
SIRT as demonstrated below.

Figure 2 show 10-voxel-thick central slices of the 3D reconstructions in the XY (top row), XZ (middle row) 
and YZ (bottom row) planes by FBP, SIRT, GENFIRE, and RESIRE, respectively, where the z-axis is the missing 
wedge direction. The XY central slices from all four methods show a good agreement with the model. Although 
the missing wedge effects are present in all the four reconstructions of the XZ and YZ slices, RESIRE exhibits 
less peripheral noise, more easily detectable boundaries and reduces missing wedge effects than FBP, SIRT, and 
GENFIRE.

(10)RF =
1

n

�

θ





�

x,y

|�θ(O){x, y}| − bθ {x, y}|
�

�

x,y

|bθ {x, y}|





Figure 1.  Schematic layout of the RESIRE algorithm. RESIRE first calculates the forward projections of an 
arbitrary initial object using FST or the Radon transform. The differences between the calculated and measured 
projections are back-projected to yield the gradient. The initial object is then updated using the gradient. 
Optional constraints such as positivity and support can be enforced for better convergence and accuracy. 
The updated object is used for the next iteration. Usually, after several hundreds of iterations, the algorithm 
converges.
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To quantify the results, we calculate the Fourier shell correlation (FSC) between the model and each recon-
struction. Figure 2p confirms that that RESIRE outperforms the other three methods at all spatial frequencies.

Next, we perform the angular refinement test with the same simulation data, deviating the tilt angles by add-
ing Gaussian noise with a normal distribution (standard deviation equals 1.0) to the ground truth θ angles. The 
angular refinement starts with these initial guesses and searches for optimal values in the range of ±3◦ within the 
initial ones. After a couple of rounds of refinement, the Root Mean Square Error (RMSE) between the ground 
truth angles and the refined ones is reduced from 1.00 to 0.16. The 3D image obtained by the angular refinements 
is almost indistinguishable from the regular RESIRE with the ground truth angles. At the same time, the two 
FSC curves are nearly identical (so the figures are omitted here).

RESIRE reconstruction of the experimental data of a biomineral. To test RESIRE with experi-
mental data, we use a tomographic tilt series acquired from an aragonite coral sample with an annular dark-
field (ADF) scanning transmission electron microscope (STEM). The tilt series consists of 69 projections with 
a tile range from −60◦ to +76◦ and an angular increment of 2◦ . The projections were pre-processed with back-
ground subtraction, normalization, and alignment. Details of the experiment and pre-processing can be found 
 elsewhere61.
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Figure 2.  3D reconstruction of a simulated biological vesicle. (a–c) Three 10-voxel-thick central slices of the 
vesicle model in the XY, XZ and YZ planes, respectively. The corresponding three reconstructed slices with FBP 
(d–f), SIRT (g–i), GENFIRE (j–l), and RESIRE (m–o), where the missing wedge direction is along the z-axis. 
(p) The FSC between the model and the reconstructions showing that RESIRE produces a better reconstruction 
than FBP, SIRT, and GENFIRE at all spatial frequencies.
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Using the same experimental data set, we perform FBP, SIRT, GENFIRE, and RESIRE, reconstructions with 
RF of 25.4%, 13.5%, 7.29% and 5.30%, respectively. RESIRE produces the smallest RF , indicating that its 3D 
reconstruction is most consistent the 69 experimental projections. Figure 3a–h shows the XZ and YZ projec-
tions of the four 3D reconstructions, where the z-axis (horizontal) is the missing wedge direction. Compared 
with FBP, SIRT and GENFIRE, RESIRE reduces the reconstruction artifacts in the missing wedge direction as 
indicated by arrows. Figure 3i–p shows the 30-nm-thick central slices of the four reconstructions in the XZ, and 
YZ planes. RESIRE exhibits less peripheral noise, more reduced missing wedge effects, and sharper fine features 
than the other three methods (arrows).

We also report the computational time of RESIRE in the case of GPU parallel computing. On an intel core 
i7-7800 computer equipped with a NVIDIA GeForce GTX1080Ti GPU, RESIRE needs 0.15 s per iteration to 
reconstruct the 3D volume with size 243× 243× 243 pixels. Totally, the entire reconstruction accomplishes 
200 iterations in 30 s.

RESIRE reconstruction of the 3D atomic structure of an amorphous film. To perform the tomo-
graphic reconstruction of an extended object, we use an amorphous Ta thin film with an average thickness  5 
nm, which was fabricated by physical vapor deposition. A tilt series of 46 ADF-STEM projections with a tilt 
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Figure 3.  3D reconstruction of an aragonite coral sample. XZ and YZ projections of the FBP (a, e), SIRT (b, f), 
GENFIRE (c, g) and RESIRE (d, h) reconstructions, respectively. 30-nm-thick central slices of the FBP (i, m), 
SIRT (j, n), GENFIRE (k, o) and RESIRE(l, p) reconstructions in the XZ and YZ planes, respectively. The arrows 
show features that are better reconstructed by RESIRE than by the other three methods. The arrows show that 
RESIRE produces a reconstruction with less peripheral noise, more reduced missing wedge effects, and sharper 
fine features than FBP, SIRT and GENFIRE.
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range from −63.4◦ to +55.5◦ were acquired using the TEAM 1 microscope at NCEM and LBNL. The detailed 
experimental parameters and data pre-processing can be found  elsewhere46.

The reconstruction of the amorphous thin film is performed by FBP, SIRT, GENFIRE, and RESIRE. Fig-
ure 4a–b shows the 3D atomic model of the amorphous thin film at two different orientations reconstructed 
by RESIRE, where the atomic tracing procedure is reported  elsewhere46. Figure 4c–f, shows the 1.61-Å-thick 
central slices of the amorphous thin film in the XY plane, reconstructed by FBP, SIRT, GENFIRE and RESIRE, 
respectively, in which RESIRE produces better atomic features than the other methods. Figure 4g–j, (o–r) and 
their magnified regions (k–n) and (s–v) shows the 1.61-Å-thick central slices in the YZ and XZ planes by the 
four methods, where more missing wedge effects are clearly visible in the FBP and SIRT reconstructions. Due to 
the extended nature of the thin film, there are some the artifacts near the top and bottom edges of the slices in 
the YZ and XZ planes. Compared with FBP, SIRT and GENFIRE, RESIRE exhibits less peripheral noise, more 
easily detectable atomic features and reduced missing wedge effects.

Remark In the first test, we compared the 3D reconstructions of FBP, SIRT, GENFIRE, and RESIRE from 41 
projections. In the 3D reconstruction from the experimental data of a biomineral in the second test, we used 69 
projections. In the reconstruction of the 3D atomic structure of an amorphous film in the last test, 46 projections 
were used. The range of the tilt angles is approximately between −65◦ and 65◦ . In all these cases, RESIRE outper-
forms other tomographic algorithms. Thus, on the performance of the RESIRE on the projection numbers, we 
conclude that RESIRE consistently performs more accurate 3D reconstructions than other existing tomographic 
algorithms when there are a different number of 2D projections.

Conclusion
We have developed a real-space iterative algorithm, termed RESIRE, for accurate tomographic reconstruction, 
which uses gradient descent to solve the least-square problem ��θO − b�2 . Compared with other real-space itera-
tive algorithms such as ART, SIRT and SART, RESIRE implements a more accurate forward and back projection 
step in the iterative process. The forward projection step is calculated by either FST with oversampling or Radon 
transform with sub-voxel precision. The back projection step is computed by a linear transformation. Compared 
with Fourier-based iterative algorithms such as EST and GENFIRE, RESIRE can be used to reconstruction 
extended objects in parallel computing. Numerical simulations of a biological vesicle and experimental results 
of an aragonite coral sample and an amorphous thin film have shown that RESIRE outperforms FBP, SIRT, and 
GENFIRE with less peripheral noise, more easily detectable boundaries and features, and reduced missing wedge 
effects. As the power of RESIRE has been demonstrated with the successful reconstructions of amorphous solids 
and 3D vector ptychography of magnetic  materials45,46, we expect that RESIRE can be applied to a wide range of 
imaging modalities in different disciplines, such as  AET1,3,5–10, coherent diffractive  imaging16–28,62,63, cryo-electron 
 tomography14,15, x-ray absorption and phase contrast  imaging2,42,64–68, and medical computed  tomography30,34,41.
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Figure 4.  3D reconstruction of an amorphous Ta film at atomic resolution. (a–b), 3D atomic model of the 
amorphous Ta thin film at two different orientations, reconstructed by RESIRE. (c–f), 1.61-Å-thick central slices 
of the amorphous thin film in the XY plane, reconstructed by FBP, SIRT, GENFIRE and RESIRE, respectively. 
(g–j), 1.61-Å-thick central slices in the YZ plane of the reconstructions, where the missing wedge direction is 
along the z-axis. (k–n), magnified regions in (g–j) (red squares), showing that RESIRE produces a high quality 
reconstruction with least artifacts. (o–r), 1.61-Å-thick central slices in the XZ plane of the reconstructions. 
(s–v), magnified regions in (o–r) (yellow squares). Compared with the other methods, RESIRE shows less 
peripheral noise, more easily detectable atomic features and reduces missing wedge effects.
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Data availability
The MATLAB source codes the simulated vesicle data, and the experimental data of the biomineral and the 
amorphous film are available at https:// zenodo. org/ record/ 72733 14.
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