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Abstract

Active Appearance Models (AAMs) are widely used to fit shape models to new im-
ages. Recently it has been demonstrated that non-linear regression methods and se-
quences of AAMs can significantly improve performance over the original linear for-
mulation. In this paper we focus on the ability of a model trained on one dataset to gen-
eralise to other sets with different conditions. In particular we compare two non-linear,
discriminative regression strategies for predicting shape updates, a boosting approach
and variants of Random Forest regression. We investigate the use of these regression
methods within a sequential model fitting framework, where each stage in the sequence
consists of a shape model and a corresponding regression model. The performance of
the framework is assessed by both testing on unseen data taken from within the training
databases, as well as by investigating the more difficult task of generalising to unrelated
datasets. We present results that show that (a) the generalisation performance of the
Random Forest is superior to that of the linear or boosted regression procedure and that
(b) using a simple feature selection procedure, the Random Forest can be made to be as
efficient as the boosting procedure without significant reduction in accuracy.

1 Introduction

Active Appearance Models [4, 9] represent a well known group of algorithms for fitting
shape models to images. Training the models requires a database of images in which a set of
locations which characterise the object group in question have been labelled. In the original
formulation in [9], the model was chosen to be linear and generative, i.e. an explicit model of
the input data was provided. This enabled an iterative Gauss-Newton type procedure, where
the error between the current image features and those synthesised using the current location
of the model in the image was used to derive additive updates to the shape model parameters.
However, such methods incur a substantial computational overhead, as an explicit model of
the image features must be fitted and evaluated at each iteration of the algorithm. This
efficiency problem was addressed by Baker et al. in [4], where an inverse compositional
alignment procedure was proposed.
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In related work, discriminative methods have shown promising results, both in terms of
efficency and generalisability [10, 18, 20, 23]. Contrary to the generative approach, these
methods do not include a model of the input data and therefore do not explicitly encode
any information about the texture of the objects. Rather than using the Gauss-Newton style
algorithm described above, discriminative fitting procedures involve a regression algorithm
which directly relates features extracted from the image data to incremental updates of the
internal parameters of the shape model.

A well-known problem of these algorithms is the often poor generalisation performance
when attempting to fit to unseen data. In face analysis, this effect is especially pronounced
when the lighting and background variations, as well as the people in the test dataset do not
match those present in the training dataset. For this reason, much prior work has focused on
evaluating the performance of Active Appearance Model algorithms on datasets which have
been split into training and testing parts rather than on investigating the more challenging
issue of employing unrelated datasets for training and testing.

Substantial effort has been put into addressing the generalisation performance issue
within the generative framework, and notable examples are the Adaptive AAM [5] and mul-
tilinear models [16] which both aim to provide increased flexibility in the texture component
of the model.

In this paper we compare two types of non-linear regression models in a discriminative
framework, the first being based on Boosting [14], the second on our implementation of the
Random Forest [7]. In order to account for the large variation in lighting conditions and
appearance when comparing different datasets, we combine these algorithms with a set of
standard Haar-like features [22] as well as illumination-independent features derived from
the integral image, akin to the BRIEF features which were recently proposed by Calonder
et al. in [8]. These features capture relative differences in pixel values accross images, mak-
ing them invariant to monotonic transformations of the intensity. While the boosting-based
method has been the subject of various publications in this field, we are unaware of any
previous uses of the Random Forest in this particular setting.

The outline of the paper is as follows: We give a brief discussion of previous work in 1.1
before describing the methods employed in this paper in 2. The experiments are described
in section 3, section 4 contains the results and conclusions are presented in 5.

1.1 Previous Work
The Boosting methods employed in this paper are closely related to the work of Zhou et al.
[23] who used a regularised version of the Gradient Boost algorithm [13] to directly predict
updates to a parametric shape model based on sampled image patches. Similarly, in [10]
Cristinacce et al. compare the use of a GentleBoost classifier [14] to Boosted regression for
fitting deformable models. In [20], Tresadern et al. investigate sequential boosted regression
models for discriminative shape model fitting, where it is shown that substantial performance
increases may be obtained by explicitly using the residual uncertainty after prediction with
a coarse model as a starting point for an iterative training procedure that yields a sequence
of increasingly refined models. Their work draws on previous work by Saragih et al. in [19]
which uses a maximum-margin optimisation procedure to build a sequence of regression
functions with guaranteed error bounds. Similarly, Dollár et al. use cascades of Random
Fern regressors for object pose prediction in [11].

Rather than using the image data directly, Haar-like features [22] provide an efficient
and powerful means for capturing facial features and their use has been described in several
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Figure 1: Training procedures for the Sequential AAM models. Left: The Independent
Sequential AAM consists of independently trained Regression AAM models. Each training
dataset T(n) contains a prespecified range of displacements from the ground truth. Right:
At each iteration of the training procedure, the Coupled Sequential AAM employs a training
dataset obtained by testing the partial sequence SEQ(n-1) on dataset T(n), which contains
random displacements of the same magnitude as T(1).

appearance model-related publications [10, 20]. Other choices which have been used pre-
viously include Local Binary Patterns [3], mutual information [12] and local eigenmodels
[21].

2 Methods

2.1 Sequential Regression AAM

In regression-based Active Appearance Models, the model parameters are updated directly
by applying the learned regression model to features extracted from the image at the current
model location. This is more efficient than the generative fitting procedure, in which the
shape parameter updates are obtained by iteratively minimising a suitably chosen error mea-
sure which relates the current texture model reconstruction to the current texture sampled
from the image [17]. However, an iterative regression prediction lacks the reinforcement
provided by the texture model during the optimisation in the generative framework. The ac-
curacy of the regression procedure is therefore limited by the training data used to train the
regression models. If large displacements from the ground truth are used to train the model,
it can be expected to perform well when tested on examples showing similar displacements.
However, when applied in an iterative fashion, the model is expected to move closer to the
ground truth, and thus further from the type of examples provided in the training data, mak-
ing the ensuing predictions approximate at best. One way of addressing this issue, termed the
Sequential AAM in the following, builds on an idea first described by Saragih et al. in [19].
The Sequential Regression AAM trains a sequence of Regression AAM models of increas-
ing complexity, where the models in the earlier stages typically only model pose variation,
and shape variation is introduced in the later stages. We investigate two methods for training
a Sequential AAM. In the first method which we refer to as the Coupled Sequential AAM,
a training dataset containing model displacements of a prespecified magnitude is generated
and used to train a Regression AAM. A separate dataset is then formed by gathering the
predictions obtained by testing the partially trained sequence on a separate dataset sampled
from the training images. Since the magnitude of the displacements in the training data de-
creases from stage to stage, and the complexity of the shape models increases, each stage in
the sequence can be seen to represent a Regression AAM specialised to a certain range of
displacements from the ground truth. A downside to this procedure, however, is the use of
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Figure 2: The training and testing data is generated by (a) fitting a shape model to the land-
mark points (b) displacing the parameters of the fitted model randomly (c) sampling into the
reference frame of the shape model (d) raster-scanning into the vector x and computing Haar
features and (f) recording the inverse displacements δy (not shown).

the outputs of the previous stages of the sequence as training data for the following stage,
which may result in overfitting of the regression models to the training data. In order to as-
sess the degree of overfitting, we propose an alternative training procedure we refer to as the
Independent Sequential AAM, in which each stage in the sequence is trained independently,
using training data whose range of displacements from the ground truth images is reduced
by an empirically chosen factor from stage to stage.

Algorithm 1 Gradient Boost Training [13] for shape model regression [20]

1. Initialise:

(a) T = {(xn,δyn)}N
n=1

(b) F(x) = 0, λ � 1

2. Repeat for m = 1, . . . ,M:
(a) Repeat for i = 1, . . . ,d:

(hm, fm) = argmin
f ,h

N

∑
n=1

[δyni − fm (hm (xn))]
2

(b) update strong learner: F(x)← F(x)+λ fm(x)
(c) update targets: δyn← δyn−λ fm(xn)

3. Output strong learner F(x)

2.2 Regression Models

2.2.1 Training data

In the following we shall refer to the data used to train the regression models as the set of
pairs

T = {(x1,δy1), . . . ,(xN ,δyN)} , (1)

where xn is the vector of pixels sampled from the reference frame of the model after ran-
domly displacing the model from it’s ground truth position and δyn ∈Rd contains the shape
and pose parameter displacements required to move the model back to the ground truth po-
sition. This procedure is illustrated in figure 2. The integral image is computed for every
pixel sample x, as this allows the efficient calculation of Haar-like features [22] which are
used exclusively in the following.
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2.3 Boosted regression
The Boosting algorithm follows the Gradient Boosting method [13], which additively com-
bines a set of M weak learners fm into a “strong” regression function, such that the update
to the model parameters is given by

δyi =
M

∑
m=1

λ fm (hm(x)) . (2)

In this equation, hm(x) represents a Haar-like feature computed on the current pixel sample
vector x, and λ is a “shrinkage” parameter, which is included to reduce overfitting [15]. We
explore two different kinds of weak learners fm. The first are piecewise constant functions
which are efficiently fitted in each cycle of the feature-finding procedure by binning the
feature responses for each of the training examples and calculating the mean in each bin.
If we are attempting to construct models capable of generalising to unseen data however,
the use of less flexible functions may be advantageous, as unconstrained flexibility may lead
to overfitting. In addition to the piecewise constant functions, we therefore investigate the
use of simple tree stumps with a threshold fixed at zero. This is inspired by the efficiency
and performance of BRIEF features [8], which build a feature representation of an image by
performing simple binary comparisons between the mean of the pixels contained in different
regions of interest. As in the case of BRIEF, the idea is that fixing the split at zero combined
with Haar-like features produces a more generic, lighting-insensitive feature with superior
generalisation performance. The pseudocode for the training stage of Gradient Boosting is
given in figure 1.

2.4 Random forest regression
In recent years Random Forests [7] have become increasingly popular and have been used
successfuly in many classification and regression problems. The popularity of Random
Forests stems from the fact that they represent a simple and efficient algorithm with few free
parameters and have been shown to resist overfitting in many applications. Furthermore,
both the training and testing stages of Random Forests follow “embarassingly parallel” pro-
cedures, a fact which may be exploited to obtain high performance on parallel computer
architectures. Random Forests are constructed by building a set of n binary trees on boot-
strap samples of the training dataset T. In order to use Random Forests in 1D regression
problems, the trees are constructed recursively, such that at each node the training data is
split by choosing a threshold on a feature variable chosen at random from a subset of all the
features that minimises the sum of squared errors

Ssc = ∑
l∈L

∑
i∈l
(δyi−ml)

2 = ∑
l∈L

nl ∗ var(l), (3)

where ml =
1

ml
∑

ml
i=1 δyi and var(l) are the mean and variance of the samples δyi contained

in leaf l. Various stopping criteria for the recursion have been proposed in the literature [6].
In our case, the trees are built until each node contains a single sample. The trees are similar
to the piecewise constant functions used as weak learners in section 2.3, as each leaf of a tree
outputs the mean of the training data responses δyi it contains. When presented with test
data, the mean over the outputs of each tree in the forest is returned as the forest prediction.
This ensemble prediction allows for the gathering of statistics on the outputs by inspecting
the level of “agreement” among the individual tree regression functions.
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The tree building procedure described above represents the standard procedure for scalar
outputs δyi. In order to allow for vectorial outputs δyi, we may either alter this criterion by
extending the sum of squared errors to all output dimensions, i.e.

Svec =
nD

∑
d=1

∑
l∈L

∑
i∈l
(δyid −mld )

2 =
nD

∑
d=1

∑
l∈L

nl ∗ vard(l), (4)

such that at each binary split the feature that gives the best joint prediction of the outputs
is chosen, or simply train a scalar Random Forest for each output dimension. Using the
first method, we arrive at a regression forest capable of directly predicting vectorial outputs.
This makes for a more efficient algorithm when compared to the set of scalar forests, and,
depending on the dataset, the joint feature selection may also allow for important correlations
in the outputs to be learned. However, in the case of uncorrelated outputs this could also
prove to be a significant shortcoming, as especially for higher dimensional output vectors, a
single feature is required to discriminate between possibly uncorrelated phenomena.

Apart from the standard thresholding procedure, as with the Boosting algorithm de-
scribed above, we also investigate the use of fixed zero-thresholds in the tree-building pro-
cess. Again, the idea is inspired by the BRIEF features described in [8], with the intention
of producing a generic, lighting-insensitive feature with good generalisation performance on
independent testing datasets.

3 Experiments
In this section we present experiments carried out on two datasets, XM2VTS [2] and BioID
[1], for which ground truth positions of 22 key facial features are available as shown in
figure 2. Both datasets contain frontal images of faces, but were captured under very different
conditions. The XM2VTS dataset contains high-resolution images captured under controlled
conditions, resulting in very little pose and lighting variation between different individuals.
On the other hand, the BioID dataset consists of webcam images of people in offices. The
images in BioID are of substantially lower quality and contain significant variation in pose
and lighting. In our experiments we selected 400 images from both datasets, which were
split into training and testing datasets containing 200 images. Pixel samples containing 1000
pixels were gathered from 10 random displacements of the landmark points in each image
by up to 15% of the inter-ocular distance (IOD), such that N = 2000 training samples were
used to train the regression models.

3.1 Experimental setup
In the experiments carried out in this paper, we insert the regression methods discussed in
sections 2.3 and 2.4 into the Sequential Active Appearance Model framework introduced in
section 2.1. In order to evaluate the performance of the different regression algorithms and
feature selection criteria discussed in 2.2, we carried out a series of experiments in which a
single Regression AAM model was used to predict the pose (i.e. scale, rotation and location)
of the ground truth in the testing data.

Following up on this, a further experiment was carried out to compare the performance of
Boosted regression and Random Forest regression, but this time involving 5-stage Sequential
AAM models trained using the two procedures outlined in section 2.1. In the following, we
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use two letter acronyms to describe the regression algorithm and features used, where ‘pw’
refers to Haar-like features with piecewise constant functions, ‘vs’ refers to the Random
Forest using the multi-output variance split criterion and ‘zs’ is short for the zero-stump/zero-
split feature selection procedures described in sections 2.3 and 2.4. The suffix ‘_1d’ refers
to the implementation of the Random Forest which uses a set of scalar trees as described
in section 2.4. For completeness, we also include the results obtained using a simple linear
regression function which was trained on the pixel data directly and which is denoted ‘lin’.

In the Boosting algorithm, we chose to use 200 weak learners and a shrinkage parameter
λ = 0.05. The Random Forests consist of 100 trees which were built until each leaf node
contained a single sample.

4 Results

The errors after prediction are given as percentages of the inter-ocular distance (IOD). In
tables 1, 2 and 3, we present the median of the displacement distributions before (‘init’) and
after prediction using the models, as well as the percentage of searches that successfully
converged. The predictions are obtained by running a single iteration of every model in
the sequences. We consider a search to have converged successfully if the resulting points
have a mean absolute displacement of 3% of the IOD from the ground truth. This is a fairly
stringent threshold chosen to highlight the differences between the methods. In order to
ensure consistency across datasets, the BioID images were resampled to the same resolution
as the XM2VTS dataset (720×576).

4.1 Pose prediction

Table 1 shows the results of the pose prediction experiment. The results show a clear pref-
erence for the 1D implementation of the Random Forest. This is especially noticeable in the
difficult case of training on the XM2VTS dataset and testing on BioID, where the ‘vs_1d’
algorithm has a success rate that is almost twice as large when compared to the Boosting
algorithms ‘pw’ and ‘zs’. Interestingly, the vectorial implementations of the Random Forest
(‘vs’ and ‘zs’) perform significantly worse than their 1D counterparts, an indication that re-
quiring a single feature to discriminate between the four pose dimensions is too constraining.
This is especially clear in the case of the ‘zs’ Random Forest.

(a) test set: BioID
boost forest

training set init lin pw zs vs vs_1d zs zs_1d

BioID
median 7.3 7.3 3.4 3.5 3.6 3.0 4.9 2.9
success 5.0 3.0 43.0 36.9 37.5 51.3 19.8 51.9

XM2VTS
median 7.3 9.3 5.9 5.5 5.0 3.9 6.0 4.0
success 5.0 2.7 17.7 15.6 20.3 30.8 9.6 30.7

(b) test set: XM2VTS
boost forest

training set init lin pw zs vs vs_1d zs zs_1d

BioID
median 7.8 8.7 3.5 4.2 4.1 3.0 6.0 3.0
success 4.0 1.0 36.7 25.9 32.5 51.0 13.5 49.8

XM2VTS
median 7.8 5.0 2.6 3.0 3.1 2.2 5.3 2.2
success 4.0 11.6 60.3 48.7 48.8 67.6 18.5 67.1

Table 1: Median of the displacement distribution and percentage of successfully converged
samples obtained by predicting pose updates only using one iteration of a single Regression
AAM. The two letter acronyms describe the different algorithms and are explained in the
text. Left: Testing performed on the BioID database. Right: Testing performed on the
XM2VTS database.
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4.2 Sequential AAM
From the results in tables 2 and 3, it may be inferred that the coupled sequential training
algorithm leads to overfitting of the training data. This becomes clear when comparing the
performance in the case of training on XM2VTS and testing on BioID, where the indepen-
dent algorithm significantly outperforms the coupled algorithm in all but the case of ‘zs’.
Interestingly, the Boosting algorithms appear to outperform their Random Forest counter-
parts in the coupled case, although their performance is significantly worse when compared
to the best results obtained using the independent algorithm. Figure 3 shows cumulative
histograms of the best Random Forest and Boosting results in the dataset cross-comparison
experiments. The Random Forest clearly outperforms the Boosting method when training
on the XM2VTS dataset, although this is less obvious when training on BioID. Arguably,
the large pose and illumination variation in the BioID dataset forces the Boosting algorithm
to build more generic models, whereas overfitting occurs on the uniform XM2VTS dataset.
Conversely, the Random Forest produces similar cumulative histograms in both cases, which
may be seen as evidence for its resistance to overfitting.

(a) test set: BioID
boost forest

training set init lin pw zs vs vs_1d zs zs_1d

BioID
median 7.3 6.5 2.3 2.5 2.5 2.4 4.0 2.6
success 5.0 9.7 66.9 64.4 65.2 71.5 28.8 65.4

XM2VTS
median 7.3 16.7 7.2 5.5 3.5 3.3 5.2 3.2
success 5.0 14.4 18.6 23.7 42.3 41.9 16.7 45.3

(b) test set: XM2VTS
boost forest

training set init lin pw zs vs vs_1d zs zs_1d

BioID
median 7.8 16.0 2.3 2.6 2.2 2.2 4.9 2.2
success 4.0 0.2 69.7 59.8 65.1 74.3 24.7 70.8

XM2VTS
median 7.8 1.8 1.8 2.0 1.5 1.6 4.3 1.7
success 4.0 76.2 87.2 82.5 85.6 82.2 29.1 81.3

Table 2: Median of the displacement distribution and percentage of successfully converged
samples using a full 5-stage Independent Sequential AAM model. The sequence was trained
using datasets containing maximum displacements of 15,10,7,3 and 1.5 percent IOD, re-
spectively. The two letter acronyms describe the different algorithms and are explained in
the text. Left: Testing performed on the BioID database. Right: Testing performed on the
XM2VTS database.

(a) test set: BioID
boost forest

training set init lin pw zs vs vs_1d zs zs_1d

BioID
median 7.3 16.1 2.4 2.7 2.7 2.8 3.8 3.8
success 5.0 0.1 61.0 57.7 59.0 54.8 35.3 35.3

XM2VTS
median 7.3 16.7 5.0 5.3 6.6 4.7 5.0 4.0
success 5.0 14.4 29.5 22.4 22.1 27.6 19.4 33.8

(b) test set: XM2VTS
boost forest

training set init lin pw zs vs vs_1d zs zs_1d

BioID
median 7.8 16.0 2.6 2.8 2.8 2.9 4.6 4.6
success 4.0 0.2 58.1 54.9 55.3 52.8 30.4 30.4

XM2VTS
median 7.8 2.5 1.6 1.8 1.8 1.9 4.2 1.9
success 4.0 69.0 80.6 78.8 77.5 70.2 34.6 71.6

Table 3: Median of the displacement distribution and percentage of successfully converged
samples using a full 5-stage Coupled Sequential AAM model. The two letter acronyms
describe the different algorithms and are explained in the text. Left: Testing performed on
the BioID database. Right: Testing performed on the XM2VTS database.

4.3 Timings
4.3.1 Training

The training procedures for both the Boosting and the Random Forest algorithms are com-
putationally expensive. Even in our case, where only 1000 pixels were sampled from the
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Figure 3: Cumulative error histograms of the best Boosting and Random Forest results when
cross-comparing between the BioID and XM2VTS datasets.

images, more than 2 million Haar features need to be considered. In order to allow for rea-
sonable processing times, we limited the amount of features to be considered to 50000 by
random sampling. Thus the 5-stage Sequential AAM with the Boosting procedures required
6-8h to train. The Random Forest was implemented such that the trees were built in parallel
using 12 processors on a server, resulting in training times ranging from 3-9h. All algorithms
were implemented in C++.

4.3.2 Testing

boost forest

pw zs vs vs_1d zs zs_1d
mean duration (±1 sd) (ms/iteration) 0.38±0.02 0.41±0.07 0.74±0.04 1.39±0.15 0.40±0.07 1.42±0.12

Table 4: Mean timings for one iteration of a Regression AAM comprising a simple pose-only
shape model and the various regression algorithms.

In order to judge the efficiency of the algorithms involved, we timed the search for a
single iteration in the pose prediction experiment using a release build of our C++ imple-
mentation on an Intel Core2 Quad desktop processor. The results are shown in table 4. As is
expected, in particular the 1D implementations of the Random Forest are slower when com-
pared to the Boosting procedures. However, these numbers were generated using a serial
implementation of the Random Forest prediction. Since each tree in the forest is indepen-
dent, the prediction could easily be parallelised, thus leading to an increase in performance
proportional to the number of processors available.

5 Conclusion
In this paper we presented the use of Random Forest and Boosting regression algorithms
within a Sequential AAM framework and discussed their use with two different feature se-
lection criteria. We rigorously evaluated the algorithms by cross-comparing the performance
of the resulting algorithms on two very different face datasets, XM2VTS and BioID. Though
demonstrated for face analysis, AAMs are widely used in the medical domain, where we an-
ticipate similar results will hold. We conclude that:
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• the Random Forest shows superior generalisation performance

• vectorial data should be handled using independent 1D Random Forests

• independent training of Sequential AAMs is preferred over coupled training data
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