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Abstract. There are various applications, both in medical and non-
medical image analysis, which require the automatic detection of the line
(2D images) or plane (3D) of reflective symmetry of objects. There exist
relatively simple methods of finding reflective symmetry when object
images are complete (i.e., completely symmetric and perfectly segmented
from image “background”). A much harder problem is finding the line
or plane of symmetry when the object of interest contains asymmetries,
and may not have well defined edges.
A major area of interest is brain image analysis; there are various reasons
why one would want to be able to automatically, robustly and accurately
find the (sagittal) mid-plane from a 3D brain image. Example applica-
tions include pre-alignment (or sanity checking) for standard registration
methods, mid-plane finding as part of symmetric probabilistic anatom-
ical map generation, and, in particular, symmetry-based analyses (e.g.,
for schizophrenia research). This paper describes EROS - Extraction of
Robust Orientation using Symmetry, which has been developed to solve
this problem. It has been shown to work with MRI (T1, T2, EPI), PET,
SPECT and CT, using robust measures to give accurate results even
with images containing large asymmetries.
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Review

Much of the existing work concentrates on defining symmetry, and developing
low-level symmetry operators. For example, in the symmetry work reported by Di
Gesù et al. (e.g., [1]), applied to such problems as face detection and astronomical
image analysis, the algorithm is specifically tuned to the characteristics of these
problems. The emphasis is on finding small symmetric features, rather than
finding symmetries in large complex objects. Similarly, in [4], Reisfeld et al. find
points of symmetry - there is no attempt at robust (larger) object symmetry
detection.
Other work has looked for larger-scale symmetry, but often using constraints

on the symmetries looked for. For example, in [9], vertical symmetry axes only are
looked for in the context of road scene understanding for autonomous vehicle
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control. Sun et al. (e.g., [5]) use the extended gaussian image (EGI) to find
different types of symmetries in 2D and 3D images. The EGI, however, is derived
by looking at image gradient directions or the orientation of sections of image
edges, and is therefore intrinsically noisy compared with looking for symmetry
by direct point matching. The method also relies on finding principal axes first,
and may therefore not be very robust to asymmetries in objects.
Many methods depend on first finding image edges before proceeding to

detect symmetries. Clearly there are applications which cannot provide such
well-defined features - for example, see the PET and SPECT images below.
The approach reported in this paper does not require edges to be found; even
when processing images with high bias field (see discussion below), only edge
enhancement is used, not edge detection.
There are few published methods for finding symmetry in brain images. Mi-

noshima et al. [3] present a method which detects the symmetry plane in PET
images, using zero-crossing counting (stochastic sign change). Whilst it is shown
to be robust to large image asymmetries, it is hard to see how the method could
be extended to overcome even small bias fields in MRI images. Thirion et al. [6]
reflect the image about a pre-assumed symmetry plane, and then use registration
to align the original and reflected images. From the estimated transformation the
symmetry plane can be deduced. This is an impressive approach, but depends
on the registration being able to cope perfectly with significant asymmetries in
the brain image in order to function correctly - at the moment it appears that
success is probably limited to cases of restricted asymmetry. The method is also
dependent on having a very rough initial idea of where the symmetry plane is.

Method Detail

The method used to robustly find the plane of symmetry is now briefly outlined,
followed by a more detailed explanation of the reasoning behind the system, and
its implementation.
Preprocessing:
The image histogram is used to find robust estimates of the image “min-

imum” (5% into the cumulative histogram) and “maximum” (95%). Next a
rough brain/background threshold is defined using these values; it is assumed to
be min + 0.1(max − min). Now a rough estimate of the position of the centre
of gravity of the brain in the image is made, and an “average” brain radius is
estimated by using the brain/background threshold and counting the number of
voxels above this threshold. This radius is used to control subsampling when a
multi-scale search for the optimal symmetry plane is carried out.
Symmetry search algorithm (3D case):
The main algorithm for the search for the symmetry plane is:

• For all possible mid-plane orientations (i.e., all angles α, β)
• For all lines l perpendicular to mid-plane given by these angles (i.e., a 2D grid of
lines through the mid-plane)
• Find centre of symmetry ( s(x) is symmetry score at position x along line -
find peak value, sl(xp) for line l )
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• Add peak symmetry score into a total 1D array ( S(xp) = S(xp) + sl(xp) )
• Find peak in total array = score for these angles ( Pα,β = MAX(S(x)) ) -
compare with peak found at other (α, β) so far.
See Figure 1 for example sets of lines perpendicular to a single choice of

possible symmetry plane in each of three cases. (A single slice is shown, hence
the symmetry plane is seen as a line.) The three cases are a “clean” image of a
healthy brain, the “clean” brain with an incorrect choice of symmetry plane, and
a brain with a large asymmetry superimposed. The position of the optimal cen-
tre of symmetry for each perpendicular line is shown. As a further clarification
of how these positions are found, see Figure 2. In Figure 2 (left), the intensity
profiles for three example lines in the “clean” and asymmetric cases are shown.
Only one profile contains asymmetry - the final plot. In Figure 2 (right), the
next processing stage for these plots is shown; the symmetry score at each pos-
sible centre of symmetry is given. Again, only the final plot shows asymmetry.
Referring back to Figure 1, it is clear how the asymmetry has caused the marked
centres of symmetry to shift.
Finally, all of the peak symmetry scores are combined across all perpendicular

lines, into a single representative 1D array. Figure 3 (left) shows an example
of this - the effect of the asymmetry is to give rise to non-aligned centres of
symmetry in some of the perpendicular lines, causing the bulge on one side
of the cumulative array. Figure 3 (right) shows these final arrays for the three
cases shown earlier. When the mid-plane is incorrect, the peak symmetry scores
will not all fall near the same x, so the total array will not contain as high a
peak as when the plane is correct (the individual scores will be smaller as well,
thus increasing the ability of the method to discriminate between correct and
incorrect plane orientation).
Note that the lateral position of the symmetry plane, once the optimal angles

have been selected, is immediately found from the position of the peak in the
optimal cumulative 1D array. Clearly it would be easy to interpolate the values
in this array if desired, to find a sub-voxel position.
Symmetry measure: The basic symmetry score used to find the centres of

symmetry along each perpendicular line is:

s(x) =
∑

abs(Ix+i + Ix−i)−
∑

abs(Ix+i − Ix−i)∑
abs(Ix+i + Ix−i) +

∑
abs(Ix+i − Ix−i)

=
even− odd

even+ odd
, (1)

where even is a measure of the “evenness” (unnormalised symmetry) and odd is
a measure of the “oddness” (unnormalised asymmetry) of the intensity profile
about x. This formulation provides normalization for intrinsic variations in in-
tensity contrast and noise across the image. However, it incorrectly assigns too
much weight to areas of the image which contain little signal. Thus a correction
is made:

s(x) =
(even − odd) ∗ l

(even+ odd) + g
. (2)

Correction l is derived from local contrast (i.e., within the current perpendicular
line), thus giving more weight to lines containing significant interest. Correction g
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Fig. 1. Examples showing the set of lines perpendicular to proposed axes of
symmetry in three cases with the position of centre of symmetry shown for each
separate line.

profile C
clean image

clean / asymmetric image

clean / asymmetric image

profile B

profile C
asymmetric image

profile A

Fig. 2. Left: Intensity profiles along perpendicular lines A, B and C for Figure 1.
Right: Symmetry score profiles along lines A, B and C; x is the position (along
the perpendicular line) of a proposed centre of symmetry, and y is the symmetry
score for that position.
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from its symmetry scores profile)
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summed symmetry peak values
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Fig. 3. Left: Example summed symmetry peak profile. Right: Example profiles
for all images in Figure 1. As it is the position of the peak that matters, the
asymmetry does not affect the estimate of the line of symmetry. The incorrectly
oriented case gives a much lower peak than the correctly oriented case.

is a fraction of the global contrast, put here so that noise cannot have significant
influence when there is little signal - a problem in background regions.
Robustness: EROS is robust to asymmetries (e.g., lesions or susceptibility

artifacts) due to the method by which individual line symmetries are combined.
The combination of all lines’ symmetry positions into a single 1D array effectively
produces a mode-like position statistic, although the robustness is increased even
further than a true mode, where each peak would contribute an equal amount
to the cumulative array. The contribution is the peak’s value, not a constant, so
that peaks derived from strong symmetries contribute more highly than those
derived from weak symmetries.
A problem which has not been addressed thus far is that of a slowly varying

additive or multiplicative field on top of the underlying image. This is common
in MRI images, often termed bias field. EROS has been found to be robust to
normal levels of bias field, i.e., still finds the correct plane of symmetry. However,
with extreme bias field, simple symmetry does not exist - at optimal x, Ix+i−Ix−i

is not close to zero. In such cases, there is a very simple preprocessing stage
which allows EROS to function correctly. By edge-enhancing the image (using a
simple magnitude differential operator), the bias field is removed to first order.
Successful mid-plane detection then results.
Computational efficiency measures: The calculations involved in robust

symmetry detection are computationally expensive. A full search of all possible
angles at full resolution is currently prohibitive. Therefore a multi-scale approach
is taken - in practice, only two scales are used. Firstly, the image is smoothed
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and sub-sampled to give a smaller resulting image. Here the estimated brain size
is used; it has been found empirically that a mean brain radius of 40 voxels in the
subsampled image is the lowest resolution which still reliably gives a symmetry
plane which is close to the “correct” solution. This solution is then used as the
central point around which a restricted search is made at full (original) image
resolution. The second measure to reduce computational cost is to only use a
subset of all possible lines perpendicular to each tried symmetry plane. The
spacing between these lines can be varied to speed up calculations. Currently,
with these measures, EROS takes about 40 minutes to run on a typical MRI
brain image, on a Silicon Graphics Origin 200.
Local detection: A particular application might either be more interested

in the overall (global) optimal position for the plane of reflective symmetry (as
has been assumed thus far), or, it may require more local detection, using only
structures near the mid-plane to determine the exact position. The latter case
is simple to accommodate - after the main algorithm, a final iteration can be
applied, using only image points near the mid-plane in symmetry calculations,
giving central detection instead of global.

Results, Conclusions and Future Work

Figure 4 shows example results from CT, SPECT and PET images respectively.
These were 3D analyses - the central slice only is shown. The plane of symmetry
thus shows as a line; the computed centre of gravity is also marked. Figure 5 (left)
shows an MRI brain image with bad bias field artificially added. In order to allow
EROS to succeed in finding the mid-plane, edge enhancement is carried out as a
pre-processing step. Figure 6 (left) shows an MRI image with significant artificial
asymmetries introduced. The simple non-robust solution is marked, as well as
the robust one, which is correct. Figure 6 (right) shows symmetry detection on
an image of the University of Ljubljani. The original image has been rotated
and offset so that the symmetry line is not central in the image. The image was
inverted so that the initial thresholding heuristics (easily alterable for different
applications to brain analysis) would cause EROS to ignore the sky, and not the
building!
EROS has not yet been found to fail to find the “correct” solution, except

in investigations of how low, in resolution, the initial subsampled image can
be. In terms of accuracy, the solution normally looks, by eye, to be optimal at
the voxel level. However, an area for future evaluation is a more quantitative
investigation into the accuracy of results, compared with some kind of “gold
standard”, possibly defined manually by a group of investigators. In this way
fine accuracy could be both optimised and quantified.
An example application of EROS is the pre-alignment of images before regis-

tration. Many existing registration methods carry out simple cost-function min-
imisation over a number of parameters without multiple starts - thus initial
positioning often has a great effect on the success of the final registration. An
example is the widely used AIR registration program [7,8]. As part of a wider



314 Stephen Smith and Mark Jenkinson

Fig. 4. Slice through 3D CT, SPECT and PET images after symmetry plane
detection by EROS.

Fig. 5. An image badly corrupted by bias field after symmetry plane detection
by EROS with edge enhancement pre-processing.

investigation into registration robustness [2], results from AIR were compared
with the results given if EROS was used to pre-align the planes of symmetry
from the two images. As Figure 7 shows, for almost all cases, using EROS im-
proved the final registration quality greatly. In fact, EROS correctly aligned the
symmetry plane in all cases; where the final registration was not correct after
pre-alignment, the error was normally in rotation about the axis perpendicular
to the mid-plane, which, obviously, is not at all constrained by finding the sym-
metry plane. Also, note that EROS is only used to provide a starting estimate
to AIR - results could probably be improved if the plane alignment was actually
used as a constraint during registration.



Accurate Robust Symmetry Estimation 315

Fig. 6. Slice through 3D MRI (T2-weighted) image after symmetry plane de-
tection by EROS. The image has been artificially corrupted to cause a large
asymmetry. Non-robust symmetry detection fails completely (dashed line) whilst
robust detection is successful.

Figure 8 shows symmetry detection on two images of rotated shields. In the
second case a large amount of noise was added but the result was still good.
An automatic, robust, accurate method has been developed. More work will

be carried out to speed it up, and to address the question of rotation about
the axis perpendicular to the mid-plane (this is a very different kind of prob-
lem). It will be straightforward to extend EROS to allow the estimation of a
curved mid-“plane”. There is scope for increasing the robustness of EROS by
improving the lowest level measure of symmetry, based on means of absoulte
values. An alternative should be possible which is robust at even the lowest level
to asymmetries, thus increasing even further the power to detect symmetry in
objects with asymmetries. It is anticipated that the software will be made freely
available from the FMRIB web site within a few months.
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Fig. 7. Application of EROS to pre-alignment for registration - see text for
details.

Fig. 8. Images of two shields after symmetry line detection by EROS. The second
had Gaussian noise added (maximum image contrast = 255; noise standard
deviation = 50).
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