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Abstract
For outdoor navigation, GPS provides the most widely-

used means of node localization; however, the level of accu-
racy provided by low-cost receivers is typically insufficient
for use in high-precision applications. Additionally, many
of these applications do not require precise absolute Earth
coordinates, but rather rely on relative positioning to infer
information about the geometric configuration of the con-
stituent nodes in a system. This paper presents a novel ap-
proach that uses GPS to derive relative location information
for a scalable network of single-frequency receivers. Net-
worked nodes share their raw satellite observations, enabling
each node to localize its neighbors in a pairwise fashion as
opposed to computing its own standalone position. Random
and systematic errors are mitigated in novel ways, challeng-
ing long-standing beliefs that precision GPS systems require
extensive stationary calibration times or complex equipment
configurations. In addition to presenting the mathematical ba-
sis for our technique, a working prototype is developed, en-
abling experimental evaluation of several real-world test sce-
narios. The results of these experiments indicate sub-meter
relative positioning accuracy under various conditions and in
varying environments. This represents up to order of magni-
tude increase in precision over existing absolute positioning
techniques or other unimodal GPS-based solutions.
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1 Introduction
A wide variety of today’s sensing applications comprise

networks of mobile devices that rely heavily on highly ac-
curate node location information. For outdoor applications,
GPS is regarded as the clear choice for location determina-
tion, especially as its price and power requirements steadily
decline; however, a significant tradeoff exists between cost
and accuracy. Low-cost receivers, such as those found in
smartphones and other handheld devices, can exhibit large
errors on the order of tens of meters, especially in challeng-
ing RF environments. Higher quality devices provide better
accuracy at the expense of price, with commercial-grade sur-
veying equipment costing thousands of dollars while requir-
ing extensive setup and calibration before becoming usable.

GPS enjoys widespread applicability in the positioning do-
main due to its unique ability to simultaneously service an in-
finite number of users and provide absolute coordinates any-
where on Earth. In many applications, however, the precise
relative locations of the nodes are much more important than
the precision of their absolute coordinates. For example, a
common class of Wireless Sensor Network (WSN) applica-
tions rely on the distributed sensing of some signal (acous-
tic, RF, magnetic, etc.) to estimate its source location. It is
easy to show that small errors in the sensors’ relative positions
can magnify in the sensor fusion, e.g., using multilateration
when the source is outside the sensor network, even when
the mean absolute position error of the sensors is zero. On
the other hand, if the network geometry is perfectly known,
but the entire network is shifted in absolute terms, the posi-
tioning error will show up in the estimated source location
without any magnification. Furthermore, in many applica-
tions the end result is requested relative to the WSN in the
first place, for example, in the case of smartphones or wear-
able sensors. There also exist numerous applications beyond
WSNs that require accurate relative locations, including au-
tonomous driving, collision avoidance, land surveying, pre-
cision agriculture, and formation flying of unmanned aerial
vehicles (UAVs), among others.

The research in this paper aims to bridge the gap between
cost and accuracy in outdoor localization by presenting a
novel relative localization technique based on the Global Po-
sitioning System and only low-cost, single-frequency GPS re-
ceivers. The goal is to enable commercial receivers to achieve
an unprecedented decimeter-scale level of accuracy for ap-
plications that require node locations in a relative coordinate



frame. Such an increase in relative accuracy without a cor-
responding increase in cost should enable the production of
novel applications that are either uneconomical today or have
proven to be out of reach given the current state of the art.
It must be noted that the use of GPS is still too costly and
power hungry for the cheapest and most resource constrained
WSN platforms, e.g., the traditional motes. Our target is the
mid- to high-end sensor and other wireless platforms includ-
ing smartphones.

In our approach, we shift focus from the typical standalone
GPS paradigm by allowing a network of receivers to share
raw satellite measurements such that each participating node
is able to localize all other nodes in the network using pair-
wise combinations of satellite observations. As such, each
node is able to create an internal mapping of the locations of
each of the “remote” nodes in terms of a set of 3D position
vectors with respect to its own local coordinate system. This
symmetrical approach to relative localization ensures that no
single points of failure are present in the system and further
allows for the addition or removal of sensor nodes on the fly
with no effect on system usability.

The methods used to carry out these high-precision local-
ization calculations comprise the AFV (Ambiguity Function
Value) Peak Tracking technique, or APT for short, which is
introduced in this paper. It is well known that many GPS
error sources are correlated over similar geographic regions;
as such, simple differential techniques should provide an in-
crease in accuracy over single-receiver algorithms. The cor-
responding increase in accuracy, however, is insufficient to
reach the desired decimeter-scale level of precision due to un-
corrected dual-receiver error sources, most notably caused by
poorly synchronized receiver clocks. We explore methods of
mitigating these additional error sources, with the end result
that our novel localization technique is able to achieve rela-
tive positioning accuracies up to an order of magnitude better
than existing methods that rely only on the correlations be-
tween absolute positions.

In a benign environment with clear views of the sky, our
technique was able to achieve anywhere between a 7-33x im-
provement over standard GPS positioning algorithms, with
relative precision on the scale of centimeters. Additionally,
our method produced results ranging from a 2-3x improve-
ment in moderately obstructed and highly dynamic environ-
ments, with precision on the order of decimeters, regardless
of the baseline length between a pair of receivers, which, in
our experiments, varied from 0 m all the way up to 3.5 km.

The rest of this paper is organized as follows. We start with
a brief overview of the previous and related works leading to
the research in this paper, including dual-receiver relativity
errors, methods of dealing with such errors, a new tempo-
ral observation model, and a multi-receiver relative tracking
algorithm. We then continue with an in-depth theoretical dis-
cussion of our novel localization technique. This is followed
by a short description of the hardware prototype and software
implementation used to carry out our research. We continue
with an evaluation of the system and an analysis of experi-
mental results and conclude by discussing the limitations of
the approach and describing ideas for future continuation of
the work.

2 Related Work
While standalone GPS positioning techniques have been

refined and dramatically improved over the past few decades,
research has begun to shift focus toward increasing the accu-
racy of GPS-based coordinates through use of either multi-
modal sensing techniques or multi-receiver error mitigation
techniques. In terms of multi-modal localization, research has
been focused on the integration of GPS with an Inertial Nav-
igation System (INS) [22] to provide continuous positioning
data to fill in the gaps between the discrete GPS measure-
ment intervals. Oftentimes, input from these multiple sensors
are fused using a Kalman filter-based approach to produce a
statistically optimal estimate of the underlying system state
given a time series of noisy sensor measurements [19]. Re-
search has also been applied to improving statistical position
estimation by taking into account non-linearities in the GPS
system model itself via use of “Unscented” or Sigma-Point
Kalman Filtering techniques [21]. The most relevant research
related to our work, however, involves use of data from mul-
tiple GPS sensors combined in novel ways to mitigate errors
inherent to the GPS signals. Generally, these types of tech-
niques fall into one of two classifications: Differential GPS
(DGPS) or Real-Time Kinematic (RTK) navigation.

In most cases, an algorithm is considered to be DGPS-
based if it produces a baseline vector between two receivers
where one “reference node” remains static at a known loca-
tion and a second node roams freely around the reference
[16, 3]. The reference is erected in a pre-surveyed location
with a clear view of the sky. Once it begins receiving satel-
lite ranging signals, it retransmits them to nearby receivers.
Any number of roving nodes can be dispatched to receive
their own GPS ranging signals along with the ranging signals
from the reference. In such a way, every node has two full
sets of ranging data and a known reference position at every
epoch. Using this information in a relative context, many of
the large sources of error in the satellite ranging signals can
be minimized or eliminated to produce a much more accu-
rate baseline. Also, since the location of the reference node is
precisely known, these baselines translate directly into abso-
lute coordinates which makes DGPS an extremely attractive
method for surveying.

There are, however, several caveats to using this type of
methodology. The first and most obvious is the necessity of
having a reference beacon with a precisely known location. It
requires some amount of pre-planning and set-up to find an
acceptable location for such a beacon, as well as to allow the
beacon to localize its own position with high enough accu-
racy that it can be used as a reference for the roving nodes.
This makes it a bad choice for on-the-fly type applications
which cannot tolerate long set-up and calibration times [3].
The second caveat is that data from multiple epochs are usu-
ally required to achieve the desired level of precision with
these techniques. As such, the roving receivers must remain
stationary at each measurement point for a length of time in
order to collect the appropriate amount of data. Due to the
stop-and-go nature of these types of methods, they are more
suitable for applications that use GPS localization primarily
as a surveying tool, such as feature mapping or boundary de-
termination.



Another methodology that shares many similarities
with DGPS is the Satellite-Based Augmentation System
(SBAS)[4]. The SBAS used with GPS is called the Wide-
Area Augmentation System (WAAS), and like DGPS, it at-
tempts to increase accuracy by estimating the various sources
of error in the satellite observables. One major difference
between DGPS and WAAS is that WAAS gives actual es-
timates for the contributions of individual error sources in-
stead of lumping them together. This is necessary because
the system serves a much wider area than DGPS, and the as-
sumption of correlated errors under DGPS does not neces-
sarily hold true for WAAS. WAAS determines its corrections
from a large amount of data recorded by various monitoring
stations throughout the US. However, since these corrections
are based on very sparsely located stations, the level of accu-
racy achievable by this system is nowhere near as precise as
a local DGPS setup.

A recent extension to standard DGPS methods that aligns
more closely with the techniques presented in this paper is
a classification known as Real-Time Kinematic (RTK) Posi-
tioning [15, 17]. This type of positioning represents a group
of algorithms that uses a highly accurate (but ambiguous)
GPS observable known as the carrier phase from two or more
receivers to provide real-time localization updates. While
RTK can be viewed as a subset of DGPS, it is usually consid-
ered separately, with the main difference being that RTK al-
gorithms are necessarily carrier-phase based and always pro-
vide instantaneous and continuous receiver coordinates. The
primary observable in DGPS is an unambiguous, but far less
accurate measurement known as the pseudorange. Addition-
ally, DGPS is concerned with minimizing correlated errors
such that a more accurate absolute position can be estimated,
whereas RTK is concerned with dealing with the ambiguities
in the carrier phase measurements to provide more accurate
relative localization results [12, 5, 3].

In the majority of cases, RTK algorithms will require an
initial, stationary calibration phase in which to converge to a
highly accurate estimate of the baselines between a reference
node and some number of mobile receivers. The roving re-
ceivers are then free to move anywhere they like, and assum-
ing that consistent locks on at least three satellites are able
to be retained throughout the localization process, the accu-
racy is unlikely to degrade [3, 5]. It should be noted that the
downside to DGPS and RTK algorithms alike is that they both
presuppose the presence of a stationary reference node. The
case where the locations of both nodes is unknown or, even
worse, when the positions are unknown and both receivers
may be moving, represents a realm of localization that has
not yet been satisfactorily solved. The best approach in these
cases at the time of writing is a so-called moving baseline
method in which two receivers are assumed to be in motion,
and an RTK-like algorithm attempts to estimate the baseline
vector between them at every time epoch [11, 10, 8]. Most
current algorithms which fall under this heading are propri-
etary in nature, and there is yet to be seen an open, standard
method for dealing with the uncertainties in this problem. The
technique offered by this paper aims to fill this gap in relative
localization techniques.

3 Previous Work
In a previous work (see [7]), we developed a novel rel-

ative tracking algorithm known as RegTrack (Relative GPS
Tracking) which enabled centimeter-scale pairwise tracking
of sets of mobile GPS receivers over a significant period of
time. The research presented in this paper is a direct contin-
uation of that work; as such, we summarize the three main
concepts that were introduced in [7], including:

1. Identification and characterization of error sources spe-
cific to the dual-receiver localization case,

2. Extrapolation of satellite measurement data from inde-
pendent GPS receivers to a common time epoch, and

3. Creation of a temporal observation model describing the
relative changes in range between a satellite and two re-
ceivers through time.

Due to the imprecision of local clocks used in low-cost
GPS receivers, it was found that the actual measurement
times of observation sets taken at the same apparent time by
two independent receivers may differ by up to several mil-
liseconds. The high orbital velocities of the GPS satellites,
coupled with the rotation of both the Earth and the local co-
ordinate frames of the GPS receivers themselves during these
seemingly small timing discrepancies, caused non-trivial rel-
ativistic errors to be introduced into the standard GPS po-
sitioning models when combined in a relative positioning
sense.

In order to overcome these errors, we first characterized
them as either signal propagation errors or time bias errors
and quantified their respective effects on relative positioning
accuracy. We then developed a correction procedure which
could be used to extrapolate the satellite orbital positions, raw
measurement data, and receiver coordinate frames into a co-
hesive unit, with the end result that the relativistic effects that
originally introduced errors on the order of 1-3 meters per
satellite observation now result in only micrometer-scale in-
accuracies.

Using the corrected satellite observations, we developed a
so-called temporal double-differencing model which is able
to very precisely track the relative changes in range between
a single satellite and two receivers through time. By noting
that these changes in satellite-receiver range could be geo-
metrically linked to the relative change in baseline between
two receivers, we developed an algorithm whereby sets of
receiver-receiver baselines could be accurately tracked with-
out requiring knowledge of the precise absolute locations of
any of the receivers taking part in the localization procedure.

While the accuracies achievable by our RegTrack system
showed significant improvement over existing GPS-only so-
lutions, our tracking approach suffered from one serious limi-
tation, namely that it required manual baseline initialization.
Additionally, if a complete loss of satellite locks was expe-
rienced at any point during the tracking procedure, manual
re-initialization would again have to be carried out each and
every time. As such, we set out to extend our RegTrack algo-
rithm to carry out its own initialization routines, such that it
could be used as a complete, standalone localization service.
The results of that research are the topic of the remainder of
this paper.



4 Theoretical Approach
The tracking results from the RegTrack algorithm de-

scribed in the previous section provide exceptional accuracy
when viewed from a dead-reckoning point of view; how-
ever, their real utility comes from allowing data from multiple
epochs of time to be used in a single localization algorithm
regardless of any motion between the receivers.

In order to discuss the theory in this section, a few con-
cepts must be introduced. Firstly, the name of the observ-
able used in our localization approach is the “carrier phase,”
which can be viewed as a high-precision estimate of the range
between a satellite and receiver in terms of the number of
wavelengths, or carrier cycles, of the GPS signal itself. The
caveat to using this type of observation is that it is an am-
biguous measurement. It is only able to report the cumula-
tive changes in satellite-receiver range after the satellite lock
has been established. The initial range between the satellite
and receiver is an unknown constant which must be estimated
along with the coordinates of the relative baseline vector that
we are trying to determine. This can be exactly likened to the
problem we faced with the results of our RegTrack algorithm;
namely, we are presented with extremely precise navigation
results, but we do not know the initial baseline between our
two receivers when the tracking algorithm began. As such,
the location of the track with respect to a reference node is
ambiguous, including some unknown but constant bias equal
to the original baseline between the two receivers at the start
of the tracking procedure.

The standard model for carrier phase therefore includes a
constant ambiguity term for each satellite which must be re-
solved if we are to use the observation directly (for example,
in a trilateration procedure). A common technique to remove
the majority of quantifiable error from a satellite observation
is to perform an operation known as “double-differencing,”
whereby the observations from two different receivers, a and
b, to one satellite, s, are subtracted from one another, and this
result is subtracted from the same operation carried out on a
reference satellite, s0. In addition to causing all satellite- and
receiver-specific errors to cancel out, the fractional portion of
the constant ambiguity value also cancels out, guaranteeing
that it is now an integer. The resulting double-differenced
model looks like so:

∇∆R
s0,s
a,b = λ(∇∆φ

s0,s
a,b +∇∆N

s0,s
a,b )−∇∆ε

s0,s
a,b (1)

where ∇∆ denotes the double-differencing operation, R is the
satellite-receiver range, φ is the carrier phase observation, N
is the integer ambiguity, λ is the wavelength of the carrier
signal (∼19 cm), and ε is any remaining error, dominated
primarily in this case by multipath. Note that this equation
only holds for as long as a constant satellite lock is main-
tained. There are occasions when the lock may be lost for
such a small amount of time that the receiver is unable to de-
tect it. In this case, a phenomenon known as a “cycle slip”
occurs whereby the carrier phase observable increases or de-
creases by some number of whole carrier cycles. This affects
Equation 1 above by adding or subtracting the corresponding
number of slipped cycles to the integer ambiguity term. Since
these slips are difficult to detect, they have the ability to wreak

havoc on algorithms operating under the assumption that the
integer ambiguity has remained constant through time.

Now that we have introduced the carrier phase concepts
used in our research, we form the basis for our relative local-
ization algorithm from the following observations:

1. Accurate tracking results allow us to use localization
techniques that would normally be reserved for station-
ary network topologies.

2. The standard double-differencing observation model
provides the strongest geometric solution while includ-
ing the minimum amount of unmodeled error possible;
however, it requires resolution of the so-called integer
ambiguities (N term in Equation 1).

3. A solution relying solely on the resolution of ambigu-
ities in the carrier phase model is inadvisable, since it
will, by necessity, be susceptible to large errors due to
undetected cycle slips and will mandate that a certain
subset of satellites remain consistently visible through
time.

4. The correct relative baseline position will be character-
ized by a set of ambiguity values that results in low error
residuals when the modeled receiver-satellite ranges are
calculated and compared to the actual satellite observa-
tions over a significant period of time.

This last point is best understood through an illustration:

(a) Set of potential receiver

locations at time t0.

(b) Set of potential receiver

locations at time tn.

Figure 1: Change in candidate node locations through time

We can think of the carrier phase observation to each satellite
as a reported range value plus an unknown bias which is guar-
anteed to be equal to some number of carrier cycle wave-
lengths (∼19 cm), where the actual receiver position must lie
on one of the grid lines representing the reported range plus
the ambiguity bias. From Figure 1a, it is apparent that there
are multiple intersecting points which could all be potential
receiver positions (the purple circles) since they are located
on one of the gridlines from each of the satellites, and the
relevant gridlines intersect one another very nearly perfectly.
However, as the satellites move over time, the slopes of the
gridlines will necessarily change such that a new set of possi-
ble locations becomes apparent (Figure 1b).

We can see that one and only one of the candidate loca-
tions remains constant (the black dot) through the change in
satellite geometry. This persistent candidate location obvi-
ously corresponds to the correct receiver position. As stated



in our list of observations above, this can be verified math-
ematically by noting that the satellite-receiver ranges calcu-
lated using the incorrect ambiguity values (lines) from Fig-
ure 1a will no longer intersect with one another when recal-
culated after a change in satellite geometry. In other words,
only the correct receiver position (with the correct ambiguity
values) will have a continually low error residual when the
computed satellite-receiver ranges are compared to the satel-
lite observation values through time.

While this illustration shows the strength of the double-
differenced observation model, we have already said that it
can suffer severe drawbacks in that:

• Receivers must remain stationary while the correct in-
teger ambiguities are being resolved, as random motion
introduces 3 additional unknowns per unit time in a 3D
coordinate space.

• This stationary calibration phase is typically quite
lengthy because the GPS satellites are such a long dis-
tance from the Earth that the requisite change in satellite
geometry occurs relatively slowly over time.

• Cycle slips are difficult to detect and will result in ei-
ther very high error residuals or very wrong position es-
timates.

• The double-differenced model includes use of a refer-
ence satellite that may go in and out of visibility, under-
mining the ability of the ambiguity values to be resolved
since their values are completely dependent on the ref-
erence satellite being used.

As such, we decided to investigate methods of carrying out
our localization procedure without requiring resolution of the
integer ambiguities.

4.1 Ambiguity Function Method Overview
From literature, we found a mathematical concept intro-

duced in 1981 by Counselman and Gourevitch called the
“Ambiguity Function Method” (AFM) [1]. This method is
unique in that it leverages the “integer-ness” of the ambigu-
ity values in the double-differenced carrier phase model to
determine a baseline position which minimizes the range er-
rors in the participating satellites’ observations. Recall the
double-differenced carrier phase model from Equation 1. By
isolating the integer ambiguity term on the left-hand side of
the equation (and neglecting the error term for the moment),
we get:

∇∆N
s0,s
a,b =

∇∆R
s0,s
a,b

λ
−∇∆φ

s0,s
a,b (2)

This shows that at the correct baseline coordinates, the entire
right-hand side of the above equation will be a perfect integer
(in the absence of any errors). Mathematically, we can test a
value for its integer-ness by converting the number to radians
and taking its cosine:

cos(2π · integer)≡ 1.0 (3)

For numbers that are not perfect integers, the resulting value
will drift further and further from 1.0, reaching a minimum
of -1.0 at any integer± 0.5, or in other words, at the least

“integer-like” value possible. Extending this concept to the
double-differenced carrier phase model, we see that:

cos(2π ·∇∆N
s0,s
a,b ) = 1.0 (4)

And by extension, at the correct 3D baseline coordinates:

cos(2π · [
∇∆R

s0,s
a,b

λ
−∇∆φ

s0,s
a,b ]) = 1.0 (5)

This is an interesting concept in that it allows us to search for
a baseline solution in the position domain, instead of in the
measurement or ambiguity domains, as is usually the case.

By summing the resulting cosine values for all possible
satellite observations and dividing this result by the total num-
ber of observations, n, we can calculate an Ambiguity Func-
tion Value (AFV) in the range from −1.0 ≤ AFV ≤ 1.0:

AFV =
1

n

n

∑
i=1

cos(2π · [
∇∆R

s0,i
a,b

λ
−∇∆φ

s0,i
a,b ]) (6)

where an AFV closer to 1.0 represents a position in which
all of the double-differenced ambiguity values would be very
nearly integer.

Since we know that the ambiguity values must be integers,
the application of this method to GPS is as simple as defin-
ing a 3D search space, calculating the AFV for each and ev-
ery point (down to some pre-defined resolution) in the search
space, and picking the point with the highest value. As simple
as this sounds, this technique is almost never used in practice
for several reasons:

1. Depending on the size of the search space and the de-
sired resolution, the number of points that must be eval-
uated can become intractable.

2. The method pre-supposes all satellite observations to be
error-free; however, a relatively small amount of error
in one or more observation can result in an AFV that is
drastically far from 1.0.

3. Unmodeled errors can result in an incorrect set of coor-
dinates having a higher AFV than the correct baseline
coordinates.

4. The method cannot be used over time unless both re-
ceivers remain stationary since we are searching in the
position domain.

The reason this method is so intractable is due to the mini-
mum resolution required to guarantee that the correct position
is not missed. Since we are searching for positions that make
the double-differenced ambiguities the most nearly integer,
we must actually evaluate a position that is quite close to the
intersecting ambiguity lines in the first place. It is clear, for
example, that at a search resolution of 9.5 cm, or one-half the
carrier wavelength, it is possible for the set of evaluated lo-
cations (in one dimension) to come no closer to the correct
integer gridline than 4.75 cm, as shown in Figure 2.

By plugging this worst-case residual value of 4.75 cm into
AFV Equation 6, we see this would result in an AFV of
0.0, clearly nowhere near 1.0. In order to achieve a reason-
able AFV of at least 0.8, for example, the absolute minimum



Figure 2: Maximum 1D AFM error due to a search resolution
of 9.5 cm

search resolution required would be nearly 4 cm. Given a typ-
ical GPS 3D RMS position error of 4 m, this would require

( 4 m
4 cm

)3 = 1,000,000 individual search points for a single ob-
servation epoch!

In addition to the computational complexity of searching
through the entire search space in the absence of measure-
ment noise, real-world errors dictate that either much higher
resolutions or much larger search spaces be used to ensure
that the correct position is not missed. As such, AFM has
been all but abandoned for use in modern GPS localization
techniques; however, it should be noted that this method alone
stands apart from the rest due to its complete immunity to cy-
cle slips. The fact that the method simply takes the integer-
ness of a solution into account coupled with the fact that cy-
cle slips are always integer in nature (barring half-cycle slips
which will be discussed in 4.3) means that cycle slips which
normally wreak havoc on other positioning techniques pose
no problems whatsoever for the Ambiguity Function Method.

4.2 AFV Peak Tracking (APT) Solution
Because of the AFM’s immunity to cycle slips, as well as

its direct position-domain search space, it was chosen as the
preferred method on which to build our baseline determina-
tion algorithm. Unfortunately, due to the errors and compli-
cations listed in the previous section, it could not be coupled
with our tracking results and simply applied as a direct solu-
tion to the decimeter-scale relative localization problem.

Instead, we view the AFM search space in a different light,
creating a contour-map topology in which the AFV at a spe-
cific point corresponds to the point’s overall “fitness” as a
potential candidate for the baseline solution. Figure 3 shows

Figure 3: AFM search space as a contour map in 2D

a graphical representation of such a contour map in two di-
mensions, where the X and Y axes correspond to the X and
Y dimensions in the standard AFM search space, and the Z
axis represents the corresponding AFV, or fitness value, at the
specified location. Red areas in this figure indicate regions in
which the correct relative baseline is more likely to fall, while

blue areas indicate regions of unfitness. It is clear, although
the map is quite jagged and hilly, that the overall fitness func-
tion is smooth and continuous over short intervals, with eas-
ily identifiable peaks and valleys present in the topology. It
is precisely these peaks that we are referring to in our name
“AFV Peak Tracking Solution.”

The previous section explained how AFVs close to 1.0 cor-
respond to baselines that make the double-differenced integer
ambiguities in our model the most integer-like, and therefore,
the most “correct” in a mathematical sense. This becomes
quite easy to see in the previous figure by recognizing that
the various peaks correspond to likely baseline candidates.
We also discussed that, due to multipath and unmodeled er-
rors, there is a high probability that the highest peak will
not actually correspond to the correct baseline solution. Re-
call from Figure 1, however, that the correct baseline posi-
tion will experience continually low error residuals (i.e. will
remain a peak) through significant changes in both satellite
and receiver geometry, thanks to the accuracy of our precise
receiver-receiver tracking results. Extending that concept to
our AFV search grid, it is clear that peaks at incorrect loca-
tions will fade and turn into valleys as the change in geometry
causes their fitnesses to decrease. As such, the “tracking” in
our AFV Peak Tracking Solution refers to the fact that we not
only identify the highest peak(s) at a given point in time, but
also track these peaks such that it becomes possible to filter
out the erroneous candidate baselines as their corresponding
AFVs decrease.

In the simplest of cases, this procedure equates to ini-
tially searching over some pre-defined search space for all
of the AFV peaks (i.e. baseline candidates) and then filtering
through time by evaluating each remaining peak according
to the newest epoch of GPS data and removing any baselines
from the candidate set that are no longer valid. At some point,
there will only be one valid peak remaining, corresponding to
the correct relative baseline between the two receivers.

As discussed in the previous section, however, we are not
carrying out this technique in the ideal situation in which we
can simply ignore the unmodeled errors and assume that we
are either completely stationary or that our tracking results
are completely error-free. In such a case, we would simply
be able to track the values of the peaks through time, but in
our case, we are required to track the peak locations as well
as their values, since they are most likely in constant motion,
and our knowledge of these motions is not without error.

4.3 Extended AFM with Hill Climbing
Although our RegTrack algorithm provides highly accu-

rate tracking results, they are nonetheless imperfect. As men-
tioned earlier, even single centimeters of error can lead to
drastically low AFV levels. As such, a method of correcting
for or overcoming these inaccuracies must be employed to
make the tracking results useful in a motion-enabled, AFM-
based technique. As such, we extend the AFM method with a
simple hill climbing algorithm to overcome any inaccuracies
in our tracking results and derive a new thresholding function
to be used in determining an appropriate AFV level under
which to filter our results.

Hill climbing algorithms provide a useful methodology for
overcoming small optimization discrepancies by searching in



a region close to or around an arbitrary initial position esti-
mate for the “local maximum” of some fitness function. In
our case, the fitness function is the AFV equation itself, and
the location around which to search is an estimate of the base-
line between two receivers that has been tracked through time
(i.e., the “tracked peak” introduced in the previous section).

Since the tracking results produced by our RegTrack algo-
rithm are able to provide sub-centimeter-scale precision over
single epochs of time, regardless of the relative change in
position over a single epoch, the tracking errors should not
be large enough to push a potential baseline candidate so far
from its corresponding local AFV maximum that it enters the
domain of a different (i.e., wrong) local maximum. In other
words, the local maximum of the AFV function for a given
position at time t will be the same local maximum for the up-
dated position at time t+1 if our tracking results are used over
a single epoch.

This statement is only true for a finite amount of time,
however. In order to guarantee that this claim always remains
true, we must re-position our baseline estimate after every
time step such that it always coincides with its correspond-
ing local maximum. In essence, this is the same as removing
any bias that would normally accumulate over time in a dead-
reckoning tracking algorithm such as ours.

Fortunately, since the AFV equation represents a continu-
ous, smooth function in the position domain, we can directly
use a steepest-ascent hill-climbing technique to quickly find
the local maximum given our initial baseline estimate. All
that this entails is evaluating the AFV equation for the points
immediately around the estimate, and then repositioning it to
be the point that experienced the largest increase in AFV from
the original estimate. This process is repeated for the updated
estimate and so on until no point is found with a better AFV
than the current one. The corresponding point will be the lo-
cal maximum of the function in the desired region.

At the next time step, we track any relative receiver motion
using RegTrack, update our baseline estimate with the track-
ing results, and then carry out this hill-climbing technique to
once again remove any tracking error we incurred. In such a
way, any position estimate (even if it is the wrong one) can
be continuously tracked through time according to its fitness
within the paradigm of the AFM. There remains to be seen,
however, an effective way to remove candidates that no longer
fit based on the changing satellite and receiver geometries.

4.3.1 AFV Thresholding Function

We mentioned that some sort of thresholding function
would be an ideal way to filter out baseline positions that have
become unfit candidates over time. Such a thresholding func-
tion can be formed by taking into account that:

• Since we are searching over a discrete search space,
there will almost always be some amount of error due
to the offset between the “correct” position and its near-
est search point in the grid, and

• The carrier phase observations used for AFV determina-
tion are not perfect measurements and will include some
amount of error, due primarily in this case to multipath
and receiver noise.

As such, the error term that was omitted from Equation 2 in
formulation of the AFV model should not be overlooked. If
we include a general catch-all error term in this equation, we
are left with an AFV (corresponding to an arbitrary single
satellite observation, s) of:

AFVs = cos(2π · [
∇∆R

s0,s
a,b

λ
−∇∆φ

s0,s
a,b +∇∆ε

s0,s
a,b ]) (7)

The unknowns in this equation are the 3D baseline coordi-
nates (used to determine the ∇∆R

s0,s
a,b term) and the ∇∆ε

s0,s
a,b er-

ror term. Not immediately apparent is the fact that the λ term
may also be unknown. We discussed the nature of cycle slips
earlier, but some receivers also suffer from what are known as
“half-cycle slips.” These slips occur because many receivers
choose to remove encoded navigation messages from a re-
ceived GPS signal by simply squaring the received waveform.
Since a squaring operation makes all negative values appear
to be positive, the resulting squared carrier wave will not re-

peat itself every λ meters, but rather every λ
2 meters. Thus, a

slip could potentially appear to add or remove cycles equal to
only one-half the wavelength of the carrier wave.

Fortunately, most receivers that operate this way are able
to detect when their carrier phase tracking loops get out of
sync with the unsquared version of the received signal by a
half-wavelength and will return this information along with
the raw carrier phase measurement to indicate that ambiguity
resolution may need to be carried out using half-wavelengths,
denoted from here on as λ1/2. As such, the λ value in Equa-
tion 7 must be treated as a pseudo-variable since its value can
change and the AFV equation depends on it, but it will always
be known prior to use.

Finally, it was previously discussed that the AFV equa-
tion will necessarily contain some amount of error due to the
resolution of the search space. We gave an example in one-
dimension that showed the worst-case error to be equal to
one-half the search resolution ( res

2 ). However, GPS operates
in three dimensions, so it is possible for the search point lo-
cation (which determines the calculated ∇∆R value) and the
correct receiver location (which determines the ∇∆φ value) to

differ by up to
√

( res
2 )2 +( res

2 )2 +( res
2 )2 = res

√
3

2 .

Now that we have determined the worst-case error due to
the search resolution, investigated the possibility of a half-
cycle slip, and included a catch-all term for any unmod-
eled errors (dominated by multipath), we can re-write the
AFV Equation 7 for satellite s as a single-satellite, worst-case
value, like so:

AFVs
worst(res,λ,ε) = cos(2π[

res
√

3

2λ
+ ε]) (8)

Extending this to include all valid observations, n, for a given
epoch, we arrive at an AFV thresholding function, dependent
on the search resolution used, ambiguity resolution required,
and worst-case error present in any given observation:

AFVth(res,λ,ε) =
1

n

n

∑
i=1

cos(2π[
res

√
3

2λ
+ ε]) (9)



Algorithm 1 AFV Peak Tracking (APT) Solution

Initialization

1: Evaluate the AFV for all 3D grid coordinates in a given
search cube

2: Identify all peaks from the resulting AFV set

Calibration

3: Wait until the next epoch of data arrives

4: for each identified peak do

5: Update the peak location according to the computed
tracking result

6: Re-evaluate the AFV at the updated peak location

7: Hill climb by steepest ascent to the local peak
maximum

8: end for

9: Calculate the worst-case AFV threshold value for the cur-
rent epoch using Equation 9

10: Filter the updated peak locations based on the computed
threshold value

11: If more than one peak remains, go to Step 3

Steady-State Localization

12: Update the peak location according to the computed
tracking result

13: Re-evaluate the AFV and hill climb to the local peak
maximum

14: if AFV remains at an acceptable level then

15: Go to Step 12 at the next time epoch

16: else

17: Go to Step 1

18: end if

Note in this equation that the λ value may be different for
individual satellite measurements since not all observations
require half-cycle ambiguity resolution. Also note that car-
rier phase errors due to multipath have a maximum error of
∼5 cm [2], but not all observations will experience multipath,
and those that do are not likely to experience it in the same di-
rection or with the same magnitude as one another; therefore,
a reasonable technique is to scale down the maximum value
of multipath error (εmax

M ) by the number of visible satellites

(n) and use the resulting value (εmax
M /n =

0.05/n) as the ε term
in the AFV thresholding function.

4.4 Putting It All Together
This section introduced several concepts used by the APT

localization algorithm, but we have yet to put them together
and state them as a complete methodology for relative base-
line localization through time. The explicit steps in APT can
be separated into three logical phases of execution: Initial-
ization, Calibration, and Steady-State Localization. Algo-
rithm 1, shown above, details the explicit steps comprising
each of these phases.

The goal of this algorithm is to reach the steady-state phase
for every remote node participating in the localization proce-
dure. This occurs when only one peak candidate is left for a
given receiver, corresponding to the correct relative baseline
between the receiver carrying out the localization procedure
and the remote node. Once this stage is reached, the relative
baseline between the two receivers (i.e. the current peak loca-
tion) can be computed at a high level of accuracy using only
minimal computational resources.

It should be noted that since we have a set of potential
relative coordinates at each time step which, by definition,
correspond to sets of integer ambiguities containing minimal
error, it is trivial to actually calculate the integer ambiguities
for each peak using quite literally any satellite as a reference
and then to store them for later use. At the next time step, if
the satellite previously used as a reference is still visible and
without error, the integer ambiguities can be used to compute
the current relative baseline in a least-squares sense, thereby
providing a means of both verifying the validity of the loca-
tion of the tracked peaks (i.e. a sanity check) and also pro-
viding additional criteria on which to filter and remove unfit
peak candidates.

5 Implementation
In order to experimentally verify the validity of the new

algorithms and methodologies described in this paper, we de-
cided to create a fully functional proof of concept. This sec-
tion describes the system and implementation details of the
working prototype.

5.1 Software
All software was written in pure Java, ensuring cross-

compatibility between various systems and allowing for rapid
development of an Android-based test application. Figure 4
outlines the individual software components comprising our
relative localization system and shows how they connect
and interact with one another. The solid black line labeled
“Framework” delineates a standalone, platform-independent
software service that can be instantiated any number of times
on any number of devices without the device or user know-
ing anything about the inner workings of the framework. The
interfaces into and out of the framework are denoted by the
yellow rectangles connected to the outside of the framework
boundary. These interfaces are implementation-specific, de-
pending on the such parameters as the data format of the GPS
chip used for testing and the type of networking technology
being employed (e.g., Bluetooth, 3G, UDP Multicast, etc.).

The framework can currently run as both a PC service on
any operating system or on any handheld device running An-
droid version 4.0 or later. This proved to be very useful in
creating and analyzing experimental results since it allowed
us to conduct experiments very early in the project on both
mobile and laptop devices and then continue to use the raw
log files from these experiments in further research, knowing
that the computational results of the research would be iden-
tical across devices, as only one code base was used.

5.2 Hardware
An actual working prototype of the distributed system

shown in Figure 4 was implemented using a network of An-
droid smartphones and tablets. Specifically, three HTC De-



Figure 4: Software framework functional diagram

sire smartphones and three Google Nexus 7 tablets provided
us a network of six devices with varying levels of processing
power and memory capabilities on which to test our system.
Each device was paired with exactly one custom Bluetooth-
enabled sensor node [20] that included a µBlox LEA-6T GPS
receiver. We chose this particular L1 receiver because it sup-
plies raw measurement data, whereas many current low-cost
receivers do not. The standalone accuracy of the LEA-6T is
around 2.5 m with an unobstructed view of the sky [18].

In our setup, all GPS measurements were obtained via
an external antenna connected directly to the Bluetooth sen-
sor node which streams raw GPS data (pseudorange, carrier
phase, ephemerides, etc.) over a virtual COM port to its
paired Android device using the UBX proprietary protocol
of the µBlox GPS receiver. The GPS coordinates computed
and reported by the receiver were also streamed to the device
to allow for comparison between our methodology and the
built-in algorithms supplied by µBlox.

To avoid having a single point of failure, we opted for
a distributed, symmetric architecture whereby each device
shares its raw GPS data with the entire network and runs
the localization algorithm independently on the data received
from its peers, as well as from the local GPS receiver. We re-
lied on 3G data communications and an Amazon-based cloud
server for network-wide broadcast of the raw GPS readings.
In our prototype, we configured the framework to use UDP
over WiFi/3G to send data to the centralized cloud server
whose purpose was to keep track of the participating GPS
receivers and to re-broadcast any received data packets to all
other networked nodes.

In playback mode (i.e. when pre-recorded log files were
played using a PC-version of the framework), multiple in-
stances of the framework were instantiated in separate pro-
cesses to simulate the behavior of the framework running on
physically unique devices. Each instance communicated with
all other local instances via UDP-based loopback multicast
over the PC’s network interface. In other words, from the
framework’s point of view, each instance ran on its own ded-
icated CPU and communicated via a physical network link.

6 Evaluation
In order to evaluate our system, we devised a set of ex-

periments to test the accuracy of our methodology in a vari-
ety of different environments, with varying levels of motion,

and with significantly differing baseline lengths. We com-
pared our results to those produced directly by the µBlox
chips which implement an Augmented GPS (GPS+WAAS)
solution in order to give a reasonable estimate of the relative
increase in precision when our technique is compared to that
of a well-established and favorably-regarded GPS chip man-
ufacturer.

To put the results into context, another methodology was
implemented to transform the absolute coordinates reported
by the GPS chips into the relative coordinate system used by
our localization procedures. To achieve this, we simply sub-
tracted the absolute positions of one or more receivers from
the absolute position of the local receiver currently being used
as a reference (the receiver carrying out the localization and
tracking operations), which should, it itself, improve the ac-
curacy of the µBlox results by removing any correlated errors
from the reported positions. In this way, it became possible
to create a map of relative locations with respect to the local
receiver, exactly as they appear in our own methodology. Re-
sults obtained through use of the APT algorithm introduced in
this paper will be referred to simply as “APT” results. Results
used for comparison and obtained from the built-in methods
of the µBlox GPS chip will be referred to as “µBlox” results.

In all of the experiments in this section, the initial search
space was defined to be an 8 m3 cube, centered on the es-
timated baseline reported by the GPS receivers themselves.
Note that in several experiments, the error in the reported
µBlox baseline caused the correct solution to lie outside of
the 8 m3 search space. In these cases, an arbitrary initializa-
tion point was selected inside of the search space for purposes
of evaluating the system; however, in real-world scenarios, ei-
ther a larger initial search space must be used or improved ini-
tial baseline determination methods must be employed (note
that many such methods exist, they were simply not utilized).

6.1 Stationary Setup
This setup comprised two different experiments meant to

test our APT localization algorithm in the simplest and most
benign of cases. Since no motion took place, the results are
useful for indicating the worst-case calibration times of the
system. Likewise, since multipath and cycle slips are unlikely
to occur, this represents a benign scenario in terms of dealing
with uncorrectable errors.

Our first experiment involved placing three colocated
nodes in a wide open field unlikely to be affected by mul-
tipath. The algorithm was simply left to run for 10 minutes,
producing the following steady-state results in terms of base-
line deviations from the known range between pairs of indi-
vidual nodes:

Node Mean Standard Calibration
Pair Error Deviation Time

#1 and #2 5.2 mm 2.2 mm 272 s
#1 and #3 5.8 mm 2.6 mm 327 s
#2 and #3 4.2 mm 1.8 mm 309 s

TOTAL: 5.1 mm 2.2 mm —

Table 1: Mean errors and calibration times for baseline solu-
tion of stationary node pairs



The incredibly low error residuals for all node pairs indi-
cate that the initial baseline calibration was successful and re-
mained steady through time. Even more importantly, the stan-
dard deviations of the errors indicate that the hill-climbing al-
gorithm is successfully removing any tracking bias from the
solution before it can accumulate into a measurable amount of
baseline error. Note that the calibration times from all nodes
in this experiment average 303 s. This value is indicative
of the worst-case calibration time that would ever be experi-
enced by the system, since our nodes are both colocated and
stationary, meaning that all geometry changes in the system
are due exclusively to the motion of the satellites.

An additional stationary experiment was carried out on the
field portion of a football stadium to test the accuracy of our
system when the baseline is not on the order of centimeters.
In this case, two nodes were placed at the very bottom of the
bleachers on either side of the 50-yard line, approximately
221.5 feet (67.5 meters) apart. In addition to providing a test
case using a longer baseline, the stadium itself provided many
more opportunities for multipath and blockage of satellite vis-
ibility; nonetheless, this can still be considered a relatively
benign GPS environment.

The algorithm was allowed to run for 30 minutes, produc-
ing an average error of only 6 mm with a standard deviation of
4 mm. As with the previous experiment, this indicates a suc-
cessful test with a large increase in accuracy over the µBlox
solution which incurred an average error of 90.2 cm with a
standard deviation of 17.2 cm.

6.2 Fixed 9-foot Distance
For this experiment, we reused logs from one of the track-

ing experiments used to test the RegTrack methodology in
[7]. This gave us the ability to compare our current technique
with the dead-reckoning, tracking-only solution presented in
that paper.

The setup for this experiment consisted of a stationary
node positioned at one corner of a standard running track and
two mobile nodes connected to a fixed 9-foot pole moving
around the track in a configuration perpendicular to the run-
ning lanes. This experiment is useful because the relative dis-
tances of the nodes attached to the poles are precisely known
at all times, with only the relative directions changing. As
such, they provide us with a way to measure the accuracy of
our technique in the “free mobility” case with extreme pre-
cision. The additional static node adds range mobility to the
experiment, since both the relative directions and distances to
the nodes are changing continuously when viewed from this
receiver. This provides performance statistics on the tech-
nique when used with baselines of varying lengths.

The following graph, Figure 5, shows the estimated base-
line between the mobile receivers traversing a lap around the
running track as seen by the stationary reference node after its
successful calibration of the relative baselines to both of the
remote nodes. Figure 6 shows the same results as computed
pairwise directly between the two mobile nodes.

In both cases, the results from this experiment indicate a
similar level of error to that of the RegTrack experiment, al-
though the standard deviations of the error are approximately
doubled. Specifically, the mean error for the relative baseline
as seen from the stationary reference node was 26.2 cm with a

Figure 5: Estimated distance between two mobile nodes (as
seen by a stationary node) as a function of time as they moved
around the track

Figure 6: Estimated direct distance between two mobile
nodes as a function of time as they moved around the track

standard deviation of 15.3 cm. The mean error for the direct
baseline solution was 16.9 cm with a standard deviation of
12.3 cm. While these results indicate a significant improve-
ment over the µBlox average of 89 cm of error, we would have
expected to see an improvement over the dead-reckoning re-
sults from the tracking-only solution as well.

One reason for the slight decrease in accuracy and stabil-
ity is an overly pessimistic view of the current baseline solu-
tion by the APT filter due to arbitrary regions of abnormally
large tracking errors noted in the RegTrack solution. The sub-
centimeter results from that technique seem quite good, espe-
cially given the cumulative tracking errors described in [7]
which indicate that the majority of single-epoch errors must
be close to zero mean when aggregated over time; however,
an analysis of the individual epoch-by-epoch results indicates
that the total error distribution is not Gaussian. In fact, very
clear regions of decimeter-scale error can be discerned amidst
a vast number of results containing only millimeters of single-
epoch tracking error.

There are four causes for these types of anomalies:

1. The number of non-erroneous satellite measurements as
determined by the tracking algorithm has reached a crit-
ical level of 4, meaning the system is no longer over-
determined,

2. The number of satellite observations is less than 4,
meaning the tracking results are being determined by a
motion model instead of the tracking algorithm itself,

3. One or more undetected cycle slips were present in the
tracking observations, or



4. The level of multipath during the error-prone time frame
was large enough (and affected enough observations)
that it translated into a comparable tracking error.

These regions of error often manifest with a noise-like
quality (i.e. they tend to be close to zero mean over the long
term), and thus, have minimal impact on the tracking algo-
rithm when used in a dead-reckoning framework; however, it
is possible for them to be problematic in the APT localization
algorithm if not detected and mitigated as much as possible,
as we demonstrated that even very small tracking inaccura-
cies can result in a low AFV. Fortunately, the first two causes
of inaccuracy can be determined by the tracking algorithm it-
self and passed to the APT algorithm for special handling.
The latter two causes, however, are currently undetectable
and will require additional processing and error handling in
subsequent baseline localization procedures.

In any case, these errors sometimes cause our lock on the
peak corresponding to the current baseline solution to be lost,
such that the filter begins tracking a nearby peak with a much
lower AFV than the “correct” peak. In this case, the peak will
quickly fade below the cutoff threshold, causing the filter to
re-enter its calibration stage to search for new peak candi-
dates. Since the most recently tracked peak will have corre-
sponded to an incorrect baseline, the error will be proportion-
ally larger during both the erroneous steady-state and subse-
quent calibration phases until a new, correct peak is identified.

Even with these regions of uncertainty, the relative lo-
calization procedure provides a 6-7x improvement over the
µBlox solution, which is clearly visible in the previous two
figures. Additionally, the algorithm’s ability to re-initialize
itself on the fly provides a valuable asset for those situations
when tracking alone becomes unreliable.

The times spent in the calibration phase for this experi-
ment were significantly shorter than in the stationary case, as
expected. The transition from calibration to steady-state lo-
calization in this experiment when viewed from the point of
view of the stationary node was 38 s, which as a frame of ref-
erence, occurred after only 12.64 m of receiver motion. When
the baseline was computed directly by the two nodes in mo-
tion, the steady-state phase was reached after 72 s of calibra-
tion. The reason for the longer calibration time in the direct
baseline solution is most likely due to the simple fact that only
the baseline directionality changes in this case, whereas both
the directionality and the range are changing from the point
of view of the reference node. In either case, these calibration
times on the order of a minute indicate that this method may
find utility in applications requiring rapid relative position de-
termination.

6.3 Long Baselines
Since all experiments using short baselines and relatively

slow motions showed an increase in precision over the µBlox
results, we decided to test our algorithm using longer base-
lines with similar levels of mobility. In this experiment, we
again utilized the football field from the stationary experi-
ments; however, we also set up a stationary node on the roof
of a building 1.42 km away, giving us the ability to create
absolute ground truth maps for easier visualization. Two mo-
bile nodes were initially placed on the sidelines of the foot-

(a) Node #1 (b) Node #2

(c) Composite Tracks

Figure 7: Tracks of two nodes moving in parallel ∼20 yards
apart on a football field

ball field: one at the 0-yard line and one at the 20-yard line.
The nodes were walked in parallel along their respective yard
lines to the opposite sideline, at which point the 0-yard line
receiver walked along the sideline to the 40-yard line. Both
nodes again walked in parallel to the opposite sideline, where-
upon the 20-yard-line node walked until it reached the 60-
yard line. This laddering process was repeated until the entire
football field had been traversed.

Figure 7 shows the tracks of the mobile nodes in this ex-
periment as calculated by the receiver on a building almost a
mile away. From these figures, it is clear that the increased
baseline length between the receiver performing the localiza-
tion and the remote nodes has negligible impact on the accu-
racy of the results. In fact, the paths traversed by each of the
mobile receivers are obvious from these graphics alone.

For comparison, Figure 8 shows a portion of our APT re-
sults (in pink) overlayed by the absolute track produced by
one of the µBlox nodes (in yellow), where the ground truth is
precisely the 40-yard line:

Figure 8: Localization comparison of the absolute µBlox so-
lution (yellow) to the relative APT solution (pink)



Note that this is a strictly qualitative comparison in which the
absolute µBlox results are compared to the relative APT re-
sults produced in relation to a stationary node 1.42 km away.
This figure shows both the obvious increase in precision pro-
duced by our technique, as well as a substantial increase in
stability through time. The µBlox variations in this figure of
up to ∼3 yards indicate absolute errors from the ground truth
of over 2.5 m.

6.4 Driving
For the following set of experiments, we re-used the data

from a driving setup from our earlier work in [7] in order
to compare the results from our current technique to the
tracking-only results presented in that paper. Our setup in-
cluded three mobile nodes mounted to the roof of a car with
a single stationary node placed in a parking lot at the starting
site of the driving trial. The primary purpose of these experi-
ments was to test the accuracy of our methodology under high
dynamic situations and at increasing baseline lengths.

6.4.1 Driving in an Obstructed Area
The driving course was separated into two distinct parts,

the first of which included driving in multipath-rich alleyways
and on suburban roads for a total of 1.48 km. In the case that
the relative baseline was determined using a stationary refer-
ence node, the results from the APT solution algorithm were
an order of 2 times less accurate than those from the tracking-
only solution reported in [7], but 3 times more accurate than
the µBlox results. On the other hand, direct localization pro-
duced results that had similar or even slightly better accura-
cies than the tracking-only solution, with cumulative errors
as shown in Table 2 for one of the pairs of remote nodes over
increasing intervals of 500 m.

Method Distance Mean Error Std Dev

Reference 500 m 39.1 cm 25.5 cm
Direct 500 m 58.3 cm 28.7 cm
µBlox 500 m 93.6 cm 36.5 cm

Reference 1 km 34.7 cm 25.2 cm
Direct 1 km 34.0 cm 32.6 cm
µBlox 1 km 97.5 cm 36.5 cm

Reference 1.48 km 36.5 cm 23.4 cm
Direct 1.48 km 39.7 cm 37.5 cm
µBlox 1.48 km 113.4 cm 55.6 cm

Table 2: Cumulative localization accuracy for one node pair
driving through a difficult GPS environment. “Reference” re-
sults indicate baselines computed via subtraction of the mo-
bile node ranges with respect to a stationary reference node,
and “Direct” results indicate baselines computed pairwise di-
rectly between the mobile nodes themselves.

These results indicate a quantifiable improvement over the
µBlox algorithms, but an unexpected lack of substantial in-
crease in accuracy from the tracking-only results in [7]. The
number of filter re-initializations was higher than expected
and corresponded most commonly to the times when the ve-
hicle had a severely obstructed view of the sky, or in other
words, when driving very close to buildings in a narrow alley-
way or under leafy trees. As such, it appears that multipath

plays a much greater role in the ability of our APT baseline
filter to maintain a lock on the correct peak than initially an-
ticipated. Nonetheless, this portion of the experiment ended
with all three of the remote nodes in a configuration contain-
ing less than 1 meter of error each from the correct ground
truth position.

The transition times from calibration to the steady-state
phase of the APT localization algorithm were 31 s, 25 s, and
50 s respectively for baseline determination of each of the
mobile nodes as calculated by the stationary reference. The
average calibration time for direct baseline determination be-
tween the roving nodes themselves was 90 s, almost 3 times
as long as the average for the reference node. Again, the rea-
son for this dichotomy in calibration times is due to the fact
that the baseline ranges between the stationary node and the
vehicle nodes are changing quite rapidly, whereas the ranges
between the vehicle nodes themselves are not changing at
all. The decrease in time spent in the calibration phase for
the stationary receiver is consistent with our expectation that
increased relative motion will result in decreased calibration
times.

6.4.2 High-Speed Driving

At this point, we turned onto an interstate highway and
began driving at an average speed of 90 km/h over an addi-
tional 7 km of road. For the duration of this experiment, all
receivers had consistently clear views of the entire sky (with
the exception of an occasional overpass). As such, we ex-
pected relatively few tracking errors due to multipath and a
correspondingly low number of APT filter re-initializations.

Compare the errors from our APT technique to those ob-
tained from the µBlox chip in Figure 9 and the increased pre-
cision of our localization technique becomes apparent, es-
pecially in terms of the baseline between nodes #2 and #3
in which the instantaneous localization errors rarely exceed
50 cm. Additionally, the number of times when the accuracy
of the µBlox solution over multiple epochs is better than our
own is very small, most notably at the very end of the experi-
ment for nodes #1 and #2.

As with the tracking-only results, this increase in accuracy
over the µBlox results is substantial, and we believe the ac-
curacy could have been even higher if not for the overpasses,
which almost always caused the localization filter to require
re-initialization. In fact, many of the regions of decreased ac-
curacy between nodes #1 and #2 began at times correspond-
ing to the vehicle passing underneath an overpass (note that
error spikes in the graph for nodes #2 and #3 seem to be more
random, having little correlation with environmental obsta-
cles at corresponding times).

For comparison, the mean range error averaged over all
remote nodes on the car when viewed from a reference re-
ceiver in the parking lot was 49.9 cm with a standard devia-
tion of 30.4 cm. This represents a 5x improvement over the
µBlox solution in terms of both error residuals and stability as
evinced by the standard deviation. Likewise, the mean error
when the relative baselines are computed directly between the
roving nodes themselves was 39.9 cm with a standard devia-
tion of 35.6 cm, almost identical to the results obtained from
the tracking-only solution.



Figure 9: Mean localization errors over time for two mobile
node pairs attached to a car roof driving along the interstate

6.4.3 Closing the Loop

Recall from the tracking-only results presented in [7] that
we encountered a problem at the very end of the experiment,
namely that we passed underneath a wide overpass while
changing directions, causing incorrect tracking updates due
to a momentary loss of satellite locks. One of the primary
benefits of our APT localization approach is that the base-
line filter quickly destabilizes as the AFV of erroneous peaks
drops below a threshold value. In this experiment, this oc-
curred when we traveled underneath the final overpass and
experienced measurable amounts of tracking error. At this
point, the filter successfully re-initialized itself with a bet-
ter baseline solution, and we were able to continue localizing
with a high degree of accuracy, unlike in prior experiments
using RegTrack alone.

The following figure shows a track of the entire experi-
ment, including a zoomed-in snapshot of the starting and end-
ing points, indicating minimal error over the course of the en-
tire experiment. The physical distance between the start and
end points of the node track pictured below was 1.54 m; how-
ever, we failed to mark the starting point of the experiment,
so it was difficult to gauge the precise location at which we
should stop driving. As such, it is highly likely that a large
portion of this offset was due simply to misalignment of the
car at the end of the experiment.

This figure shows the usefulness and benefits of the APT
baseline localization algorithm over the tracking-only solu-
tion. In cases where substantial amounts of satellite outage
are likely to be experienced, the tracking solution, while ac-
curate, will always require human intervention whenever re-
initialization is required. The full APT technique, however,
allows the system to re-initialize itself, thereby providing a
“hands-off” automatic solution in which the system can quite
literally be turned on and left to manage itself.

Figure 10: Track of the full driving experiment with emphasis
on the starting and ending points of the course

7 Performance Metrics
In order to analyze the scalability and processing require-

ments of our system, we took each individual component
in our software framework (shown in Figure 4) and ana-
lyzed the computational and memory requirements required
for that component to run. Memory requirements were de-
termined using the Eclipse Memory Analysis Toolkit, and
processing latencies were computed from real-world experi-
mentation. Results denoted by a“PC-based” benchmark were
formed from the average of the corresponding operations run
10,000 times each on a series of desktop and notebook com-
puters, and results denoted by a “mobile-based” benchmark
were formed from the same operations run 10,000 times each
on a Google Nexus 7 Tablet and an HTC Desire smartphone.
Full details can be found in [6], with Table 3 giving a brief
overview of the results.

Processing Processing
Module Name Time Time

(PC) (Mobile)

GPS Manager 6.64 µs 97.9 µs
Preprocessor 129.3 µs 4.0 ms

Network Manager 12.4 µs 405.3 µs
Data Aggregator 19.9 µs 1.08 ms
Tracking Filter 24.1 µs 845.4 µs

Baseline Filter (Calibrating) 1594.0 µs 11.5 ms
Baseline Filter (Steady-State) 850 µs 10.3 ms

Result Handler 0 µs 0 µs
TOTAL (Calibrating) 1.79 ms 17.93 ms
TOTAL (Steady-State) 1.04 ms 16.73 ms

Table 3: Summary of processing times for each software
component of the localization framework

It is important to note that since our localization algorithm
works on pairwise sets of satellite data, its mathematical com-
plexity does not grow with the addition of GPS receivers to
the network. In fact, from Table 3, we can deduce that our
system should be able to support up to 60 steady-state mo-
bile receivers simultaneously without running into latency
issues. The caveat to this statement is that the “initializa-



tion mode” of the localization algorithm requires significantly
more processing time than the nominal “steady-state localiza-
tion mode;” therefore, as additional nodes enter the network,
there will be intermittent periods during which position data
for the new, calibrating receivers is unavailable. This is an
important aspect to consider when examining the applicabil-
ity of our technique to real-time systems.

Aside from the processing overhead associated with base-
line calibration, however, the primary bottleneck in our sys-
tem is the communication bandwidth required to broadcast
the raw satellite measurements among a potentially large
number of receivers. Since the amount of data transmitted
from a single node every second is actually quite low (on
the order of 500 bytes/second), there are better ways (than
the naı̈ve cloud-based multicast approach used in our experi-
ments) of approaching this problem if and when communica-
tion scalability becomes an issue.

8 Future Work
One of the primary limitations of the work presented in

this paper is the strong dependence of the APT localization
algorithm on the initial estimate of the baseline between two
receivers. The worst-case accuracy of this estimate dictates
the minimum size of the search cube that must be traversed
when identifying the relevant peaks and baseline candidates
for a given pair of receivers. Any increase in baseline uncer-
tainty results in a cubic increase in the number of points that
must be searched to find the correct peak. Correspondingly,
since the search resolution of APT is so fine, even small in-
creases in the required size of the search space can result in
drastically longer processing times, especially for the initial
search procedure in which candidate peaks are identified.

In order to cut down on the time required to search through
this vast number of points, additional research should be car-
ried out on determining a better estimate of the initial baseline
between two receivers before using the algorithms described
in this paper. Conversely, it would also be beneficial to have
a better idea of the confidence interval (or an estimate of the
worst-case error) for any given baseline. Better accuracy esti-
mates would ensure that the correct baseline is not missed in
the initial peak determination algorithm, as well as minimize
the number of extra points that must be evaluated in the case
of an overly pessimistic accuracy estimate.

Experiments using the complete APT localization frame-
work highlighted several drawbacks of the hill-climbing tech-
nique used to remove accumulated bias from the requisite
tracking results. These include a strong dependence on the
accuracy of the tracking results themselves, as well as an
increased susceptibility to errors caused by multipath. As
such, additional research into methods of removing short-
term tracking biases should be carried out to ensure that the
locality of peaks being tracked by the APT filter remains con-
stant through time.

It would, of course, be beneficial for future applications to
develop “smarter” peak searching algorithms, such that only
a subset of the search space need be traversed to identify any
relevant peaks. This would drastically cut down on the pro-
cessing time required to initially identify the peaks, as well as
the time it takes to track them. As such, the scalability of this

research would improve to allow for a larger number of re-
ceivers to be localized in real-time without experiencing data
bottlenecks or processing latency issues.

One final future consideration is the US Government’s
“GPS Modernization Project” which aims to provide two ad-
ditional civilian signals, designated L2C and L5, in 2018 and
2021, respectively [13]. While these signals promise to in-
crease the achievable accuracy of GPS receivers in the future,
our solution fills a notable gap in the interim. Additionally,
there is nothing in our methodology that precludes it from
using these additional frequencies to further enhance our re-
sulting accuracy and increase robustness in a variety of envi-
ronments. In fact, decimeter-scale precision with our current
technology could turn into millimeter-scale precision given
the new civilian frequencies.

9 Conclusion
In this paper, we presented a novel approach to GPS-based

differential localization of mobile nodes, with the overarching
goal of dramatically increasing the precision of relative 3D
baseline coordinates using only low-cost, off-the-shelf GPS
receivers. By allowing a network of GPS receivers to share
their raw satellite measurements with one another, we were
able to achieve decimeter-scale relative localization accuracy.

Unlike most GPS-based navigation solutions, our ap-
proach does not snap positions to maps or try to use a dy-
namic model for the motions of the receivers (other than for
tracking during satellite losses of lock). Also unlike other
high-precision GPS localization techniques used in applica-
tions for which our system may have utility, our approach
does not require a stationary calibration phase, relying instead
on a symbiotic feedback relationship between relative track-
ing and baseline localization to provide real-time coordinate
updates.

Our technique allows any GPS receiver to become its own
reference, thus negating the need for an explicit “reference
station.” Likewise, we employ observation models which ei-
ther do not require a reference satellite or impose no limita-
tions on which satellite must be used as a reference (or for
how long). By incorporating tracking results into our base-
line determination algorithms, there is no longer the need to
pre-survey receiver locations prior to application deployment
or for any receiver in the network to remain stationary during
calibration; as such, our methodology provides a simple out-
of-the-box, ready-when-deployed solution to high accuracy
relative localization.

In four different low-mobility experiments, we were able
to achieve localization accuracies several factors better than
the corresponding “standard” GPS positioning techniques,
depending on the test environment and the quality of the
satellite observations; however, the precision was slightly de-
graded from that of the tracking-only solution by a factor
of about 1.75, except in the case of stationary localization,
where precision was actually significantly improved. Based
on additional investigation into single-epoch tracking anoma-
lies, we found that this typical decrease in accuracy was due
to very specific regions of higher-than-normal tracking error
which caused our APT localization filter to begin tracking in-
correct peaks.



Regardless of the high dependence of our localization
technique on the precision of the tracking results, our method-
ology showed that by allowing the filter to re-initialize itself
on-the-fly, it is usually possible to reacquire a lock on the
“correct” peak, thereby removing the necessity for user in-
tervention in the case of erroneous measurements. Likewise,
since initialization is handled by the localization algorithm it-
self, calibration becomes an implicit step requiring no station-
ary setups or a priori knowledge of the precise relative base-
lines between pairs of receivers. Likewise, the time required
for the filter to converge to a high-accuracy, steady-state solu-
tion is generally less than two minutes when the receivers are
in motion, and anywhere from 4 to 6 minutes when stationary.

Finally, our experiments included receiver-receiver base-
line lengths ranging from 0 m all the way up to 3.5 km, with
little to no impact on the precision of the results. We con-
clude, therefore, that our method is quite robust to changing
baseline lengths, and the limiting factor may be the various
mathematical assumptions regarding the similarity of satel-
lite unit direction vectors for multiple receivers in the same
geographic region, as well as the assumption that these direc-
tion vectors remain relatively constant over single epochs of
receiver motion in the Temporal Double-Differencing model.
As such, we anticipate similar levels of accuracy to be achiev-
able for significantly longer baselines.

While the majority of off-the-shelf and embedded GPS re-
ceivers currently only employ simple point positioning algo-
rithms, the number of precision devices that rely on GPS as
their primary localization service is growing rapidly [14, 9].
The proliferation of smartphones and GPS-enabled mobile
sensors, along with the ever-increasing availability of any-
where, anytime network coverage, is creating a substantial
and practical platform for the relative positioning method de-
scribed in this paper. As the price of technology continues
to decline and our world becomes ever more connected, fur-
ther research into highly accurate, low-cost relative position-
ing techniques will continue to find its way even more promi-
nently into our everyday devices, and we hope to see the ap-
proach presented in this paper spark further research and be-
come only one of a body of ad-hoc relative localization tech-
niques centered around low-cost, commercial GPS receivers.
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crophone for mobile phones. In Proceedings of the International Con-

ference on Sensing Technology, ICST, 2011.

[21] E. A. Wan and R. van der Merwe. Chapter 7. the unscented kalman
filter. Kalman Filtering and Neural Networks, 2001.

[22] O. J. Woodman. An introduction to inertial navigation. Technical Re-
port Number 696, University of Cambridge, August 2007.

http://www8.garmin.com/aboutGPS/waas.html
http://www8.garmin.com/aboutGPS/waas.html
http://tekmon.gr/2011/03/network-rtk-2/
http://webone.novatel.ca/assets/Documents/Waypoint/Reports/RelativeMovingBaselineSoftware.pdf
http://webone.novatel.ca/assets/Documents/Waypoint/Reports/RelativeMovingBaselineSoftware.pdf
http://www.gps.gov/systems/gps/modernization/civilsignals/
http://www.gps.gov/systems/gps/modernization/civilsignals/
http://www.nytimes.com/2010/11/15/technology/15iht-navigate.html
http://www.nytimes.com/2010/11/15/technology/15iht-navigate.html
http://onlinemanuals.txdot.gov/txdotmanuals/ess/gps_rtk_surveying.htm
http://onlinemanuals.txdot.gov/txdotmanuals/ess/gps_rtk_surveying.htm
http://water.usgs.gov/osw/gps/index.html
http://water.usgs.gov/osw/gps/index.html
http://gpspp.sakura.ne.jp/rtklib/rtklib.htm
http://www.u-blox.com/de/lea-6t.html
http://www.u-blox.com/de/lea-6t.html

	Introduction
	Related Work
	Previous Work
	Theoretical Approach
	Ambiguity Function Method Overview
	AFV Peak Tracking (APT) Solution
	Extended AFM with Hill Climbing
	AFV Thresholding Function

	Putting It All Together

	Implementation
	Software
	Hardware

	Evaluation
	Stationary Setup
	Fixed 9-foot Distance
	Long Baselines
	Driving
	Driving in an Obstructed Area
	High-Speed Driving
	Closing the Loop


	Performance Metrics
	Future Work
	Conclusion
	Acknowledgments
	References

